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Symmetry and Positive Definiteness in Oriented Matroids

WALTER D. MORRIS, JR. AND MICHAEL J. ToDD*

We show the properties of a class of oriented matroids that properly generalizes the class of
oriented matroids that can be represented by matrices of the form (I, — A), where Aisarealn x n
symmetric matrix and I is the n x n identity matrix. Several results from linear algebra about
positive definiteness, symmetry, and eigenvalues are shown to have natural generalizations in the
context of oriented matroids. The relationships among the oriented matroid generalizations of the
linear algebraic concepts are seen to be analogous to the relationships among the original linear
algebraic concepts.

INTRODUCTION

Let E be a finite set. A signed setin Eisapair X = (X7, X )with Xt € E, X~ <€ E,
and X* n X~ = (&. The opposite of X is the signed set —X = (X, X*), and the set
underlying X is X = X* u X~. A signed set X contains a signed set ¥V, ¥ < X, if
Y* € X*, Y < X, and X contains an unsigned set Z if Z < X.

An oriented matroid .# is a pair (E, ¥), where E is a finite set and % is a collection of
signed sets in E, called circuits, satisfying

(D, D) ¢¥
CKCe¥= —Ce¥
C,Geband C, c (= C, = GorC) = —C,.
C,Ce€%andee (Cf n Cy)u (C; n CF)imply that there exists
? { C,e € with Cf < (C] v G )\{e}, C; = (C; v Cy)\{e}.

We write € = (. 4).

The collection € = {C: C € €} of underlying sets of circuits is the family of circuits of
an (unoriented) matroid .# on E, called the underlying matroid of .#. We will assume that
the reader is familiar with the basic definitions and properties of matroids (see [13]). The
independent and dependent sets, bases, loops and coloops, and rank of .4 are those of the
underlying matroid .#.

A signed set X in E has a conformal decomposition into circuits of an oriented matroid
fX*"=Cru...uouCland X~ = C; u...u C, forcircuits Cy, . .., C, in €(H).
We called signed sets having conformal decomposition into circuits of .# cycles of #. We
write A (A) for the set of cycles of 4.

The main motivation for oriented matroid theory comes from the case when the
cycles of an oriented matroid are signed supports of vectors in a subspace of R". Let V'
be a subspace of R”, and let E = {¢,, ..., e,}. For every x € V, define a signed set
K, = ({e;: x; > 0}, {e;: x; < 0}), called the signed support of x. Then the set {K,: x € V'}
is the set of cycles of an oriented matroid. If V' is the null space of an m x »n matrix A,
we call this oriented matroid the oriented matroid represented by A, written .#(A). Thus
M (A) captures sign properties of vectors in the null space of A, but ignores their numerical
values.
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Oriented matroids give an abstract combinatorial setting for studying the properties of
matrices that represent them. On the other hand, since there are oriented matroids that
cannot be represented by any matrix, the results obtained properly generalize those of linear
algebra. Previously, notions of arrangements of hyperplanes and topological extensions,
face lattices and polarity of polyhedra, convexity, and signs of determinants of matrices
have been studied in the context of oriented matroids [1], [3], [7], [8], [9]. Linear and
quadratic programming have been shown to have natural generalizations in the context of
oriented matroids, which capture many of the important features of these problems [2], [5],
[6], [12]. In the study of quadratic programming for oriented matroids, one would like
to have generalizations of the properties of quadratic forms associated with symmetric
matrices. This is the subject of the present paper.

We would like to have oriented matroid generalizations of the notions of symmetry,
positive (semi)definiteness, and eigenvalues. These generalizations should ideally satisfy
many properties that the original linear algebraic notions satisfy. In particular:

1. Oriented matroids represented by matrices of the form (I, — A), where A is square and
symmetric positive (semi)definite are symmetric and positive (semi)definite. Note that
y = Axiff (p, x) is in the null space of (I, — A). Therefore, to study the sign properties of
y and x, we consider the oriented matroid .#(I, — A).

2. Certain minors of symmetric (positive (semi)definite) oriented matroids, corresponding
to principal submatrices in the representable case, are symmetric (positive (semi)definite)
oriented matroids.

3. The inverse of a symmetric (positive definite) oriented matroid is symmetric (positive
definite) iff it exists.

4. A symmetric positive semidefinite oriented matroid is positive definite iff it is non-
singular.

5. A symmetric positive definite oriented matroid has a positive eigencycle, and a symmetric
positive semidefinite oriented matroid has a positive eigencycle iff it is not representable by
the matrix (I, 0).

6. A symmetric oriented matroid is positive semidefinite iff it has no negative eigencycles.

These properties will all be shown to hold for natural definitions of the concepts for
oriented matroids.

2. PRELIMINARIES

Let .# be an oriented matroid on a set E. If .# is represented by a matrix A, then .#*,
the oriented matroid that has as its cycles the signed supports of vectors in the row space
of A, is called the dual of .#. The null space of A and the row space of A are orthogonal
complements, so .# and .#* must satisfy the following orthogonality property;

(1) For cycles K of # and L of .#*
K*AnLYUK nL )£ FITK " nL)u (K L") # .

In general, for every oriented matroid .# on E, there is a unique oriented matroid .#* on
E such that the cycles of .#* are all the signed sets on F that satisfy (L) with respect to all
the cycles of .#. .#* is the dual of .# (see [3]).

Let .# be an oriented matroid on E with ¥~ = XA (#) its set of cycles. Let F and G be
disjoint subsets of E. Let ¥ (F) = {(K*\F) u (K" n F),(K"\F) v (K* n F):. Ke X'}
Then #°(F) is the family of cycles of an oriented matroid; we say that oriented matroid is
obtained by reversing signs on F. For a signed set X on E, and any subset H of E, let the
signed set X\H be (X"\H, X"\H). Let #"\F/G denote the collection of signed sets
{K\G: Ke X', K~ F = ¢J}. Then 4 \F/G is the set of cycles of an oriented matroid
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MN\F|G on E\(Fu G) [3, p. 114]. For the sake of brevity, #\F(.#/G) is written for
MN\F|B(M\T]G). We say #\F|G is obtained from & by deleting F and contracting G.
If .# is represented by a matrix A, then .#\F/G is represented by the matrix A’, obtained
from A by deleting the columns corresponding to F, then pivoting on successive nonzero
columns corresponding to G, followed by deleting the pivot row and column, and finally
deleting zero columns corresponding to G.

If B is a base of .# and e € E\ B, then there is exactly one circuit C of # withee C*
and C = B v {e}. Itis called the fundamental circuit C(B, €) associated with B and e. For
every base B of ., define the B-tableau to be the set of fundamental circuits of .# associated
with e; and B for ¢, ¢ B.

If X,, K, are two cycles of an oriented matroid .#, then K, - K, = (K;" U (K;/\K["),
K, u (K5 \K[")) € A (#). This operator s, Bland’s composition operator, corresponds in
the representable case to taking the signed support of x' + ex’ for some suitably small
¢ > 0, where K, and K, are the signed supports of x' and x*, respectively.

Henceforth, we make the following blanket assumption:

M is an oriented matroid onaset E = SuU T, where S = {s,...,5,}, T ={t|,..., L.},
ST = ¢, and S is a base of .#. Such an oriented matroid is called square.

The particular ordering of S and T is significant. We define the switch of a signed set X on
Etobethesignedset swX = ({s; t,e X"} u {t:s,e X )L {sp e X o {tisie X)),
obtained by reversing signs on T and then interchanging occurrences of s; and 7; in X for
alli = 1, ..., n The switch of an oriented matroid, sw.#, is the matroid that has as its
cycles the switches of the cycles of 4. The (S, T)-transpose of .#, denoted 5, is the
switch of .#*. This is motivated by observing that if .# is represented by the matrix
(I, —A), where S corresponds to the columns of T and T to the columns of — A, then .#*
is represented by (A', I) and #5; by (I, —A").

DEFINITION. A square oriented matroid .# is symmetric (with respect to .S and T') iff
M= M.

It is possible to replace this indirect definition with another one that does not explicitly
involve the dual oriented matroid.

THEOREM 2.1. A square oriented matroid M is symmetric (with respect to S and T') iff the
Sfollowing property holds:
(L) For any two cycles K, and K, of A (M), (I) holds iff (II) holds.

() (1)
There exists an i such that one of the There exists a j such that one of the
cases below holds: cases below holds:
s;e Kt, t,e Ky, s;e K, 1€ K
s;e Ky, t,e K, s;e Ki, e Ky
e K, s, e K teK', s;€ Ky ;
e K ,s, €K, . teKr,s €K .

Proor. The condition (L) is equivalent to the requirement that .# and sw.# satisfy
(L1). If # and sw.# satisfy (L), then the cycles of sw.# are cycles of .#*, and independent
sets of .#* are independent in sw.#. In particular, bases of .#* are bases of sw.#, since
both oriented matroids are of rank n. .# and sw.# have the same number of bases, as do
A and #*. Therefore, the bases of .#* are exactly the bases of sw.#, and .#* and sw.#
have the same underlying matroid. From [3], we then get that sw.# = .#*, implying that
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M = swll* = My;. Clearly, if 4 = My, then sw = #*, and thus # and sw.#
satisfy ().

The following theorem is an easy application of (L). We call a subset F of E =
SuT, where S = {s,...,8,}, T={t,...,t}, ST =, complementary iff
[Fr{s,t} <lfori=1...,n

THEOREM 2.2. Let B be a complementary base of M , a symmetric oriented matroid. Then
the following hold:
(@) If s;, 5;€ B, then s;€ C(B, t,)" iff s,€ C(B, t;,)", and
5;€ C(B, 1) iff ;e C(B, t;)".
(b) If 5;, t,€ B, then s, € C(B, ;)" iff t,e C(B, t;)”, and
s5,€ C(B, s;) iff t,e C(B, t)*.
(¢) If t;, t;€ B, then t;e C(B, 5;)" iff t,e C(B, 5,)", and
e CB,5) iff e C(B,s;) .

COROLLARY 2.2.1. The S-tableau of a symmetric oriented matroid is symmetric:
5;€ C(S, t)" iff s,€ C(S, t,)" and s;€ C(S, 1,)” iff ;€ C(S, t,).

This is a special case of Theorem 2.2, with B = S. When .# is represented by (I, — A),
with A symmetric, the circuits of the S-tableau are the signed sets corresponding to the rows
of the matrix (A", I). This corollary, then, generalizes the property that g;; and a;; agree in
sign, for all i, j.

If T is a base of a square oriented matroid .#, then we will call .# nonsingular. The
observation that the matrices (I, —A) and (—A~', I) have the same null spaces, for
nonsingular A, prompts the following definition. Let .# be a nonsingular oriented matroid.
The (S, T) inverse of 4, ;' , is the oriented matroid obtained from .# by interchanging
the labels s; and ¢,, for all i.

PROPOSITION 2.3. Let .# be a square nonsingular oriented matroid. Then Ms; is sym-
metric iff M is.

ProoF. It is easily seen that .#; satisfies (L) iff .# does, and since T is a base of .#,
we have that S is a base of .#; .

Principal submatrices of symmetric oriented matrices are also symmetric. It is therefore
natural to expect that the corresponding minors of symmetric oriented matroids would stay
symmetric.

THEOREM 2.4, Let M be a symmetric oriented matroid. For any i, 1 < i < n, M\1t;[s;is
a symmetric oriented matroid with respect to S\s; and T\t,, and if s; € C(S, t;), then so is
M\t

PrROOF. The set S\s; is easily seen to be a base of .#\¢/s;. Furthermore, we have
SWAMNL[s)* = [sW(A\L[s)I* = [(swM)\s,/t]* = (sw.l)*\1,/s; = H\1,/s;. This proves
the first part. For the second, note that T\t is a base of .#\s, /¢, iff 5, € C(S, t;). As before,
we have sw(#\s;/t)* = [sw(H\t,[s)]* = [(sWA\s,/t,]* = (sWAM\1,/s; = M\1]s;.

All oriented matroids that can be represented by matrices of the form (I, — A), where A
is symmetric, are symmetric. The class of symmetric oriented matroids is much larger than
this, though. As an example, we give a symmetric orientation of the nonrepresentable
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Vamos Matroid. Consider the oriented matroid represented by the matrix
1 0 0 0 0 —1 1 -1
1 0 0 —1 0 1 -1
010 ] 1 —4 5
0001 —1 -1 5 —6
The circuits of this oriented matroid are those given below and their negatives.
1256 13567 12367 12357 12467 34567 35678
1678 13568 12368 12358 12468 34568 23678
2345 3478 13457 13578 12457 23467 24567
2578 1346 13458 12378 12438 23468 24568
12347 14567 14578 23567 45678
12348 14568 12478 23568 24678

(e R

Here a circuit ({1, 6}, {2, 5}) is written 1256. A symmetric orientation of the Vamos
matroid is then obtained by replacing the circuit 2578 with the circuits 12578, 23578, 25678,
and 24578. The result is an orientation that is symmetric with respect to S = (1, 2, 3, 4),
T = (5, 6,7, 8). By relabeling the elements (1, 2, 3,4, 5,6, 7, 8)as (1, 3, 6,4, 5, 2, 7, 8),
one can see that the underlying matroid is the same as that given in [3, p. 111]. For a more
detailed explanation, see [10].

3. PoSITIVE DEFINITENESS AND EIGENVALUES

3.1. PosiTIvVE DEFINITENESS

All of the oriented matroids in this section will be symmetric unless otherwise noted. The
definition of positive definiteness in oriented matroids given below, however, applies to any
square oriented matroid. An oriented matroid .#, represented by (I, — A) where A is
symmetric, will be positive (semi)definite iff A is. The correspondence is not as direct when
A is not symmetric. For example, the same symmetric oriented matroid is represented by
both (¢ § =3 “Dand (§ ¢ Z1 ~}), even though (? }) is positive definite and (; |) is not.
The set of matrices A for which .#(I, — A) is symmetric and positive (semi)definite forms
a proper subset of the set of P-matrices (P,-matrices) [4]; a matrix is in P(P,) iff all its
principal minors are positive (nonnegative).

If a vector space V is the null space of an n x 2x matrix (I, — A), then V is the space of
solutions (y, x) to the equation (I, —A)(y, x) = 0, which is y = Ax. The matrix A is
positive definite iff x'y > 0 for all nonzero (y, x) € V, and positive semidefinite iff x'y > 0
forall (y, x)e V.

DEFINITIONS. A cycle K of a symmetric oriented matroid .# is called sign reversing if
{s, ;} & K*and {s;, t;} ¢ K foreveryi. Kis called strictly sign reversing if, in addition,
s;e KY,t,e K ors;e K™, t;€ K* for some i. . is called positive definite if it has no sign
reversing cycles. . is called positive semidefinite if it has no strictly sign reversing cycles.

Note that if .# is represented by (I, — A), then a sign reversing cycle implies the existence
of a vector (y, x) in the null space of (I, —A) such that y,x; < 0 for all i. A strictly
sign reversing cycle implies that, in addition y,x; < 0 for some i. Thus, if A is positive
(semi)definite, then .# is positive (semi)definite. The converse holds when A is symmetric.
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If a symmetric A is not positive (semi)definite, then it has an eigenvector x corresponding
to a nonpositive (negative) eigenvalue. The signed support of the vector (Ax, x) will then
be a (strictly) sign reversing cycle of .#.

LemMa 3.1.1. If # is a symmetric positive semidefinite oriented matroid, then
s ¢ C(S, t;) implies that s; ¢ C(S, t;) for all j, so that t; is a loop.

PROOF. Suppose s, € C(S, 1,)" and s, ¢ C(S, ;) for some i, j. Then s5,€ C(S, t,)* by
the symmetry of the S-tableau. Hence K = C(S, 1) —C(S,t,) has {s, 1,} € K™,
{s;,, ;} = K*,and {s,, t,} ¢ Kforall other k. Then Kis strictly sign reversing, contradict-
ing the assumption that .# is positive semidefinite. A strictly sign reversing cycle can be
constructed in an analogous way if 5, € C(S, t;)” for some j.

COROLLARY 3.1.2. Let .# be a symmetric, positive semidefinite, nonsingular oriented
matroid. Then s, € C(S, t;) and t; € C(T, s,) for all i.

Proor. Ifs; ¢ C(S, t;) for some i, then ¢ is a loop, contradicting the assumption that T
is a base. If .# is nonsingular, it is immediate that .#g; is a symmetric positive semidefinite
oriented matroid. Thus, if ¢, ¢ C(T, s,)in.#, thens; ¢ C(S, t,)in .#s;', which is impossible.

LemMma 3.1.3.  If M is a positive (semi)definite symmetric oriented matroid, then M \1,/s,
is a positive (semi)definite symmetric oriented matroid for all i, and if s; e C(S, t,), then
MN\s;[t; is a positive (semi)definite symmetric oriented matroid.

Proor. By Theorem 2.2.1, .#\¢,/s; is a symmetric oriented matroid for any i, and if
s; € C(S, t;), then #\s,;/t; is a symmetric oriented matroid. Suppose that .#\1/s; has a
(strictly) sign reversing cycle K; then this cycle, together with a possible additional element
s;, 1s a (strictly) sign reversing cycle of .#. The same argument applies to (strictly) sign
reversing cycles of .#\s,/t;.

THEOREM 3.1.4. A positive semidefinite symmetric oriented matroid is positive definite iff
it is nonsingular.

PrROOF. One implication is trivial. If .# has a circuit C contained in T, then {s,, t,} € C
for all 4, so Cis a sign reversing cycle. The opposite implication is proved by induction on
|.S|. Suppose that Theorem 3.1.4 is true for symmetric oriented matroids with |S| < n — 1.
Suppose also that .# is a nonsingular symmetric positive semidefinite oriented matroid with
|S} = n. If # is not positive definite, then there exists a nonempty cycle K of ./ such that
{s;, t;} & Kforalli Tisabaseof .#,so thereis an isuch that ¢, ¢ K. The oriented matroid
M\ t,/s; is symmetric and positive semidefinite, by Lemma 3.1.3. T is a base of .#, and by
Corollary 3.1.2, we have t, € C(T, s,). Therefore, there can be no circuit of .#\¢t,/s;in T\¢,,
so T\t is a base of .#\¢t,/s;,. By the induction hypothesis, .#\z,/s; is positive definite.
However, K & {s;}, since S is a base of .#, so K\{s;, t;} is a nonempty cycle of .#\1,/s;.
Moreover, K\ {s;, ¢;} is sign reversing. Thus we have a contradiction. To establish the basis
for the induction, note that there are three symmetric oriented matroids with |.S| = 1. The
oriented matroid represented by (1, 0) is positive semidefinite, singular, and not positive
definite. #(1, — 1) is both positive definite and positive semidefinite, and it is nonsingular.
(1, 1) is neither positive definite nor positive semidefinite.

From this result we can also conclude that if .# is a symmetric nonsingular oriented
matroid, then .# is positive definite iff #;' is positive definite.
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The theorem and lemmas from this section correspond to well known theorems about
symmetric matrices. If A is a positive semidefinite symmetric matrix and a; = 0 for
some /, then a; = a;, = 0 for all j (Lemma 3.1.1). If A is positive definite, then so is A,
and the diagonal elements of both A and A~' are positive (Lemma 3.1.2). Deleting row i
and column / from a symmetric positive (semi)definite matrix A yields a symmetric positive
(semi)definite matrix, and pivoting on a nonzero diagonal element of A followed by deleting
the pivot row and column yields another symmetric positive (semi)definite matrix
(Lemma 3.1.3). Finally, a symmetric positive (semi)definite matrix is positive definite iff it
is nonsingular (Theorem 3.1.4).

3.2. EIGENCYCLES

Let A be a real n x n matrix. A real number 4 is an eigenvalue of A iff there is a
nonzero x € R” such that Ax = Ax, or equivalently, iff there is a nonzero x such that
(I, —A)(ix, x) = 0. This fact motivates the following definitions. Let .# be an oriented
matroidonE = SU T, S = {s,...,s5},T={t,..., t,}, S a base of .#. A nonempty
cycle K of # is called a positive eigencycle of .4 iff we have s,€ K* < 1,€ K* and
s;€ K~ < 1;e K~ for all i. Kis called a negative eigencycle iff we have s, K* < 1,€ K~
and 5,€ K~ < t,e K*. K is a zero eigencycle iff K = T. A positive (negative, Zero)
eigencycle K will be called a minimal eigencycle if there is no positive (negative, Z€ro)
eigencycle K’ contained in K and different from it. In the representable case, where
M = M(I, —A), if (y, x) is in the null space of (I, —A), x must have the same signed
support as y for x to be a positive eigenvector. This is, of course, not a sufficient condition.
Consider, for example, the matrix

19 10 4
A=1|10 10 —14
4 —14 7

The eigenvectors of this matrix are (1, —2, —2), (=2, 1, —2), and (—2, —2, 1), corre-
sponding to the eigenvalues —9, + 18, and + 27, respectively. The vector (52, 16, 1,2, 1, 1)
is in the null space of (I, — A). Thus ({s,, s,, 53, 1,, ,, 1;), &) is a positive eigencycle of
M1, —A). There are, however, no eigenvectors of A that are positive on all coordinates.
These qualifications must be kept in mind when one uses the term eigencycle.

THEOREM 3.2.1. If M is a symmetric positive definite oriented matroid, then it has a
positive eigencycle.

ProoOF.  Consider the fundamental circuit C(S, 1,). .# is positive definite, so for each i,
5;€ C(S, ;)" (otherwise C(S, ;) would be sign reversing). The following algorithm produces
a positive eigencycle K:

©0) K« C(S,8),i« 1
(1) Ifi = n, stop
Ifs,,,eK ,thenK « Ko —~C(S, t,.,)
else K « Ko C(S, t,,))
i—-i+1
go to (1)
In step (1), K does not contain #, , ,, though it may contain s, , ,. The composition in step

(1) ensures that {s;, #;,,} & K or {s,,, t,,,} < K. The algorithm will stop with a
positive eigencycle K such that X = E.
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The proof must be modified for the positive semidefinite case, for it may happen that
s; ¢ C(S, t;) for some .

THEOREM 3.2.2. If M is a symmetric positive semidefinite oriented matroid, and there is
an element of T that is not a loop of M, then M has a positive eigencycle.

ProoF. Let ¢, be an element of T that is not a loop of #. Then s,e C(S, t,)" by
Lemma 3.1.1. The following algorithm will produce a positive eigencycle:

0) K« C(S, 1)
(1) If there is a j such that s, € K but ¢, ¢ K then do:
If ;e K*, let K « Ko C(S, 1)
Ifs;e K7, let K« Ko —C(S, 1)
go to (1)
Else stop

At each step of the algorithm, a ¢;is admitted into K so that it has the same sign as s;, which
is already in K.

Note that if every element of T is a loop, then every cycle of .# is in T, so there can be
no positive eigencycle. In that case .# is represented by (I, 0).

From the definition, a symmetric oriented matroid with a negative eigencycle is not
positive semidefinite. In fact, the converse is also true.

THEOREM 3.2.3. A symmetric oriented matroid M is positive semidefinite iff it has no
negative eigencycle.

PROOF. Let .# be symmetric and not positive semidefinite. It suffices to show that .#
contains a negative eigencycle. By definition, .# contains a strictly sign reversing cycle K.
If |{s;, ;} n K| = 1 for some i, then the member of {s;, #,} that is in K is called a violator

in K. The following algorithm creates a negative eigencycle from a strictly sign reversing
cycle K with all of its violators in S.

(0) Let K be any strictly sign reversing cycle with all of its violators in S.
(1) If there exists an / such that s, € K but ¢, ¢ K, then
ifs,e K", let K« Ko —C(S, t,)
ifs,e K-, let K« Ko C(S, ;)
go to (1)
If there is no such i, stop; K is a negative eigencycle.

After every step, a strictly sign reversing K is maintained with all of its violators in S. We
need such a K before we can apply the above algorithm. First, note that if s, e C(S, ;)" for
any i, then C(S, 1,) suffices. Next, suppose that s, ¢ C(S, #,), s, € C(S, 1;) for some i, j. By
the symmetry of the S-tableau, s;e C(S, ). If 5,€ C(S, t,)*, then s, C(S, 1,)* and
C(S, t;) o —C(S, t;) will be a strictly sign reversing cycle with all of its violators in S, and
ifs; e C(S, t,) ,s5,€ C(S, 1) then C(S, 1) - C(S, t;) will be one.

Suppose that Theorem 3.2.3 is true for symmetric oriented matroids with |[S| = n — 1.
Let K be a strictly sign reversing cycle of .. If, for some i, we have 1; ¢ K, then we have
a strictly sign reversing cycle K\ {s;, ¢,} in the symmetric oriented matroid .#\¢,/s;. By the
induction hypothesis, there must be a negative eigencycle of .#\1,/s, and therefore a strictly
sign reversing cycle of # for which the only possible violator is s;, which is in S. Apply the
algorithm to this cycle.
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Now suppose that ;€ K for all i. If 5, K for all i, then K is a negative eigencycle.
Suppose s; ¢ K for some i. As shown earlier, if s, € C(S, ;)" orif s, ¢ C(S, 1,) when t;is not
a loop, we get a strictly sign reversing cycle with all of the violators in S. If 7, is a loop, then
K\t is a strictly sign reversing cycle of .# with 1, ¢ K this was treated carlier. The last case
is when 5; € C(S, 1,)*. In that case, .#\s,/t; is a symmetric oriented matroid containing a
strictly sign reversing cycle K\1,. By the induction hypothesis, there then exists a negative
eigencycle in .#\s,/t;, implying the existence of a strictly sign reversing cycle K in .# with
; being its only possible violator. If ¢, ¢ K, then K is a negative eigencycle. If 1, € K, then
either K « C(S, 1,) or Ko — C(S, 1,) is a strictly sign reversing cycle with all of its violators
in . Thus, one can always find such a strictly sign reversing cycle. For the ground case of
the induction, note that when |S| = |T| = 1, any strictly sign-reversing cycle is necessarily
a negative eigencycle.

From this result and Theorem 2.1.4, we obtain

COROLLARY 3.2.4. A symmetric oriented matroid is positive definite iff it has no non-
positive eigencycle.

The results in this section are again direct analogs to theorems of linear algebra.
A symmetric positive definite matrix has a real positive eigenvalue (Theorem 32.1). A
symmetric positive semidefinite matrix has a real positive eigenvalue iff it is not the zero
matrix. A symmetric matrix is positive (semi)definite iff it has no nonpositive (negative)
eigenvalues (Theorem 3.2.3 and Corollary 3.2.4).

As noted earlier, there are limitations to what one can say about eigenvectors from
only looking at the sign patterns of vectors in a subspace of R". There is no way yet
known of finding out which eigencycles of .#(I, — A) correspond to real eigenvectors of A
by looking only at the oriented matroid. However, the results given in this section demon-
strate the possibility of extending some significant basic properties of quadratic forms to the
combinatorial setting of oriented matroids.
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