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ABSTRACT

A P-matrix is a square matrix with positive principal minors. We introduce a
natural extension of the class of P-matrices, the class of extended P-pairs. A pair
{I, M}, for a P-matrix M, is shown to be contained in an extended P-pair iff SMS has
an n-step vector for some sign matrix S. Such a matrix M is called extendable, and an
example of a P-matrix that is not extendable is given. Applications to the linear
complementarity problem are discussed. A polynomial time algorithm to determine if
a pair of matrices is an extended P-pair is given. © Elsevier Science Inc., 1997

1. INTRODUCTION

A square matrix with positive principal minors is called a P-matrix. This
class of matrices has been widely studied, for a wide variety of reasons. One
motivation for studying this class comes from the elegant characterization
from linear complementarity theory, which states that a matrix M is a
P-matirx if the linear complementarity problem (LCP) with matrix M and
vector g has a unique solution for all g. A discussion of this theorem,
originally proved in [11], can be found in [1]. Even though the P-property of a
matrix M guarantees that a linear complementarity problem with matrix M
has a unique solution, it does not guarantee that the solution can be found
quickly. Furthermore, the problem of determining if a matrix is a P-matrix
was shown in [2] to be Co-NP complete.
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For these reasons, subclasses of the class of P-matrices are often studied.
One such subclass is the class of positive definite matrices. Linear comple-
mentarity problems with positive definite matrices can be solved in polyno-
mial time, as shown in [5]. One can also determine quickly if a matrix is
positive definite. Other subclasses for which the LCPs can be solved and for
which membership can be tested in polynomial time are the class of hidden
Minkowski matrices and the class of matrices for which the transpose is
hidden Minkowski. These classes are studied in [4], [6], [8], [9], and [10]. The
class of extendable matrices, introduced in this paper, is a subclass of the
class of P-matrices that properly includes the matrices for which the trans-
pose is hidden Minkowski.

The extendable matrices are introduced as matrices M for which the pair
{1, M} is part of what we call an extended P-pair. This will imply that there
must be a diagonal matrix S with diagonal entries in {~1, 1} such that SMS
has an n-step vector. Because (8] and [10] proved that a P-matrix has an
n-step vector iff its transpose is a hidden Minkowski matrix, we see that M is
extendable iff the transpose of SMS is a hidden Minkowski matrix for some
sign matrix S. The applicability of this class to the linear complementarity
problem is argued by proving that a P-matrix is extendable iff a principal
pivot transform of the matrix has an n-step vector. We give a polynomial time
algorithm to determine if a pair of n X (n + 1) matrices is an extended
P-pair, and we show that the problem of recognizing an extendable P-matrix
is in NP.

The author’s motivation for studying this class of matrices came from his
work on Lemke paths. There was presented, in [7], a sequence of d-dimen-
sional polytopes, one for each positive integer d, with the property that the
shortest of the d Lemke paths, defined in [7], of the d-dimensional polytope
grew exponentially with d. Examination of these polytopes revealed that
certain submatrices of the matrices representing these polytopes could not be
P-matrices. The case in which all of these submatrices are P-matrices is the
case of extended P-pairs. We show that the Lemke paths in this case can
have length no more than d. The variable d of Reference [7] corresponds to
n + 1 of our paper.

2. EXTENDED P-PAIRS

A square matrix with real entries is called a P-matrix if all of its principal
minors are positive. All matrices will be assumed to have real entries, except
in Section 6, where they are assumed to be rational. Every positive definite
matrix is a P-matrix, but the class of P-matrices contains many matrices that
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are not positive definite. The P-property of an n X n matrix M can be stated
in terms of determinants of n X n matrices with columns taken from the pair
of matrices {I, M}. Such a restatement will make our extension more natural.

DEFINITION 2.1.  Let { A, B} be a pair of n X n matrices. A complemen-
tary submatrix of { A, B} is an n X n matrix C for which the column C; is
either A, or B, for i = 1,..., n. A pair of columns {A,, B} is a complemen-
tary pair of columns.

DEFINITION 2.2. A pair {A, B} of n X n matrices is called a P-pair if
the determinants of the complementary submatrices of { A, B} all have the
same nonzero sign.

Clearly, {I, M} is a P-pairiff M is a P-matrix. In general, {A, B} will be a
P-pair iff A~ exists and A7'B is a P-matrix. For the next definition, we will
say that if A is an n X m matrix and K {l,...,m}, then Ay is the
submatrix of A formed from the columns indexed by K.

DEFINITION 2.3. A pair { A, B} of n X m matrices, with m > n, is called
an extended P-pair if for every n-element set K C{l,...,m} the pair
{Ag, Bg}is a P-pair.

Sznajder and Gowda [12] use the term column-W to describe pairs of
matrices that are P-pairs or extended P-pairs. In the following, we will be
interested in the case m = n + 1. Before proceeding to this, we would like to
show that extended P-pairs exist for all positive integers m > n.

ExaMPLE 2.4. Let m > n, and let C be the n X 2m matrix with, for
i=1,...,2m, column C, = (1,4,4%,...,i" 1)". Then C is known to be a
totally positive matrix, that is, all of its square submatrices have positive
determinant. Define {A, B} by A, = C,,_, and B, = C,; for i = 1,..., m.
Then { A, B} is an extended P-pair.

The pair { A, B} of Example 2.4 satisfies a stronger property than that of
being an extended P-pair: For every n-element set K C{l,...,m}, the
complementary submatrices of {Ag, Bg} all have positive determinants. For
general P-pairs, these determinants would not all have to be positive, but for
a given K, they would have to have the same nonzero sign.
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3. N-STEP VECTORS

We will begin this section by reviewing the definition of n-step vectors.
For a set | € {1,..., n}, the principal submatrix with rows and columns in |
of an n X n matrix M is denoted by M 17 and the subvector with indices in |
of an n-vector d is denoted d I

DEFINITION 3.1. Let M be an n X n P-matrix. A vector d > 0 in " is
called an n-step vector for M if for each nonempty J C {1,...,n}, Ml_lld] >
0.

The n-step property of d was shown in [8] to have an equivalent
geometrical formulation:

PROPOSITION 3.2. Let M be an n X n P-matrix. A vectord € R" is an
n-step vector for M iff for every complementary submatrix C of the P-pair
{I, M}, the solution x to Cx = d is positive.

NOTE. One can show that Proposition 3.2 implies that the polyhedron of
solutions to w + Mz = d, w > 0, z > 0 is combinatorially equivalent to a
cube, with vertices satisfying wlz = 0, w + z > 0. The fact that all of these
vertices are “strictly complementary” is the property exploited by Mangasar-
ian in [6] to show that the optimal solution to the linear program “Minimize
d"x subject to the constraints y — M x =g, y >0, x > 0” will have all
optimal solutions satisfying yTx = 0, regardless of g.

In view of Proposition 3.2, the following definition is natural.

DEFINITION 3.3. Let {A, B} be a P-pair of n X n matrices. A vector
d € R" is an n-step vector for { A, B} if for every complementary submatrix
C of { A, B}, the solution x to Cx = d is positive.

For an n X n matrix A and a vector a € R", we will denote by (A, a)
the n X (n + 1) matrix formed by appending a to the end of A.

THEOREM 3.4. Suppose { A, B} is a P-pair of n X n matrices, and let a
and b be n-step vectors, not necessarily distinct, for {A, B). Then
{CA, a), (B, b)} is an extended P-pair.
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Proof. Without loss of generality, assume that the complementary sub-
matrices of {A, B} have positive determinants. Then each matrix obtained
from a complementary submatrix C of { A, B} by replacing a column of C by
a or b will have positive determinant, by Cramer’s rule. For a given index i,
then, the matrices formed from complementary submatrices of (A, B} by
replacing column k by column k + 1, for k =4,...,n — 1, and placing a or
b in column n, will have all determinants of the same nonzero sign. These
matrices are the complementary submatrices of {(A, @), (B, b))}, where
K={1,...,n+ 1}\ {i}. u

Note that if {A, B} is an extended P-pair of n X m matrices and 7 is a
permutation of {1, ..., m}, then applying 7 to the columns of A and to the
columns of B yields another extended P-pair. Therefore we could, in
Theorem 3.4, insert columns ¢ and b between columns i and i + 1 of A and
B or before the first columns of these matrices and still end up with an
extended P-pair.

The converse of Theorem 3.4 is not true, that is, it is not true that any
column of a matrix in an extended P-pair {(A, a),(B,b)} of n X (n + 1)
matrices is an n-step vector for the P-pair obtained by removing the
complementary pair containing the column. The following observations are
crucial to deriving a partial converse to Theorem 3.4.

PROPOSITION 3.5.  Suppose that {( A, a),(B, b)} is an extended P-pair of
n X (n + 1) matrices. The system Ax = a has a unique solution, and no
component of this solution is 0.

Proof. Because {(A, a),(B,b)} is an extended P-pair, every set of n
columns of (A, a) is linearly independent. [ |

PROPOSITION 3.6.  Suppose that {( A, a), (B, b)} is an extended P-pair of
n X (n + 1) matrices. Let x be the solution to Ax = a. If C is any comple-
mentary submatrix of {A, B} and d is either a or b, then the solution to
Cy = d is unique and satisfies x,y, > 0 fori =1,... n.

Proof. The determinants of A and C will have the same nonzero sign,
because {( A, @), (B, b)} is an extended P-pair. For i = 1,...,n, let Al be
formed from ( A, a) by deleting column i, and let C ¢ be formed from (C, d)
by deleting column i. The determinants of A’ and C* have the same nonzero
sign. Cramer’s rule then implies that x,y, > 0. [ |
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THEOREM 3.7. Suppose that {(A, a),(B,b)} is an extended P-pair of
n X (n + 1) matrices. There exists a sign matrix S such that a and b are
n-step vectors for the P-pair { AS, BS}.

Proof. Let x solve Ax =a. Define S;;=11if x;,>0, §;;=—1if
x; <0, and ;=0 if i #j. Then {AS, BS} is a P-pair. Furthermore, the
solution to ASy = a is positive. Proposition 3.6 then tells us that if D is a
complementary submatrix of { AS, BS} and d is a or b, then the solution to

Dz = d will also be positive. Thus @ and b are n-step vectors for { AS, BS}.
B

4. EXTENDABILITY

We now define a class of matrices that is contained in the class of
P-matrices and contains the P-matrices for which there exists an n-step
vector.

DEFINITION 4.1. A P-pair {A, B} of n X n matrices is extendable if
there exist vectors a and b, not necessarily distinct, in R" such that
{(A, a), (B, b)} is an extended P-pair. A P-matrix M is extendable if {1, M}
is extendable.

The following proposition follows from Theorem 3.7.

PROPOSITION 4.2. A P-matrix M is extendable iff there is a sign matrix S
such that there is an n-step vector for SMS.

We would like to show that the extendable P-matrices form a proper
subclass of the class of P-matrices, and that the P-matrices for which there is
an n-step vector form a proper subclass of the class of extendable P-matrices.

ExaMPLE 4.3. Let

1 0 1
M=1|1 1 0
0 1 1
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M is a P-matrix, but there is no n-step vector for M. If we examine the
systems M]}Id ;> 0 for all of the two-element subsets of {1, 2, 3}, we get the

contradiction d, > d, > d, > d;. On the other hand, if

'—1 0 0
s=1 o 0],
0 1

1
0
then
1 0 -1
SMS=1-1 1 01,
1 1

0
and any positive d with d; > d, + d, is an n-step vector for SMS.

ExXAMPLE 4.4. Let

Again M is a P-matrix and there is no n-step vector for M. If we examine the
systems M;;'d; > 0 for all of the two-element subsets of {1,2, 3}, we get the
inequalities 2d, > 3d,, 2d, > 3d;, and 2d; > 3d,, which cannot all hold.
Now let S be as in Example 4.3, so that

2 =3 -1
SMS =1 -1 2 31.

-3 1 2

For | = {2,3]}, the system (SMS)]_Ild] > 0 gives the inequality 2d, > d,,
whereas for | ={1,2,3}, the system (SMS)]_Ild] > 0 gives the inequality
d, > 7d, + 5d;, and these two inequalities cannot both hold for positive d.
Because M is a circulant matrix, we will similarly find that SMS has no
n-step vector for other matrices S with one —1 on the diagonal. Note next
that for any sign matrix S, SMS = (—S)M(—S), so SMS will not have an
n-step vector if S has two negatives on the diagonal, because such an § is the
negative of one with one —1 on the diagonal. Finally, if the diagonal of S is
all negative, then SMS = M, so again SMS will have no n-step vector. We
have therefore shown that M is a P-matrix that is not extendable.
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5. APPLICATIONS TO THE LINEAR COMPLEMENTARITY
PROBLEM

Given an n X n matrix M and a vector g in R", the linear complemen-
tarity problem (LCP) is to find nonnegative vectors x and y in R" for which
y — Mx = g and x"y = 0. A fundamental result of LCP theory is that M is
a P-matrix if and only if the LCP with matrix M and vector ¢ has a unique
solution for all g € M". It is shown in [10] that if M has an n-step vector d,
then Lemke’s pivoting algorithm with artificial vector d will find a solution in
at most n + 1 pivots. This is the origin of the name n-step vector. Pang gives
a polynomial time algorithm in [10] to find an n-step vector for M if there is
one. Solving an LCP when the matrix M has an n-step vector can therefore
be done in polynomial time.

We now consider LCPs in which M is an extendable P-matrix. Recall that
this means that there is a sign matrix S such that SMS has an n-step vector.
We will show that SMS has an n-step vector if and only if a related principal
pivot transform of M does. A principal pivot transform can be thought of as a
way to preprocess an LCP. One starts with a matrix [I, =M, g] and a subset
J of {1,..., n}. One then interchanges column j of I with column j of —M,
for each ] € J, and then pivots on the element in row j and column j of the
resulting matrix, for each j € J. The result is a matrix { P(M),R (q)]
The matrix P;(M) s called the principal plvot transform of M (ietermlned by
J. It is easy to see that y — Mx =gq iff y' — [P](M)]x = R;(q), where
x,=x, and y, =y, for i € J, and x, = y; and y, = x; fortE] One can
thus recover a solution to the ongmal problem if one has a solution to the
transformed problem.

THEOREM 5.1. Let M be an n X n P-matrix, and let | be a subset of
{1,...,n). Let S be an n X n sign matrix with S;;= -1 iff j € J. Then SMS
has an n-step vector iff P](M ) has an n-step vector.

Proof. Suppose that SMS has an n-step vector d, where S;= -1 iff
j € J. If C is then a complementary submatrix of {I, — M}, the solution z to
Cz = Sd will satisfy z;, > 0 if column i of C comes from Iand i & [, 2, <0
if column i of C comes from I and i € J, z; > 0 if column i of C comes
from —M and i € J, and z; < 0 if column i of C comes form —M nand
i & ]. We see from this that if D is a complementary submatrix of

{1, — P](M)}, the solution w to Dw = R](Sd) will satisfy
w, > 0 if column i of D comes from I, and w; < 0 if column i of D comes
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from —P](M ). This implies that R ](Sd) is an n-step vector for P‘,(M ). The

argument is reversible, so if R ](Sd) is an n-step vector for P](M ), then d is
an n-step vector for SMS. [ |

Suppose one wants to solve an LCP with M an extendable P-matrix and
with vector g, and one is told that d is an n-step vector for SMS. One can
then create the transformed problem above in [J| pivot steps to obtain a
preprocessed problem in which the artificial vector R;(Sd) is an n-step
vector and find the solution to the preprocessed problem in at most n + 1
pivots. The total number of pivots required is therefore at most 2n + 1.

One would like to be able to solve the problem quickly even if the
appropriate S and d are not known, and one is only told that M is an
extendable P-matrix. We do not know how to do this for a general extendable
P-matrix M. However, a class of linear complementarity problems that can
easily be attacked using Theorem 5.1 is the class of P-matrices for which
there is a sign matrix S such that SMS is a Z-matrix, i.e., the off-diagonal
elements of SMS are all nonpositive. It was shown in [10] that any positive d
is an n-step vector for such a matrix SMS. Thus these matrices are all
extendable. The following efficient algorithm can find an S such that SMS is
a Z-matrix or prove that no such § exists.

ALGORITHM 5.2. First, check to see if m, imy; < 0 for any i, j.If so, then
SMS cannot be a Z-matrix for any S. If m;mj; >0 for all i, j, then we color

the edges of the complete graph with vertex set 1,...,n as follows. Edge
{i, j} is red if m;; +my < 0, edge {i, j} is blue if m; + m; > 0, and edge
{i,j} is white if m,; + m, = 0. Let H,,..., H, be the components of the

graph with vertex set {1, ..., n} and the red edges defined earlier. If there is a
blue edge of the complete graph connecting two vertices in the same H,,
then there is no S for which SMS is a Z-matrix. Define a new graph G with
vertex set {1, ..., t} and an edge {k, [} whenever there is a blue edge {i, j} in
the complete graph with i € H and j € H,. If G is not bipartite, then there
is no S for which § is a Z-matrix. If G has a bipartition {X, Y}, then SMS
will be a Z-matrix if we let S;=—1 iff j € H for some k € X.

The correctness and efficiency of Algorithm 5.2 are easy to verify. A
classical result of Fiedler and Ptak [3] is that a Z-matrix SMS is a P-matrix if
and only if SMSx > 0 for some positive vector x. This can be verified by a
linear program. Algorithm 5.2 therefore gives an efficient algorithm for
recognizing P-matrices M for which SMS is a Z-matrix for some sign matrix
S.
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6. COMPLEXITY CLASSIFICATION

We want to give a polynomial time algorithm for determining if a pair
{(A, a),(B,b)} of n X (n+ 1) matrices is an extended P-pair. This is a
contrast to the problem of determining if an n X n matrix M is a P-matrix,
which was shown in [2] to be Co-NP complete. We will also show that the
problem of determining if an n X n matrix M is an extendable P-matrix is in
NP.

We know from Theorems 3.4 and 3.7 and Propositions 3.5 and 3.6 that
{CA, @), (B, D)} is an extended P-pair if and only if {A, B} is a P-pair, the
solution x to Ax = a has no components equal to zero, and @ and b are
n-step vectors for the P-pair { AS, BS}, where S is the sign matrix for which
Sx is positive. This is equivalent to the assumption that SA™'BS is a P-matrix
and that SA™'a and SA™'b are n-step vectors for this P-matrix. Despite the
fact that this property includes the assumption that SA™'BS is a P-matrix,
the property is known to be checkable in polynomial time. We review the
essential ingredients of such a check.

THEOREM 6.1. Let M be a P-matrix. A vector d > 0 is an n-step vector
for M if and only if there exists a Z-matrix X such that M "X is a Z-matrix and
X7d > 0.

The “if” part of this theorem was proved in [10], and the “only if” in [8).
The theorem states that a P-matrix has an n-step vector if and only if the
transpose of the matrix is a “hidden Minkowski” matrix. The matrix X given
by the theorem is both a P-matrix and a Z-matrix, i.e. a Minkowski matrix.
The problem with Theorem 6.1 is that it assumes that M is a P-matrix, which
is not easy to check. A result of [9] lets us avoid this. An S-matrix is a matrix
M for which there exists a positive vector x with Mx > 0. It is well known
(see [1]) that every P-matrix is an S-matrix. The vector e is the vector of 1’s.

THEOREM 6.2 [9]. Suppose that M is a square matrix for which there
exists a Z-matrix X such that M"X is a Z-matrix. If X"e > 0 and M" is an
S-matrix, then M is a P-matrix.

An analysis of the proof of this theorem reveals that one may use any
positive vector d in place of e. It is also pointed out in {1] that one may test
for the existence of such an X by solving a linear program.
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ALGORITHM 6.3. Let {(A, a), (B, b)} be a pair of n X (n + 1) matrices.
If A is singular, or if A is nonsingular and the solution to Ax =a has a
component equal to 0, then {(A, a), (B, b)} is not a P-pair. Otherwise, let S
be the sign matrix for which the solution x to ASx = a is positive, and let
M = SA™'BS. Solve a linear program to determine if M T is an S-matrix. If it
is not, then { A, B} is not a P-pair. Otherwise, solve a linear program for the
coefficients of X to determine if there is a Z-matrix X for which X7(SA™'a)
>0, XT(SA7™'5) > 0, and MTX is a Z-matrix. If this linear program is
infeasible, then SA™'a and SA~'b would not be n-step vectors for M if M
happened to be a P-matrix. If the linear program is feasible, then Theorem
6.2 implies that M is a P-matrix, and Theorem 6.1 implies that SA"ta and
SA™'b are n-step vectors for M. This in turn implies that {(A, a),(B,b)}is
an extended P-pair.

In order to show that a square matrix M is an extendable P-matrix, one
needs a sign matrix S, a Z-matrix X, and a vector x > 0 such that X%e > 0,
(SMS)'X is a Z-matrix, and SMTSx > 0. Performing these multiplications
and checking the signs of the matrix entries can clearly be done quickly. Thus
the problem of determining if a matrix is extendable is in NP. Finding an
appropriate S or showing that there is none seems to be more difficult. The
efficiency of Algorithms 5.2 and 6.3 gives some hope of finding a polynomial
time algorithm to produce an S for which SMS has an n-step vector or
showing that no such S exists. We will be pessimistic, however, and conjec-
ture that the problem is NP-complete. If this turns out to be true, one would
be tempted to call the transpose of an extendable P-matrix a lost Minkowski
matrix.

7. LEMKE PATHS AND EXTENDED P-PAIRS

One of the ways to find a solution to an LCP with matrix M and vector ¢
is Lemke’s algorithm. This algorithm traces a path on the polytope of
solutions to y — Mx = puq + Ad, x; + -+ x, +p+tA=1Lyx, uAr>
0. The vector d is a positive constant vector, often taken to be e. p. and A are
scalar variables. We denote this polytope by P(M, g, d). (Often one takes
p =1 and drops the requirement on the sum of the variables.) We will be
interested here in the case where {(1, d), (M, —q)} is an extended P-pair of
n X (n + 1) matrices. We state our results without the proofs, which are not

hard.

PROPOSITION 7.1.  Suppose that {(I, d),(M, —q)} is an extended P-pair
of n X (n + 1) matrices. Then the LCPy — Mx =q, y > 0, x > 0, 1Ty =0
has a unique solution (y', x') and the LCP y —Mx=d, y >0, x>0,
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xTy = 0 has a unique solution (y?, x?). The solutions satisfy (xH)7x2% =0,
(yD'y2 =0, x' +22>0, y' + y> > 0.

Proposition 7.1 is a straightforward consequence of Proposition 3.6. It
follows that the polytope P(M, g, d) has two complementary vertices that are
not on any common facets.

ProposITION 7.2.  Let {(1, d), (M, —q)} be an extended P-pair of n X (n
+ 1) matrices. Let (y', x') and (y?, x?) be as in Proposition 7.1. In the
polytope P(M, q, d), each of the n + 1 Lemke paths connecting the vertex
corresponding to (y', x*) to the vertex corresponding to (y?, x*) has length
at most n + 1.

Proposition 7.2 follows from the fact that there is a sign matrix S such
that Sd and — Sq are n-step vectors for the P-pair {I, SMS}.

Proposition 7.2 represents an ideal situation. In general, one would not
expect a pair {(A, a), (B, b)} to be an extended P-pair even if {A, B} were a
P-pair. An interesting line of research is to examine the lengths of the Lemke
paths for pairs {( A, a), (B, b)} when some, but not all, of the pairs of matrices
obtained by deleting a complementary pair of columns from {(A, @), (B, b)}
are P-pairs.
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