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ABSTRACT

We characterize the class of matrices for which the set of supports of nonnegative
vectors in the null space can be determined by the signs of the entries of the matrix.
This characterization is in terms of mixed dominating matrices, which are defined by
the nonexistence of square submatrices that have nonzeros of opposite sign in each
row. The class of mixed dominating matrices is contained in the class of L-matrices
from the theory of sign-solvability, and generalizes the class of S-matrices. We give a
polynomial-time algorithm to decide if a matrix is mixed dominating. We derive
combinatorial conditions on the face lattice of a Gale transform of a matrix in this
class. © 1998 Elsevier Science Inc.

1. INTRODUCTION

All entries of matrices in this paper are real numbers. A matrix is said to
be mixed if every row contains nonzeros of opposite sign. A matrix is
dominating if it does not contain a nonempty square mixed submatrix. Mixed
dominating matrices have proved to be very important in the study of affine
semigroups (see [6], [7], and [8]), in which case the entries of the matrices
involved are integers. We have found that the mixed dominating property of a
matrix by itself implies many interesting properties of the matrix that do not
involve integrality of the entries. In this paper, we collect and present many
of these properties.
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A great deal of research has gone into the study of properties of matrices
that can be derived from simply looking at the signs of the matrix entries. A
recent book, [3], gives an overview of the research on this subject. Matrices
for which linear independence of the rows can be inferred from the signs of
the entries are called L-matrices. (This follows the notation of [2). Earlier
papers defined L-matrices to be those for which linear independence of
columns can be determined from the signs of the entries.) Determining if a
matrix is an L-matrix has been shown to be an NP-complete problem [12].
Determining if a matrix has a nonnegative vector in its nullspace by looking at
signs of entries has also been considered [1, 5]. An r X (r + 1) matrix such
that one can determine if its null space is spanned by a positive vector by
examining signs of entries is called an S-matrix. An O(r?) algorithm for
recognizing an S-matrix was given by Klee [11].

We use a decomposition theorem for mixed dominating matrices, proved
in [8], to derive a polynomial-time algorithm that determines if a matrix is
mixed dominating. The mixed dominating property of a matrix has a very
natural graph-theoretic interpretation. We investigate this interpretation thor-
oughly in Section 3, and use it to give a new proof of the decomposition
theorem for mixed dominating matrices.

Our work can be seen as an extension of the work on $-matrices. We
characterize the class of matrices for which the signs of the entries determine
the set of supports of all nonnegative vectors in the null space. We show that
the problem of determining if a matrix M is in this class reduces to the
problem of finding, in a submatrix we call the derived submatrix of M, a
nonempty square mixed submatrix.

The set of supports of nonnegative vectors in the null space of a matrix
M, partially ordered by inclusion, is isomorphic to the face lattice of a cone
generated by a set of points called a Gale transform of M. Using the
decomposition theorem, we derive some properties of the cones of Gale
transforms of mixed dominating matrices. We show that every k-dimensional
face of such a cone is contained in at most 2(d — k) — 2(k + 1)-dimensional
faces if k is at most d — 2, where d is the dimension of the cone. We show
that this is also true for every face of the cone. We also derive bounds on the
diameters of the 2-skeleton and the dual 2-skeleton of the cone.

2. MIXED DOMINATING MATRICES

Throughout this section, M is an r X n matrix with real entries, where
we will allow r to be zero. A vector in R" is called mixed if it has a positive
and a negative component. We say M is mixed if every row of M is mixed.
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Thus, an empty (with r = 0) matrix is mixed. A matrix M is said to be
dominating if M contains no nonempty square mixed submatrix. The motiva-

tion for this notation is given by the following proposition (Proposition 2.6
from [7]):

PROPOSITION 2.1.  Let M be an r X n matrix. The following are equiva-
lent: ‘

(1) M is dominating.
(2) For any subset [k] C [r], nonzero numbers a,, i € [k], and rows u,,
i € [k], there exists j € [k] such that (La,u)" > (au)”.

Proposition 2.1 implies that the set of indices for the positive entries of
any nontrivial linear combination of the rows of M contains the set of indices
for the positive or negative entries of some row of M. This immediately
implies the following corollaries (Corollary 2.7 and Corollary 2.8 of [7D.

COROLLARY 2.2. Let M be an r X n mixed dominating matrix.

(1) Every nonzero vector in the row space of M is a mixed vector.
(2) The rows of M are linearly independent.

A matrix M is an L-matrix (see [2]) if every matrix with the same sign
pattern as M has linearly independent rows. Corollary 2.2 implies that mixed
dominating matrices are L-matrices. We will return to these linear algebraic
concepts in Section 4. The rest of the present section is devoted to combina-
torial properties of mixed dominating matrices. The following proposition
follows directly from Proposition 2.1, but we give an independent combinato-
rial proof.

PRroOPOSITION 2.3.  Let M be an r X n matrix with r > 0 in which every
row has a positive entry and every column contains a negative entry. Then M
contains a nonempty square mixed submatrix.

Proof. The statement is vacuously true if = 1. Suppose r > 1; then M
has an r X k submatrix N with k < r, containing a positive entry in every
row. If there is a negative entry in every row of N, then N and hence M
contains a square mixed submatrix. If there is a row of N that contains no
negative entry, we may delete this row, retaining the property that every
column has a negative entry. By induction, the resulting matrix contains a
nonempty square mixed submatrix. |



194 K. G. FISCHER, W. MORRIS, AND ]. SHAPIRO

COROLLARY 2.4. Let M be a mixed dominating matrix. Then M has a
nonnegative column.

Note that multiplying any set of rows of M by —1 does not destroy the
mixed dominating property of M. Hence, by Corollary 2.4, if M is an r X n
mixed dominating matrix and x is a vector of length r, then M has a column
for which no entry has nonzero sign opposite to the sign of the corresponding
entry of x. This is also true of any mixed dominating submatrix of M. It is
known (see Theorem 2.1.1 of [3]) that all L-matrices have this property.

COROLLARY 2.5. Let M be an r X n mixed dominating matrix with
n > r+ 1. Then M has two columns i and j such that no row of M has
nonzeros of opposite sign in columns i and j.

Proof. We first give a greedy algorithm to find a maximal k X (k + 1)
mixed submatrix | of M [i.e., one not contained in any ! X (I + 1) mixed
submatrix of M with [ > k]. We will build the sets J; and ], of row and
column indices of . Initialize J; = & and J. = i, where i is any column of
M. Scan the columns of J. If a column of [, contains a nonzero in a row s
not in Jg, set Jp =Jz Us and Jo = Jo Uj, where j is a column of M in
which row s has a nonzero of sign opposite to the nonzeros of row s that are
in columns of J;. Resume scanning the columns of J.. If at some point the
columns of J; contain no nonzeros in rows of M not in Jg, let | be the
submatrix of M with rows indexed by J, and columns indexed by ], and
stop. Suppose there is a mixed ! X (I + 1) submatrix L of M containing |
when the algorithm stops. If [ > k, then the submatrix of L formed from the
rows and columns that do not intersect J is a nonempty square mixed matrix,
contradicting the mixed dominating property of M.

Now let ¢ be a column of M not in J;. By the discussion following
Corollary 2.4, there must be a column j of J such that no row of | has a
nonzero in column j of opposite sign to the corresponding entry of column c.
Since there are no nonzeros in column j that are in rows not indexed by Jj,
we see that no row has nonzeros of opposite sign in columns j and c. [ |

Suppose that M is an r X n mixed matrix with no 2 X 2 mixed subma-
trix. If for every pair of columns of M there is a row of M containing
nonzeros of opposite sign in those columns, then a theorem of Graham and
Pollak [9] states that n < r + 1. Corollary 2.5 therefore follows from that
theorem. We have included our proof of Corollary 2.5 because no purely
combinatorial proof of Graham and Pollak’s theorem is known.
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We call a column of a mixed matrix isolated if it contains a nonzero entry
that is the only entry of its sign in its row. The removal of a non-isolated
column from a mixed matrix leaves a mixed matrix. We will see the impor-
tance of this in Sections 4 and 5.

PROPOSITION 2.6. A nonempty mixed dominating r X n matrix has a
row with no more than n — r + 1 nonzero entries.

Proof. 1t was proved in [7] that the mixed dominating r X (r+1)
matrices are precisely the r X (r + 1) S-matrices, as defined in [11]. Thus,
the proposition in the case n =r + 1 is well known from the theory of
S-matrices. Suppose M is an r X n mixed dominating matrix with n — r > 1.
Suppose every column of M is isolated. Since n > r, this implies that some
row of M contains exactly two nonzero entries, and we are done. Otherwise,
there is a column of m that is not isolated. This column may be deleted,
leaving a mixed dominating submatrix of M. By induction on n — r, we can
assume that this submatrix has a row with no more than n — r nonzero
entries. It follows that M has a row with no more than n — r + 1 nonzero
entries. a

We say that M is dense if every 2 X 3 mixed submatrix of M has five
nonzero entries. We say that M is full if it is not possible to change any zero
entry of M into a nonzero without creating a nonempty square mixed
submatrix in the resulting matrix. It is true, but not obvious, that every full
mixed dominating matrix is dense.

PROPOSITION 2.7. A full mixed dominating matrix is dense.

Proposition 2.7, which is crucial to our proofs of Theorem 2.9, was proved
in [8] (Lemma 2.3). A graph-theoretic proof of Proposition 2.7 is given in
Section 3. The converse is false in general, but true in the following special
case.

PROPOSITION 2.8. A dense r X (r + 1) mixed dominating matrix is full.

Proof. We prove by induction on r that if M is a dense r X (r + 1)
mixed dominating matrix and i and j index two distinct columns of M, then
there is a row of M containing nonzeros of opposite sign in these columns.
This is vacuously true for r = 0. Suppose r > 0, and let i and j index two
distinct columns of M. Suppose we run the algorithm from the proof of
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Corollary 2.5, starting with J, = &, J. = {i}, to find a maximal k X (k + 1)
submatrix | of M. Since M is r X (r + 1), we have ] = M. We must
therefore at some stage add j to J.. When this happens, we have a
k X (k + 1) submatrix K of M with columns indexed by J. and rows
indexed by Jg, j € Jo, and a row s & [ that contains nonzeros of opposite
sign in columns j and ! for some ! € J.. If | =4, then row s contains
nonzeros of opposite sign in columns i and j. Otherwise, the inductive
hypothesis applied to K implies that there is a row t € J, with nonzeros of
opposite sign in columns i and /. We therefore have a 2 X 3 mixed submatrix
of M with rows indexed by {s, ¢} and columns indexed by {i, j, [}. Since M is
dense, either row s or row ¢ contains nonzeros of opposite sign in columns i
and j. It is now clear that changing a zero entry of a dense r X (r + 1) mixed
dominating matrix to a nonzero must create a 2 X 2 mixed submatrix. [ |

Theorem 2.9 below is the key to our polynomial-time algorithm for
recognizing mixed dominating matrices as well as to the results of Section 5.
It generalizes a theorem of Delorme [4] on numerical semigroups that are
complete intersections. Paper [7] shows that an affine semigroup which is a
complete intersection has a mixed dominating matrix of relations and derives
Delorme’s theorem by proving Theorem 2.9 for the case n = r + 1. The
equivalence of r X (r + 1) mixed dominating matrices and S-matrices was
also proved in [7). The case n =r + 1 of Theorem 2.9 is therefore also
implied by a result of [12] that S-matrices can be decomposed as in the
theorem. Delorme’s result was extended to affine semigroups of dimension at
most three in [13]. Theorem 2.9 was proved and used to extend Delorme’s
theorem to affine semigroups of arbitrary dimension in [8]. Because of the
importance of Theorem 2.9 for mixed dominating matrices, we give an
alternative proof here and another in Section 3.

THEOREM 2.9. Let M be a nonempty r X n mixed matrix. Then M is
dominating if and only if the rows and columns of M can be rearranged so
that the resulting matrix has the form

0
0o [B] (1)
b

where A and B are dominating matrices and a and b are unmixed vectors.
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Proof. Note that either A or B or both may be a matrix with no rows.
Let M be a mixed matrix with the block structure of (1). Suppose that A and
B are both dominating. If M contains a nonempty square mixed submatrix
N, then let nc( A) be the number of columns of N that intersect A, and let
nr (A) be the number of rows of N that intersect A. Define no{ B) and nr( B)
similarly. If nc(A) = 0, then N does not intersect the last row of M, so B
contains N. It is impossible to have nc(A) = 1 if the rows of N are to be
mixed. If nc( A) and ne( B) are both at least 2, then since nc(A) + ne(B) <
nr{ A) + nr{ B) + 1, either nce( A) < nr{ A) or nc(B) < nr(B). Thus N con-
tains a nonempty square mixed submatrix of A or B.

For every mixed dominating M, there is a full mixed dominating matrix
M’ obtained by turning zero entries of M into nonzeros. A decomposition of
M’ as in (1) would give a decomposition for M. Proposition 2.7 implies that
M’ is dense. For any row s of M’, define S(s) to be the set of indices of
columns that contain nonzeros in row s. Suppose rows S(s) N S(t) # & for
rows s and ¢ of M'. Denseness of M’ implies that S(s) C S(t) or §(¢) € S(s).
If S(s) C S(¢), then the entries of row t indexed by S(s) must all be of the
same sign, for otherwise there would be a 2 X 2 mixed matrix contained in
rows s and t. Let u be a row of M’ so that S(u) is not contained in S(v) for
any row v of M'. We may assume that u is the last row of M’'. By an
argument similar to that of the first half of this proof, we could change any
zero entry of row u to a nonzero without creating a square mixed submatrix.
Thus fullness of M’ implies that « has no nonzero entries. Therefore M’
(and also M) has the block structure of (1) if we place the rows of M’ with
support contained in set of indices of positive entries of row u first and also
place the columns of M’ containing positive entries in row u first. [ |

We will say that a mixed dominating matrix M is extendable if it is
possible to add a mixed row to M so that the resulting matrix is mixed
dominating. The paper [8] proved that every r X n mixed dominating matrix
M with n > r + 1 is extendable, and used this result to prove the decompo-
sition theorem. Conversely, one can deduce the extendability of M, or the
following sharper property, from the decomposition theorem.

ProPOSITION 2.10. Let M be an r X n mixed dominating matrix. Then
[n] can be partitioned into r + 1 subsets, so that any mixed vector of length n
with support in one of the parts of the partition can be appended as a new
row of M, with the resulting enlarged matrix mixed dominating.

Proof. The proof is by induction on r. If r =0, we can obviously
append any mixed n-vector. The partition of [n] for a 0 X n matrix thus has
one part. Suppose 7 > 0, and M has the block structure of (1). We may
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assume by induction that the sets of column indices of A and B are
partitioned, so together these partitions make up a partition of [n] with r + 1
parts. Suppose we add a mixed row to M with support in one of the parts of
the partition, say a part indexing columns that meet A. By induction, the
resulting enlargement of A has no nonempty square mixed submatrix, and
then by Theorem 2.9, M also has no nonempty square mixed submatrix. B

We now apply Theorem 2.9 to obtain a polynomial-time algorithm to
recognize mixed dominating matrices.

ALGORITHM 1. Input: (s, M), where M is a nonempty mixed matrix and
s is a row of M. Output: («, A, B), where a = 1 if there is a rearrangement
of the rows and columns of M that has the form (1) with row s as the last
row, and a = 0 if there is no such rearrangement.

Let G(s, M) be a graph with a vertex for every column of M and an edge
between two vertices if there is a row of M other than s with nonzero entries
of opposite sign in these columns. Determine the connected components of
G(s, M). If a connected component of G(s, M) has two vertices for which
the corresponding columns of M contain nonzero entries of opposite sign in
row s, set @ = 0. Otherwise, set &« = 1, and let A be the submatrix of M
with columns that correspond to vertices of G(s, M) that are in components
for which the corresponding columns do not contain negative entries in row
s, and the rows of A are the rows of M that have negative and positive
entries in the column set of A. Let the columns of B be columns of M that
are not in the column set of A, and let the row set of B be the rows of M
other than s that are not in the row set of A.

In the case that a = 1, the rearrangement of the rows and columns of M
that puts the rows and columns of A first and row s last is of the form (1).

We will refer to the (@, A, B) returned by Algorithm I with input (s, M)
as (a(s, M), A(s, M), B(s, M)). Similarly the (B8, M') returned by Algo-
rithm II below will be referred to as ( B(M), M'(M)).

ALGORITHM II.  Input: A mixed matrix M. Output: (B8, M’), where
B = 0if M is not dominating, and B = 1 and M’ is a matrix that arises from
a rearrangement of the rows and columns of M if M is dominating,

Apply Algorithm I to (s, M) for each row s of M until either a(s, M) = 1
for some row s or a = 0 for all rows s.

If a(s, M) = 1, apply Algorithm II to A(s, M) and B(s, M) if they are
nonempty. If A(s, M) is empty or B(A(s, M)) = 1, and B(s, M) is empty or
B(B(s, M)) = 1, then set B =1 and form M’ as follows: Let s be the last
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row of M’, and let the first rows and columns of M’ contain M'( A) (or the
empty matrix if A is empty) and let the last rows and columns of M’ other
than row s contain M'(B) (or the empty matrix if B is empty.) If one of
B(A(s, M)) = 0 or B(B(s, M)) = 0, then set 8= 0.

If a(s, M) = 0 for all rows s of M, then set 8 = 0.

THEOREM 2.1. Algorithm II finds that an r X n mixed matrix M is
dominating or determines that M is not dominating in O(r®n®) steps.

Proof. Algorithm I takes O(n®) steps to determine the connected com-
ponents of the graph G(s, M), which has O(n) vertices. Algorithm II calls
Algorithm I O(r) times before calling itself or returning B. We show by
induction that Algorithm II is called at most r times. Algorithm II applied to
a matrix with one row will not call itself, so it is applied once for a matrix with
one row. If Algorithm II calls itself, it does so for one or two matrices, with
disjoint row sets of total cardinality » — 1. By induction, the total number of
times Algorithm II is called for these matrices is at most r — 1. Therefore
Algorithm II is called at most r times. |

Note that Algorithm II does not return a square mixed submatrix if M is
not dominating. In order to remedy this, we propose the following algorithm.

ALGORITHM III. Input: A mixed matrix M. Output: A determination that
M is dominating or a nonempty square mixed submatrix of M.

Run Algorithm II on matrix M. If Algorithm II returns 8 = 0, then for
each column ¢ of M, run Algorithm II on the matrix M \ ¢ obtained from M
by deleting column ¢ and any unmixed rows created by deleting column c, if
this matrix is not square and not empty. If a column ¢ is found for which

B(M \ ¢) = 0, run Algorithm III on the matrix M \ c.

THEOREM 2.12.  Algorithm I1I finds a nonempty square mixed submatrix
of an r X n mixed matrix M or determines that M is dominating in O(rn*)

steps.

Proof. Suppose that the first call to Algorithm II returns B = 0. If
M \ c is square and nonempty, we are done. If M \ ¢ is empty or B(M \ ¢)
=1, then the decomposition theorem implies that every square mixed
submatrix of M meets column ¢. This can happen for at most r columns of
M. Since n > r, B(M\ ¢) = 0. Thus Algorithm III calls itself at most n
times, and for each call it runs Algorithm II at most r times. [ ]
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3. A GRAPH-THEORETIC INTERPRETATION

Given an r X n matrix M = (mij), one may associate to it a colored
multigraph G whose vertices correspond to the columns of M with an edge
of color s between vertices v, and v, if there exists a row s such that
mgm,; < 0.1t is clear that for each row of M, the subgraph of G induced by
the edges of color s is a complete bipartite graph. If M is a mixed matrix that
contains no 2 X 2 mixed submatrices, then G is a graph. We will call any
subgraph of G with all edges of distinct colors multicolored. It follows from
Lemma 2.5 of [7] that G contains no multicolored circuits if and only if M is
mixed dominating. This has also been proved for the case n =r + 1 in [3,
Theorem 4.4.4].

By definition, a mixed dominating matrix M is dense if and only if any
two vertices of G connected by a multicolored path of length two are
connected by an edge of one of the two colors in the multicolored path.
Therefore, if M is dense, it follows that any two vertices connected by a
multicolored path are adjacent.

In this section we give graph-theoretic proofs of Proposition 2.7 and
Theorem 2.9. We will call a vertex v, a source for color s if m ; > 0, and a
sink for color s if m,; < 0. Note that every source for color s is connected to
every sink for color s by an edge of color s.

LEMMA 3.1.  Let M be a mixed dominating matrix and let G be its graph.
Suppose that vertices u, w, and y are vertices of G with edges of color t
between u and w and between y and w. Suppose that p is a multicolored path
from u to y not containing edges of the color t. Let q be a multicolored path
starting at w, also not containing edges of color t. Then the sets of edge colors

of paths p and q must be disjoint.

Proof. Starting from w, let e be the first edge in the path ¢ whose color
s also appears for an edge f in the path p. We may assume that the vertex a
of edge e closest to w is a source for color s. If vertex b of edge f is a sink
for color s and if b is closest to u (respectively y), then there exists a
multicolored path between a and b going through u (respectively y) not
containing edges of color s. Since a is a source and b is a sink for color s, this
creates a multicolored cycle and contradicts the assumption that M is mixed
dominating. |

The following lemma proves that in a mixed dominating matrix, every
2 X 3 mixed submatrix with four nonzero entries may be modified by
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changing a zero into a nonzero, keeping the matrix mixed dominating. This
will therefore prove Proposition 2.7.

LEMMA 3.2. Let M be a mixed dominating matrix, and let G be its
graph. Suppose that vertices x and y of G are connected by an edge of color s
and that vertices y and z are connected by an edge of color t distinct from s.
If the vertices x and z are not adjacent, then a zero entry of M can be made
nonzero so that x and z are connected by a new edge of color s or t, and the
resulting matrix is mixed dominating.

Proof. We may assume that x is a source for color s and that z is a sink
for color ¢. If we are prevented from changing M so that z is a sink for color
s, then there must exist a vertex v that is a source for color s and a
multicolored path between vertices v and z that does not contain the color s.
Since vertices v and y are connected by an edge of color s, this path must
contain an edge of color ¢, for otherwise we would have a multicolored cycle.
Since vertex z is a sink for color ¢, we can assume that the first edge from z
must be of color ¢, since otherwise the path can be shortened. Hence, there
exists a vertex u that is a source for color ¢ and adjacent to z. Call the path
from vertex u to y, through v, path p. Notice that path p is multicolored
and does not contain an edge of color ¢, but contains an edge of color s.

A similar argument shows that if vertex x cannot be made into a source
for color ¢, it is due to the existence of a vertex w that is a sink for color ¢
and the existence of a multicolored path g from w to x that does not contain
edges of color ¢ but must of necessity contain an edge of color s. But then
vertices w and y and also vertices w and u are connected by edges of color
t. Since the multicolored path p between vertices y and u does not contain
the color ¢, we have a contradiction to Lemma 3.1. [ |

We say that a row « of a mixed matrix M is distinguished for M if the
columns of M can be partitioned into two nonempty sets X and Y so that X
contains the negative support of u, Y contains the positive support of u, and
the support of any other row of M is contained in one of X or Y. The
decomposition of a mixed dominating matrix in Theorem 2.9 shows that the
bottom row is distinguished. If G is the multigraph of M and u is distin-
guished for M, then removal of the edges of color u from G leaves a
multigraph in which there is no path from a vertex that was a source for color
u to a vertex that was a sink for color u. We will give another proof of
Theorem 2.9 now by showing that every G coming from a mixed dominating
matrix must have such a color corresponding to a distinguished row.
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THEOREM 3.3. Suppose that M is mixed dominating. Then M must
contain a distinguished row.

Proof. We may assume that M is dense. If a row s is not a distinguished
row for M, then there must exist a cycle of G containing precisely one edge
of color s. Since M is dense, we may assume that, in fact, there exists a cycle
of length three with one edge of color s and the remaining two edges of a
color ¢ distinct from s. Denote such a cycle by Z(s, t).

Suppose that there is such a cycle Z(s, t) for every row s. There must
then be a sequence (Z(sy, s,), Z(sy, s3), ..., Z(sp_1, s)) with s = s, and
with s, s, ..., s,_, distinct. For each i <k — 1 we have an edge of color
$;+q from Z(s;, s;,;) to Z(s;,,,s,.,), and an edge of color s;_; from
Z(sy_1, sp) to Z(s,, s,). From this sequence of edges one gets a multicolored
cycle using colors s, 55, ..., 5. [ ]

Suppose that M is mixed and G is its multigraph. The theorem of
Graham and Pollak states that if G is a graph (contains no multicolored
circuit of length two) and n > r + 1, then there are two vertices of G that
are not adjacent. The following theorem seems to be a close relative,
although the exact relationship is unclear to us.

THEOREM 3.4. Let M be an r X n mixed dominating matrix with n >
r + 1, and let G be its graph. Then there are two vertices of G that are not
connected by a multicolored path.

Proof. We may assume that M is full, since turning zeros of M into
nonzeros adds edges to G. The matrix M is dense by Proposition 2.7. Since
n > r + 1, Corollary 2.5 says that M contains two vertices that are not
adjacent. Therefore, the two nonadjacent vertices of G are not connected by
a multicolored path. [ ]

We note that Proposition 2.10 implies that if M is an r X n mixed
dominating matrix and G is its graph, then the vertex set of G can be
partitioned into r + 1 parts so that no two vertices in the same part are
connected by a multicolored path. This proposition appears to be a close
relative of a conjecture of Alon, Saks, and Seymour (Problem 9.12 in [10]).
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4, SUPPORTS OF NONNEGATIVE VECTORS
IN THE NULL SPACE OF M

We will prove an alternative characterization of mixed dominating matri-
ces in terms of sign patterns of vectors in the null space of M. By null space
we will always mean right null space. The null space of a 0 X n matrix will be
considered to be R".

PROPOSITION 4.1.  If M is r X n mixed dominating and n > 0, then there
is a positive vector in the null space of M.

Proof. The proof is by induction on r. If r = 0, then the null space of
M is R", which contains a positive vector. If r > 0, we may assume that M
has the form (1). By the inductive hypothesis, there are positive vectors x and
y respectively in the null spaces of A and B. We may replace y by a positive
multiple so that alx + bTy = (. Thus, the concatenation of x and y is a
positive vector in the null space of M. [ |

Note that Corollary 2.2 may be proved from the decomposition theorem
in a similar way.

An r X (r + 1) matrix M is called an S-matrix if every matrix with the
same sign pattern as M has its null space spanned by a positive vector.
Corollary 2.2 and Proposition 4.1 imply that an r X (r + 1) mixed dominat-
ing matrix is an S-matrix. That every S-matrix is mixed dominating was
proved in [7]. This is also implied by Proposition 4.3 below. Another proof of
the equivalence of r X (r + 1) mixed dominating matrices and S-matrices is
in [3, Theorem 4.4.4]. The main result of this section, Theorem 4.4, is a
generalization of this equivalence of S-matrices and r X (r + 1) mixed
dominating matrices.

If M is an r X n mixed dominating matrix and E is a set of columns of
M, then M \ E will be the matrix obtained from M by deleting the columns
in E and then deleting any zero rows that are created. The support of a
vector y in the null space of M is {i € [n]: y, # O}.

PROPOSITION 4.2.  Let M be an r X n mixed dominating matrix. Let I be
a subset of [n)], and let E be the set of columns of M indexed by I. Then
[nI\ I is the support of a nonnegative vector in the null space of M if and
only if M\ E is a mixed dominating matrix.
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Proof. Suppose [n]\ I is the support of a nonnegative vector in the null
space of M. Then M \ E is clearly dominating, because M was dominating.
An unmixed row of M \ E would contradict the existence of a nonnegative
vector y in the null space of M with support equal to [n]\ I. Thus M \ E is
mixed. Conversely, if M \ E is mixed dominating and I is not [n], then there
is a positive vector in the null space of M \ E, and extending this vector to a
vector in the null space of M by adding zeros for the entries indexed by I
shows that [n] \ I is the support of a nonnegative vector in the null space of
M. If I is [n], then [n}\ I = J is the support of the zero vector in the null
space of M. |

We say that the set of supports of nonnegative vectors of the null space of
M is determined by the sign pattern of M if, for any matrix N with the same
sign pattern as M and any subset I of [n], [n]\T is the support of a
nonnegative vector in the null space of M if and only if [n] \ I is the support
of a nonnegative vector in the null space of N. Proposition 4.2 implies that
the set of supports of nonnegative vectors in the null space of M is
determined by the sign pattern of M if M is mixed dominating,

PROPOSITION 4.3.  Let M be an r X n mixed matrix. If the set of supports
of nonnegative vectors in the null space of M is determined by the sign
pattern of M, then M is mixed dominating.

Proof. Suppose M is not dominating. Let B be a square mixed subma-
trix of maximum size. Suppose that B is k X k. Let N be the r X k
submatrix of M consisting of the columns that meet B. Without loss of
generality, we may assume that B consists of the first k rows of N. We will
show that there exist r X k matrices A and C with the same sign pattern as
N such that there exists a positive vector y in the null space of A, but there
is no positive vector in the null space of C. This will imply that the set of
supports of nonnegative vectors in the null space of M is not determined by
the sign pattern of M. The maximality of B implies that each row of N is
mixed or zero. Hence, one can easily find positive numbers with which to
scale the entries of a row of N so that it is orthogonal to the k-tuple of all
ones. If the rows of A are created this way, then the k-tuple of ones is in the
null space of A. The construction of C follows. Let the first row of C be the
first row of B. Suppose we have constructed [ rows of C from the corre-
sponding rows of B, where I < k. Suppose the matrix of these | rows of C
has a positive vector y; in its null space. One can then scale the entries of row
I + 1 of B by positive numbers so that the resulting vector is not orthogonal
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to y,, and make this row the (I + Dth row of C. Note that the dimension of
the null space of the matrix of the first [ + 1 rows of C is one less than the
dimension of the null space of the matrix of the first [ rows of C. If we create
k rows of € in this way, then there will be no positive vector in the null space
of C. If the matrix of the first [ rows of C has no positive vector in its null
space, then the remaining rows of C can be the corresponding rows of N. &

An alternative, more combinatorial construction of C from the preceding
proof uses Koenig’s theorem from matrix theory and is similar to the proof of
Theorem 3.2 of [1]. We prefer the argument above for its simplicity.

In order to completely characterize matrices M for which the sign pattern
determines the set of supports of nonnegative vectors in the null space of M
(i.e. for matrices that are not necessarily mixed), we need the concept of the
derived submatrix of M. If M is a matrix, we can create a new matrix by
deleting the columns of M that contain nonzero components of unmixed
rows, and then deleting any zero rows. This process may be repeated until we
have a mixed matrix H. This mixed matrix is called the derived submatrix of
M. It is clear that any nonnegative vector y in the null space of M must have
y, = 0 if column i of M does not meet H. Conversely, any nonnegative
vector in the null space of H can be extended to a nonnegative vector in the
null space of M by adding zeros in the components corresponding to
columns of M deleted to create H. Thus, the following theorem follows from
Propositions 4.2 and 4.3.

THEOREM 4.4. Let M be a matrix. The sign pattern of M determines the
set of supports of nonnegative vectors in the null space of M if and only if the
derived submatrix of M is mixed dominating.

5. FACES OF A GALE TRANSFORM OF M

In this section we give a geometric interpretation of the previous section.
We start will recalling some basic facts about Gale transforms. Let M be an
r X n matrix and let b, b,, ..., b, be a basis for the null space of M. Let N
be the k X n matrix for which the ith row is b,, i =1,2,..., k. Let
S ={s}, s5,...,s,}in R¥ be the set of columns of N. Then § is called a Gale
transform of M. We will also call a set T C R' a Gale transform of M if T is
the image of S under a nonsingular linear transformation from R* to R%. The
cone of S, denoted C(S), is defined by C(S) ={Nx:x>0,x €R"}. A
subset F of R is called a face of C(S) if there is a vector z € R* such that
F={weR": zTw=0nC(S), and 2w = 0 for all w € C(8). In this
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case, the hyperplane orthogonal to z is said to be a supporting hyperplane of
C(S). The dimension of a face F of C(S) is the dimension of the smallest
subspace containing F. This subspace is the span of {s;:s, € F}. For each
face F of C(S), define I(F) = {i € [n]: s, € F}. The null space of M is the
row space of N, so we see that [n]\ I(F) is the support of a nonnegative
vector in the null space of M for every face F of C(S). Also, in [n]\ I is the
support of a nonnegative vector in the null space of M, then there is a face F
of C(S) such that I = I(F). If E is the set of columns of M induced by
I(F), then the dimension of F is rank(M \ E) + k + |I| — n.

If M is a mixed dominating matrix, then its rows are linearly independent,
so S is a subset of R"~". Furthermore, we see that C(S) is an (n — r)-
dimensional face of itself. Since a mixed dominating matrix has a positive
vector in the null space, we see that the origin in R"~" is a 0-dimensional
face of C(S), i.e. C(S) is pointed. A general characterization of the faces of
C(8) is given by the next proposition.

PROPOSITION 5.1.  Let M be an r X n mixed dominating matrix. Let S be
a Gale transform of M. A subset I of [n]is I(F) for a k-dimensional face F of
C(S) if and only if the rows and columns of M can be rearranged as

[4<). @)

where A is an (r — |I| + k) X (n — |I) mixed matrix, and B is an (|I] — k)
X |I| mixed matrix, and the columns containing B are the rearranged
columns indexed by 1.

Proof. Suppose M has the form in the proposition, and let I be the
columns containing B. Since A is mixed dominating, there is, by Corollary
4.1, a positive vector in the null space of A. This vector can be extended to a
vector in the null space of M by appending zeros in the entries indexed by I.
Thus there is a face F of C(S) with I = I(F). The matrix A is the matrix
obtained by deleting the columns indexed by I from M followed by deleting
any zero rows created. The rank of A is r — |I| + k, since the rows of a
mixed dominating matrix are linearly independent. Thus the dimension of F
is k.

Conversely, suppose F is a k-dimensional face of C(§). Arrange the
columns of M so that the columns indexed by I(F) are last, and arrange the
rows so that the rows that become zero when the columns indexed by I(F)
are deleted are the last rows. The resulting matrix has the block structure
required, and clearly B is mixed. A is mixed by Theorem 4.2. Because A is
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also dominating, its rows are linearly independent, and so it has r — Il + k
rows. Then B must have the remaining |I| — k rows. |

LEMMA 5.2. Suppose M is a full r X n mixed dominating matrix, and
that | is a maximal k X (k + 1) mixed submatrix of M. Then | is an
r X (r + 1) matrix.

Proof. We again use induction on r, and note that the case r =0 is
clear. Suppose that M is a full mixed dominating matrix with at least one row.
We can assume that M has the block structure of (1). Let | be a maximal
k % (k + 1) mixed submatrix of M, and let J, and J; be the intersections of
J with A and B respectively. By an argument similar to that in the proof of
Theorem 2.9, we see that J, and J; both have one more column than they
have rows. By induction, ], and J; meet all rows of A and B. J must also
meet the last row of M, because it has only one more column than it has
rows. Thus | has 7 rows. [ ]

COROLLARY 5.3.  If M is a full mixed dominating matrix, then every facet
of C(8) is a simplicial cone.

Proof. Suppose that S is a Gale transform of M, and that F is a facet of
C(S). Suppose also that M is r X n and has the block structure of (2), where
s; € F if and only if column i of M meets B. Then A must be a maximal
k x (k + 1) mixed submatrix of M. Lemma 5.2 implies that A is r X (r + 1),
since A is also full. We can therefore delete any subset of the columns of M
that meet B (which has 0 rows), and the resulting matrix will still be mixed.
This implies that every subset of {s,: s, € F} spans a face of C(S), which
proves that F is a simplicial cone. [ |

Let M be an r X n mixed dominating matrix and let i € [n]. Let S be a
Gale transform of M. If there is no entry of M in column ¢ that is the only
nonzero entry of its sign in its row, then s, is on an extreme ray of C(S) and
no other element of S is on this extreme ray. In this case, the matrix obtained
by deleting column i from M is still mixed dominating, so there is a
nonnegative vector y in the null space of M that has support [n]\ {i}. This
observation is useful for understanding the examples that follow.

ExampLE 5.4. Let M be a 2 X 6 matrix with entries having the follow-
ing sign pattern:
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Let S be a Gale transform of M. Then each s, lies on a distinct extreme ray
of the 4-dimensional cone C(S). There are eleven 2-dimensional faces of
C(S): the cones of the pairs of elements of § not in {{s,, 55}, (55, 54}, {55, 5,},
{ss5, s¢}}. There are seven 3-dimensional faces of C(S): the cones of the sets
{s1, 82, 55}, {51, 89, 6}, {51, 845 85}, {sy, 84, 86}, {89, 83, 85}, {84, 55, 8¢}, and the
“degenerate” face {s;, s,, s5, S¢}-

EXAMPLE 5.5. Let M be an r X (27 + 2) matrix with entries having the
following sign pattern:

0 if j<2i—2o0rj>2i+3,
m; =<+ if j=sign2i -1, 2i,
— if j=2i+1,2i +2.

Let S be a Gale transform of M. Let d be a nonnegative integer less than
r + 2. The d-dimensional faces F are the cones of the d-element subsets of
S that do not contain {s;, s, ,} for any odd i. Those familiar with polytope
theory will see that the lattice of faces of C(S) is isomorphic to that of the
(r + D-dimensional cross-polytope. In particular, the number of facets
[(r + 1)-dimensional faces] of C(S) is 271,

THEOREM 5.6. A set S of n points in R* is the Gale transform of a mixed
dominating matrix if and only if d = dim C(S) =n or d < n and S can be
partitioned into two parts S, and Sy so that C(S,) N C(Sg) is a one-dimen-
sional pointed cone and S, and Sy are Gale transforms of mixed dominating
matrices and dim C(S,) + dim C(S,) =d + 1.

Theorem 5.6 follows from the decomposition theorem and the linear
independence of the rows of a mixed dominating matrix. For the details, see
the proof of Theorem 3.1 of [8]. The sets S, and S are Gale transforms of
the matrices A and B when M is in the form (1). The following proposition
bounds the number of extreme rays (one-dimensional faces) that a Gale
transform of a mixed dominating matrix may have.

CoRrOLLARY 5.7.  Suppose S is a Gale transform of a mixed dominating
matrix, with d = dim C(S) > 1. Then C(S) contains at most 2d — 2 ex-
treme rays.
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Proof. The proof is by induction on r = IS| — d. If r =0, then the
oints of $ are linearly independent and each one determines an extreme ray
of C(S). The condition d > 1 implies that |S| = d < 2d — 2. If » > 0, then
d < |S|, so we can partition S into S, and Sz as in Theorem 5.6. It
dim C(S,) = 1, then dim C(Sz) =d > 1 and 1S5l —d <|S| — d. In this
case, C(S) = C(Sy), and by induction, C(Sy) has at most 2d — 2 extreme
rays. If both dim C (S,) and dim C(Sy) are greater than one, the inductive
hypothesis implies that C(S,) has at most 2dim C(S,) — 2 extreme rays and
C(S;) has at most 2dim C(Sy) — 2 extreme rays. Every extreme ray of C(S)
is an extreme ray of C(S,) or of C(Sg), so C(§) can have at most 2d — 2
extreme rays. |

COROLLARY 5.8. Suppose S is a Gale transform of a mixed dominating
matrix, with d = dim C(S). Let F be a k-dimensional face of C(S), with
k < d — 1. Then F is contained in at most 2d — k) — 2 faces of C(S) of
dimension k + 1.

Proof. The case k = 0 is Corollary 5.7, as the origin is the only zero-
dimensional face of C(8), and the faces one dimension higher containing it
are the extreme rays. Assume that S is a Gale transform of a matrix M of the
form (2), where column i of M meets B if and only if s, € F. Let T be a
Gale transform of the matrix A. Then for any k + 1-dimensional face G of
C(S) containing F, G must contain s, for every column i of M that meets
B, and a minimal nonempty set of s, for which the corresponding columns of
M meet A and are deletable from A. Therefore, these faces are in 1-1
correspondence with the extreme rays of T. Since dim C(T) =d — k, the
result follows from Corollary 5.7. u

COROLLARY 5.9. Suppose S is a Gale transform of a mixed dominating
matrix. Let F be a k-dimensional face of C(S), with k > 1. Then F has at
most 2k — 2 extreme rays.

Proof. We may assume that S is a Gale transform of a matrix M of the
form (2), where column i of M meets B if and only if s; € F. Then
{s,:i € F}is a Gale transform of the matrix B. [

The next proposition and lemma show that when we prove results on the
facial structure of C(S), we may assume that the points of S all lie on distinct
extreme rays of C(S). That is, we may delete an element s; from S if s; is in
a cone generated by other members of S, so that the resulting set is also the
Gale transform of a mixed dominating matrix.
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ProposiTiON 5.10. Let M be a mixed dominating matrix, and suppose
the entry m,; is the only nonzero entry of its sign in its row. Let N be
obtained from M by adding multiples of row i to other rows in order to make
the entries in column j other than m, ; zero. Then N is mixed dominating.

Proof. We can assume without loss of generality that m;; < 0 and that
the entries in row i and column J other than m,; are nonnegative. Suppose
that N contains a square mixed submatrix, and let N’ be one of minimal size.
The minimality of N’ assures that N’ does not meet column Jj orrow i. Let
M’ be the submatrix of M with the same row and column indices as N ', and
let M" be the submatrix of M obtained by adding i and j respectively to the
sets of row and column indices of M’. Since M is mixed dominating, there is
a mixed row of N’, say that contained in row k of N, for which the
corresponding row of M’ is unmixed. This implies that the row of M"
contained in row k of M is mixed. Arguing this way, one can show that all of
the rows of M"” other than that contained in row i of M are mixed. But the
row of M" contained in row i of M is also mixed, so M" is square mixed,
contradicting the mixed dominating property of M. [ ]

We will say that a matrix obtained from M by performing the row
operations of Proposition 5.10 and then deleting row i and column jis
obtained by contracting column j on row i. In the case that row i of M has
exactly two nonzero entries, a matrix obtained from M by contracting either
of the columns containing the nonzeros of row i on row i is what is called a
conformal contraction in [11]. In this case, one has the stronger result that the
matrix N obtained as in Proposition 5.10 is mixed dominating if and only if
M is mixed dominating. This is unfortunately false if row i has more than two
nonzero entries, as one can see by very simple counterexamples.

LemMA 5.11. Suppose S is a Gale transform of a mixed dominating
matrix M, and that s; € C(T) for some s; € S and T C S\ s,. Then S \ s, is
also a Gale transform of a mixed dominating matrix.

Proof. 1If s; € C(T), then there is a vector x in the row space of M that
has a single negative entry x, and has all its positive entries in {x;:5, €T}
Proposition 2.1 then implies that there is a row of M that contains a single
negative entry, in column i. Let N be the matrix obtained from M by
contracting column i on this row. By Proposition 5.10, N is mixed dominat-
ing. Furthermore, S \ s, is a Gale transform of N. [ ]
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Note that the Gale transforms of Example 5.5 satisfy the conditions of
Corollary 5.8 at equality, for all faces. Thus the face lattice of the cross-
polytope is in a sense the “worst” face lattice for Gale transforms of mixed
dominating matrices. The following argument gives an alternative view of why
this is so. Suppose S is a Gale transform of a full + X n mixed dominating
matrix M, and S also has the property that every point of S lies on a distinct
extreme ray of C(S). Let IT be the partition of [n] given by Proposition 2.10.
This partition is unique because M is full. Furthermore, the assumption that
all points are on distinct extreme rays implies that no part is of size one. If
every part of II has two elements, then it is easy to see that the face lattice of
C(S) must be isomorphic to that of the (n — r — 1)-dimensional cross-poly-
tope. If some part p of Il has more than two elements, then we enlarge M
as follows. Suppose i € p. Append a copy of column i to M to get M ’. Then
append a row with positive entries in columns indexed by p \ i, negative
entries in columns i and n + 1, and zeros otherwise, to M’ to get M". Then
M" is full, and its partition is the same as II except that p is replaced by the
two sets p \i and {i,n + 1}. Let T be a Gale transform of M”. One can
show that if F is a facet of C(S) that contains s,, then cone({t; : s; € F} is a
facet of C(T), while if F is a facet of C(S) that does not contain s;, then for
each k € p\i there is a facet of C(T) of the form cone(({t;:s; € F} U
t.. )\ ). Geometrically, one can get a C(T) from C(S) by piacing a new
point ¢, , in the interior of cone({sj :j € p\i}), pulling ¢, ., away from s,
and then relabeling 8; by t, for all j € [n]. We can repeat this process until
every part of the partition ilas two elements, and we ‘then have a cone with
face lattice isomorphic to that of the cross-polytope.

The 2-skeleton of a pointed cone C is a graph with a vertex for every
extreme ray of C and an edge joining two vertices iff the corresponding
extreme rays are contained in a two-dimensional face of C.

PROPOSITION 5.12.  Suppose S is a Gale transform of a mixed dominating
matrix. The diameter of the 2-skeleton of C(S) is at most two.

Proof. We can assume, by Lemma 5.11, that the elements of S are on
distinct extreme rays of C(S). If |S| = dim C(S), then every pair of vertices
of the 2-skeleton is adjacent, so the diameter is at most one. Suppose then
that |S] > dim C(S). Let S, and S, partition S as in Theorem 5.6. Let M be
a mixed dominating matrix in the form of Theorem 2.9, so that § is a Gale
transform of M and S, and S, are Gale transforms of A and B, respectively.
Let s, € S, and s5; € Sp. We claim that s, and s, are on a face of C(S) of
dimension two. The assumption that the elements of S are on distinct
extreme rays implies that the last row of M has at least two nonzeros of each
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sign, so that deleting columns i and j of M would not make the last row of
M unmixed. No row of A becomes unmixed by deletion of column i, since 8
was assumed to define an extreme ray. Similarly, no row of B becomes
unmixed by the deletion of column j. Thus the claim is proved. If s, and s,
are in Sy, then there is an extreme ray of S, that is in a two-dimensional face
of C(S) with each of s, and 8 |

The dual 2-skeleton of a pointed cone C is a graph with a vertex for every
facet (face of C of dimension dim C — 1) of C and an edge connecting two
vertices if the corresponding facets share a face of dimension d — 2.

PROPOSITION 5.13.  Suppose that S is a Gale transform of a mixed

dominating matrix. The dual 2-skeleton of C(S) has diameter at most
dim C(S) — 1.

Proof. Let d = dim C(S). Suppose that F and G are facets of C(S).
We will show by induction on k =d — 1 — dim(F N G) that the vertices of
the dual 2-skeleton corresponding to F and G are connected by a path of at
most k edges. If k = 0, then F = G. Suppose that k > 0 and that a mixed
dominating matrix M for which § is a Gale transform has the form (2), with
{i:s, e FNG) indexing the columns of B. Let T be a Gale transform of the
matrix A of (2). Then T = {t,:s, € F\ G} and T, = {t,: 5, € G \ F} span
disjoint (d — k — 1)-dimensional faces F, and F of the (d — k)-dimensional
cone C(T). By Corollary 5.9, F, and G, contain all of the extreme rays of
C(T). Let H; be a facet of C(T) for which dim(H, N F;) =d — k — 2.
Then H; must contain an extreme ray not on Fj, that is, has nonempty
intersection with G;. Now let H be the face of C(S) spanned by {s,:¢, €
H;}. Then H is a facet of C(S) for which the corresponding vertex of the
dual 2-skeleton is adjacent to that corresponding to F. Also, dim(H N G) >
dim(F N G), so by induction the vertices of the dual 2-skeleton are con-
nected by a path of at most k — 1 edges. ]

6. CONCLUSIONS AND QUESTIONS

We have determined many properties of mixed dominating matrices and
their Gale transforms. We have shown that one can determine in polynomial
time if a matrix is mixed dominating. We feel that it is unlikely that our
Algorithms I-I1I are the most efficient or the most natural ways to show this,
so that an interesting problem is to find an algorithm with better complexity
and a more transparent proof of correctness.
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One could define an MD* matrix to be any matrix of the form MD,
where M is a mixed dominating matrix and D is a diagonal matrix with no
zeros on the diagonal. Every MD* matrix is an L-matrix, but no MD* matrix
is a barely L matrix as defined in [2]. Also, every totally L (see [3]) matrix is
an MD* matrix. We do not know if there is a polynomial-time algorithm to
recognize MD™ matrices.

The paper [7] showed that matrices that do not contain any s X ¢t mixed
submatrices with s >t are also very important for the study of affine
semigroups. It would be interesting to know what one can prove about such
matrices or their Gale transforms.

Given a set S of n points in R¢, we would like to know if there is a
polynomial-time algorithm to determine if S is a Gale transform of some
(n — d) X n mixed dominating matrix M. We note that the combinatorial
structure of C(S) does not give enough information to answer this question.
Consider a set S of six points in linearly general position in R, so that the
face lattice of C(S) is isomorphic to that of the octahedron. The linearly
general position property of S implies that S cannot satisfy the conditions of
Theorem 5.6. On the other hand, the cone of Example 2, with r = 2, has its
face lattice isomorphic to that of the octahedron.

The problem of finding a mixed dominating M so that a given set S of
points is a Gale transform of M appears in the theory of affine semigroups
(see [7} and [8]). In that case, the points of S have integer coordinates and we
want a matrix M that is not only mixed dominating, but has integer entries
and is such that the columns of M span the integer lattice in R 4.
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