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ABSTRACT

A matrix M is an R,-matrix if it satisfies a nondegeneracy property that is often
assumed for the linear complementarity problem. This property can be verified from
the incidence structure of a polytope defined by M. It is shown that 2 3 X 3 matrix in
R can be perturbed within Ry so that the associated polytope is one of seven types,
each corresponding to a different component of R,.

1. INTRODUCTION

Given a matrix m € R™*" and a vector g € R", the linear complementarity
problem, abbreviated as LCP(M, q), is to find x, yeR" with x>0, y > 0,
Mx + g =1y, and x"y = 0. Much research in LCP theory has gone into
classification of matrices according to properties of the solution sets of the
corresponding LCPs. In many of these classifications a certain nondegeneracy
property, Ry, plays a part. The determination of the connected components of
the set of matrices satisfying this property is useful for LCP theory and could
also be useful in homotopy theory.

A matrix M eR"*" is said to have property R, or to be in the matrix class
R, if there is no nonzero xeR" satisfying x > 0, Mx > 0, x"™Mx = 0. An
equivalent way to say this is to say that the homogeneous LCP(M, 0) has no
nontrivial solution. This class of matrices plays a prominent role in many
earlier investigations, such as [1, 7, 6, 5]. The class of matrices in R, can be
written explicitly as the complement of the union of solution sets to a large
number of systems of polynomial equations and inequalities in the entries of
M. No one has yet been able to make use of such a direct characterization, so
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attention has usually been focused on geometric methods to study these
matrices.

In this paper, we use a geometric approach introduced in [8] to study the
class of Ry-matrices when n = 3. The main result is that for n = 3 the class of
Rgy-matrices has seven connected components. Representatives are given for
each of these components. The papers [7] and [4] showed that one could assign
to each connected component of the set of Ry -matrices an integer which is the
degree of certain mappings associated with matrices in the component. In
particular, positive definite matrices or more generally P-matrices, as well as
strictly semimonotone matrices, all belong to the class of matrices associated
with maps of degree one. Howe and Stone [7] point out that a homotopy
algorithm that traces a continuous path from one matrix to another would
benefit from having all matrices along the path in R,. Motivated by this, they
ask if the set of matrices associated with maps of degree one is connected. Our
research introduces a methodology for resolving this question, and for the case
of 3 X 3 matrices shows that there is one component for each of the possible
degrees —2, —1, 0, and 1, while there are three connected components
containing matrices that yield maps of degree 2.

2. GEOMETRIC FRAMEWORK

Let M be in R"*". The geometric object that we will study is the polytope
P(M) = {xeR": x>0, Mx >0, eTx = 1}, where ¢ is the n-vector with 1 in
each component. This polytope was also studied in [8]. The polytope #(M) is
bounded and of dimension at most n ~ 1, since it is in the (n — 1)-simplex
given by {xeR": x = 0, e’x = 0}. First we show that one can tell if a matrix
has property R, by looking at the incidence structure of 2(M).

Lemma 2.1. M eR™ " isin Ry if and only if there is no vertex v of #(M)
for which the set {i:v; = 0 or (Mv); = 0} is equal to {1,2, ..., n}.

Proof. 1f there is a vertex v of #(M) for which {i:v; = 0 or (Mv); = 0}
is equal to {1,2,...,n}, then v’Mv = 0. Furthermore, v is nonzero and
satisfies v = 0, Mv 2= 0, as do all vectors in #(M). Conversely, if a nonzero
xeR" satisfies x > 0, Mx = 0, then there exists a real number o« > 0 such
that axe #(M). Since x™x = 0, we have ax™Max = 0, so that {i: ax; =0
or (Max); =0} ={1,2,...,n}. Finally, if v is a vertex of #(M) on the
smallest dimensional face of #(M) containing ax, then v must satisfy all of
the equalities v; = 0 and (Mv), = 0 that ax does, so {i: v, = 0 or (Mv); = 0}
={L,2,...,n}. ]
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Call a vertex v of #(M) complementary if {i:v; =0 or (Mv), = 0} =
{1,2,..., n}. (This differs from the notation used in [8].) In the following, our
goal will be to perturb M continuously so that (M) is simplified, but so that
#(M) never gains any complementary vertices. The remainder of the paper
concentrates on the case n = 3.

3. ELEMENTARY DEFORMATIONS

Let M be a 3 X 3 matrix in R,. Note for n = 3 that #(M) is at worst a
convex polygon. We first introduce perturbations of M that resolve degener-
acy.

LeEmma 3.1.  Let M be in R,. If a vertex v of P (M) satisfies three or more
equations v; = 0 or (Mv), = 0, then at least one of these equations must be of
the type (Mv); = 0. Suppose in that case that (Mv); = 0, and denote by M' the
ith row of M. (Note that M'v = (Mv),.) Let z = 3[v + (M)T]. Let € > 0 be
such that for any vertex v’ of P (M) for which (Mv'); >0 we also have
(M= tz)0’ > 0 for 0 < t < &. Then the row M* may be replaced by M' + tz
for 0 <t < ¢, creating matrices M, for which #(M,) has fewer complemen-
tary vertices. If there is another equation x; = 0 or (Mx); = 0 with the same
solution set as (Mx); = 0, then P(M,) will be less degenerate than P(M). If
there are no two facets of the form x; = 0 or (Mx); = 0 that have the same
solution set, then P (M,) will be less degenerate than #(M).

Proof. Let x be any point in #(M) for which (Mx); > 0. Then (M’ +
tz)x = (Mx); — 3t[(Mx); + v'x], which is > 0 for sufficiently small values of
t. Thus ¢ exists. Note that v ¢ #(M,), since Mjv = — 20Tv < O0for0 <t <e.
If there is another equation x; = 0 or (Mx); = 0 having the same solution set
as (Mx); = 0, then this other equation will meet #(M,) in fewer vertices than
it meets #(M), since v¢ #(M,). If there is no such pair of equations having
the same solution set, then the vertices of #(M,) which were not in #(M)
will be on exactly two facets of #(M,). In both cases, all newly created
vertices are on subsets of the sets of equations that old vertices were on, so no
new complementary vertices can be created. a2

Now assume that every vertex of 2 (M) satisfies exactly two equations of
the form x; = 0 or (Mx); = 0.

Lemma 3.2.  The following elementary operations perturb M continuously
but do not introduce complementary vertices into #(M). These operations
reduce the number of vertices of #(M), so they can only be applied a finite
number of times.
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(A) If there is an i such that {x: x; = 0} is a facet of (M) but {x:(Mx),
= 0} is not a facet of #(M), then change M to M, by changing the row M* of
M to M} = te; + (1 — t)M’, where e, is the ith coordinate vector. Follow this
by applying Lemma 3.1 until P (M,) is nondegenerate.

(B) If there is an index i such that {x: x; = 0} and {x:(Mx); = 0} share a
vertex v of (M), let v* be the other vertex of (M) on {x: x; = 0} and let v?
be the other vertex of (M) on {x:(Mx), = 0}. Let zeR" satisfy z'v' =
zTv? = 0, 2Tv < 0. Change M to M|, by changing row i of M to M = tz + (1
— )M for 0 <t <1 + ¢, where £ > 0 is small enough so that M}, .w >0
for all vertices w of #(M) other than v, v',and v>.

(C) If there is an index i such that {x:x; = 0} and {x:(Mx); = 0} are
both facets of #(M) and there is exactly one facet between them, then let v' be
the vertex of #(M) on {x: x; = 0} and not on the intermediate facet, and let
v2 be the vertex of #(M) on {x :(Mx); = 0} and not on the intermediate facet.
Let zeR" satisfy zTv! = 2702 = 0 and 27x < 0 for all x on the intermediate
facet. Change M to M, , . by changing the row M to M} = tz + (1 — t)M' for
0<t<1 + ¢ where e > 0 is small enough so that M} , .w > 0 for all vertices
w of P(M) other than v', v%, and the vertices on the intermediate facet.

Proof. Let ze #(M). Then in case (A), we have Mz > 0. For0 €t < 1,
Mz = tzTe; + (1 — t)M'z > 0, so no new complementary vertices are intro-
duced. For t =1, M} = e, so again no new complementary vertices are
introduced. In case (B), changing M to M, rotates the facet of #(M) that is
{x:(Mx); = 0}, keeping the end v? fixed and moving the other end until it
hits vertex vl. When t = 1, vertex o' satisfies three of the inequalities, but
two of them involve the subscript i. Finally, in case (C), changing M to M,
rotates the facet of #(M) corresponding to { x : (Mx); = 0}, keeping vertex v2
fixed and moving the other end until it hits v'. Here there are two values of t,
corresponding to the two vertices of #(M) for which x; = 0, such that a
vertex of #(M,) will satisfy three of the equations. But as before, two of these
equations will involve the subscript i. Thus no new complementary vertices
are introduced. See Figure 1 for examples of deformations (A), (B), and (C). B

4. FINAL STATES

There are three possible situations in which none of the deformations (A},
(B), (C) or the degeneracy-resolving Lemma 3.1 may be applied. Either #(M)
is empty, or it is a triangle with the three sides given by equations involving
different subscripts, or it is a hexagon in which pairs of opposite sides are
given by equations involving the same subscript. This observation leads to a
complete classification of the connected components of R, when n = 3.
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Fic. 1. idenotes {x: x; = 0}, and i denotes {x: (Mx); = 0}.

LEmMA 4.1, If P (M) is empty, then M is in the same connected compo-

nent of R,, as
-1 -1 -1
M=|-1 -1 -1].
-1 -1 -1
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Proof. Suppose z > 0. Since % (M) is empty, there is an i such that
Miz < 0. Then for 0 <t <1, [tM + (1 — t)M ™)'z < 0. Thus #(M,) stays
empty for all 0 < ¢t < 1, and no new complementary vertices are introduced.

Lemma 4.2. If #(M) is a triangle, the three sides given by the equations
(Mx); = 0 for i =1,2,3, and the triangle (M) is oriented coherently with
the positive orthant, then M is in the same component of R as the matrix

3 -1 -1
P=1 -1 3 -—-1j.
-1 -1 3

Proof. The polytope #(P) is drawn in Figure 2, which indicates what is
meant by coherent orientation with respect to the positive orthant. The facets
{x:x; =0}, {x:x, =0}, {x:x3=0} of the positive orthant appear in a
clockwise order around the positive orthant, and the facets {x:(Px); = 0},
{x:(Px)y = 0}, {x:(Px); =0} of #(P) also appear in a clockwise order
around 2(P). It should be clear that any triangle #(M) with facets of the
form {x:(Mzx); = 0} for i = 1,2,3 that is coherently oriented with respect to
the positive orthant can be shrunk, rotated, and aligned with #(P) in a
continuous manner without having #(M) touch the boundary of the positive
orthant, and thus without creating any complementary vertices. |

Fic. 2.
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Lemma 4.3.  If P(M) is a triangle with facets of the form {x: (Mx); = 0}
fori=1,2,3, and P (M) is oriented oppositely to the positive orthant, then M
is in the same component of R, as the matrix

-1 3 -1
P = 3 -1 -1].
-1 -1 3

Proof. See Figure 3. The argument is essentially the same as that for
Lemma 4.2. Note that #(P) and #(P~) differ only in that two facets have
been traded, changing the orientation of the triangle. n

LEmMa 4.4. If P(M) is a hexagon with pairs of opposite sides given by
equations involving the same subscript, then #(M) is in the same connected
component of R, as one of the following four matrices:

-1 2 2 3 -2 6
M21= -2 3 6 5 M22= 2 -1 2 »

-2 6 3 6 -2 3
3 6 -2 -1 2 2
My;=16 3 -2, or MU = 2 -1 2
2 2 -1 2 2 -1

Fic. 3.
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Proof. See Figure 4 for drawings of #(M) for the four different matrices.
These four drawings correspond to the four different ways to order the six
facets of #(M) subject to a given orientation of the positive orthant and the
restriction that opposite faces correspond to equations involving the same
subscript. It should be clear from the drawing that any two polytopes #(M)
with the same ordering of the faces can be obtained from each other by
moving the faces corresponding to inequalities of the form {x:(Mx), = 0},
without changing the ordering of the faces. |

W

"~ /
T /
2
P(MU)
3 2
1

Fic. 4.
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Lemma 4.5. The four matrices from Lemma 4.4 lie in different compo-
nents of R,.

Proof. An arrangement of lines in the plane containing a hexagon is given
in Figure 5. From the enumeration of arrangements of six lines in the plane in
[3], we see that such an arrangement with a hexagon always has exactly six
triangles (including perhaps triangles at infinity), and these are located on the
six edges of the hexagon. Passing from one arrangement of lines to another,
which would be necessary in order to change % (M), must involve collapsing
one of these triangles to a point. In each of the arrangements corresponding to
the matrices of Lemma 4.4, the six triangles all have facets defined by

F1G. 5. Arrangement of six lines with a hexagon.
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inequalities of three different subscripts. Thus collapsing one of them intro-
duces a complementary vertex on #(M). |

THEOREM.  The set of 3 X 3 matrices in R, has seven connected compo-
nents, represented by the seven matrices given in Lemmas 4.1-4.4.

Proof. From Lemma 4.5, we see that the four matrices of Lemma 4.4 lie
in separate components of R, that are also separate from the components
containing the matrices M~, P, and P~. Using techniques from [4] or [7], one
can calculate the degree of the mappings associated to these three matrices.
For M~ the answer is 0, for P it is 1, and for P~ it is —1. Thus these three
matrices represent separate components of R. For the record, the matrices
My, My, and Mg are associated with maps of degree 2, while MU, given by
Murty in [9], gives a map of degree —2. ]

5. BEYOND n =3

The techniques used in this paper give some idea of the complexity of the
set of matrices in R,. It seems possible that for all n, the set of matrices in R
for given small values of the degree might be connected. The techniques used
in this paper could probably be elaborated on to obtain results for 4 x 4
matrices. In the 4 X 4 case one would have to look at three-dimensional
polytopes, and the analysis might be similar to the proof of Steinitz’s theorem
for three-polytopes. It would be interesting to find out if the negative results
on the isotopy problem (see [2]} would pose problems for n > 5.
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