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embedding without self-intersection). Therefore X{d } has all the
a

required properties,

CHAPTER ITI

Construction of nice polyhedral subdivisions

Finn F. Knudsen

I don't know whether from a combinatorial point of view the
following question has ever been asked:

Given a polyhedron 0 C ®” with integral vertices, find an
integer Vv > 1 and a decomposition of ¢ into simplices Ty such that
for all a:

1) vertices of T ciz?

a v

‘ 1
2) volume (Ta) = o -
von!

But the theory of the previous chapter makes it clear that this is
the essential construction needed to carry out semi-stable reduction.
The purpose of this Chapter is to study and solve this combnatorial
problem with certain refinements ("projectivity of the subdivision in
the case when @ is convex and globalization") independent of
algebraic geometry.

One of the key steps (4.2) is due to Alan Waterman. The rest is

a truly joint effort by Mumford and me,
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Bl. Definitions and Projective subdivisions

We continue to use the definition of a compact polyhedral
complex X with i = initi |
P ith an integral structure M = {Ma] (definitions 5 and 6
of 81 in the previous chapter) except that we call M a rational
structure here. If K is an integer 2 1 such that the functiomsin M
\ 1
ta - i
ke values in ux on the vertices, then we say that M is integral

1
over L—Z. For such H, we have:

Definition 1.1l. The number

dim(g,)
m(o, M k) = 7+ (aim 9 )! + vol o

is an integer, and we will call this integer the multiplicity of ©

with respect to M and M.

Also we define

m(X,M,#) = max [m(g ,M
Vaclxl a a

LMY

Observation 1.2. Let M © N be two rational structures on a polyhedral

complex X, such that

M N {constants} = N N {constants]} .

Let M be an integer such that {X,M) and (X,N) are both integral over

1
Ez. Then for any polyhedron Ga we have

m(Ua,M,H) = # (Na/Ma)'m(ca:NJ“) .
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Suppose M is integral over Z and contains the constant 1, Then
m(ﬁa,M,l) =1 if and only if 3

¢ is a simplex, and Ma is generated by the functions X5 where x; is

the linear function on &, which is 1 on the vertex Pi and O on all the

other vertexes.

Definition 1.3. Let X and X' be polyhedral complexes. . We say that X!

is a subdivision of X if

i) X and X' have the same underlying topological space,

ii) Whenever T is a polyhedron of X', there is a polyhedron ¢ of X

such that T < @,

iii) I£ T is in X' and ¢in X and T € 7, then

LI
VT_— res, Vﬁ.

Observation 1.4, For any @ in X let ¢' be the topological space @

together with the collection of polyhedra T in X' such that T < &.

Then it follows that ¢' is a polyhedral complex and ¢' is a subdivision

of ©.

Definition 1.5, Let X' be a subdivision of a polyhedral complex X.

We say that X' is a projective subdivision of X if there exists a real-

valued continuous function f: X —> R such that
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i) For each polyhedron & ¢ X f,T is piecewise-linear and convex,
i,e., f,T = m%n L., Li €v_.
ICiKN
ii) If ¢ is a polyhedron in X and 4 a linear function on @ such

that £ > £ o’ then the set

- {x € o|e(x) = 2(x)}

is either empty or a polyhedron of X'.

Whenever X' is a subdivision of X and f is a continuous function which

satisfies 1) and ii) we will say that £ is a good function for the

subdivision X',
jeintninddiudmitalinliiy

Definition 1.6. Let X be a polyhedral complex with a rational

structure M. We say that a subdivision X' of X is a rational

subdivision if the functions in M take rational values onthe vertexes

of X', When X' is a rational subdivision of X we restrict the

rational structure to X',

Definition 1.7. Let X be a polyhedral complex. Then we denote by

PL(X) the set of real-valued continuous functions f on X such that

f'T € Vv, for each polyhedron T,

Note that evaluation of f at the vertexes of £ gives us a linear

embedding?
XO
PL(X) ————> R

Next we will prove a numerical criterion for projectiveness.
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Lemma 1.8. Let X' be a subdivision of a polyhedral complex X. Then

we can find a finite collection of linear functions:

A.: PL(X')/PL(X) —> IR with the property that if /£ is a function
i

in PL(X'), then f is a good function for the subdivision X' of X if

and only if Ai(t) > 0 for all i,

Proof. Let ¢ be a polyhedron in X, say of dimension n, and let
T be an n-1 polyhedron of X' such that int(T) < int{¢). There are
exactly two n-polyhedra Tl and 72 of X' such that Ti <o, i=1,2

Let P,0 be points in int T, and int 72 respectively

and T =T N7 1

1 2"
such that the line segment P,Q meets T in, say, a point R, For any

f € PL{X') we define
b ,(£) = £(R) - g(R)

where g is the linear function on the line segment P,Q0 such that

g(P) = £(P) and g(Q) = £(0)
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Now choose such a function A, for all T with the above property, i.e., The following follows from the proof of Lemma 1.8:

int(T) < int(¢) where & is a top dimensional polyhedron of X and Lemma 1.11. Let X,X',X" be three polyhedral complexes such that X'

dim T = dim(s)-1. is a subdivision of X and X" is a subdivision of X'. Then we can find

two homogeneous convex functions A' and A" on PL(X")/PL(X) and

Claim: f € PL(X') is good if and only if A _(f) > O for all such T.
—_— (x*) g ¥ T( ) PL(X")/PL(X') respectively such that:

We leave the proof of this to the reader.

‘ f € PL(X') is a good function
We have two immediate corollaries, L &= 8'(f) >0
for the subdivision X' of X

Corollary 1.9. Let X' be a subdivision of a polyhedral complex X.

Then the set of good functions for the subdivision X' form an open g € PL(X") is a good function

&==> A"(g)> o0

convex polyhedral cone in PL(X'). for the subdivision X" of X'

Corollary 1.10. Let X be a polyhedral complex with a rational h € PL(X") is a good function

&= min{A*(h),5"(h)} > o

structure M and let X' be a rational, projective subdivision of X. for the subdivision X" of X

Then we can find a good function f for the subdivision X' such that

Corollary 1.12, (E{gnsitivity of projective subdivisions)

for each polyhedron T in X', flT € M

Let X,X', and X" be polyhedral complexes such that X' is a projective

Proof. Let C < PL(X') be the open cone of good functions, By §
! subdivision of X and X" is a projective subdivision of X'. Then X"

assumption C 4 g@.
[ is a projective subdivision of X,

Since X' is a rational subdivision it carries a rational structure
1

. o Proof. ZLet 4' and A" be as in Lemma 2.9, By assumption we can
and therefore PL(X') considered as a subspace of R is defined over
find functions f in PL(X'), g in PL(X") such that
the rationals, i,e.,

X! A'(f) =8, >0
PL(X') N@ © is dense in PL(X'). 18°(g)] = X <
' : '"\g = [e )

X
Let g be any element of C N @ ®, Then a suitable multiple f = n.g i v (£)

(o]
will do. g.e.d.

a"(g) e, >0 .
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Let € > O be any real number such that Ql—eK > 0. Then

min(A'(f+eg), A"(f+eg)) > min(bl—eK, 502) >0 .,

Hence f+eg is a good function for the subdivision X" of X.

qg.e.d.
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B2. Some examples of projective subdivisions

B2

Example 2.1. (The barycentric subdivision)

Let X be a polyhedral complex of dimension n and let X' be the
barycentric subdivision.

Let X(k), 0 < k < n-1, Dbe the subdivision of X obtained by
taking the cones over the barycenters of the n-~polyhedrons,
n-l-polyhedrons, s+ ,n=-k-polyhedrons taken in this order. We then
have a succession of subdivisions.

x = x(0) x(2) g0 L y(n=1) g

Let f. be the function which has value 1 on all the barycenters of the

x
(k-1)

n-k-polyhedra in X, O on all the vertexes of X and linear on

(%)

each polyhedron in X . Then clearly £

k
(k-1) s s
. By the transitivity of projective

is a good function for the
subdivision X(k) of X

subdivisions we get

Lemma 2.2. The barycentric subdivision is projective.

828

Example 2.3 (The regular subdivision of a simplex).
We will consider a simplex A with an ordered set of vertexes

P ,~e+,P_ .
1’ *n+l
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If XystttsX,, are the barycentric coordinates, we define the

cumulative coordinates as follows.

y =0

Y15 %

Yp = Xy,

Yy = Xp b Ky heeed X

yn+1

We then identify A with the set of n~tuples of real numbers YyseoosY,

such that

0Ly LY < Ly < L

Let M be a positive integer and consider the hyperplanes
i,j, =
H7: oy, Y5 = /M
where O ik i <n; 0<Z k < H.

Lemma 2.4. The hyperplanes H;J define a subdivision of A which we

will call A(“). A(“) is a simplicial complex and if © is‘any n-simplex

Lemma 2.4': The regular subdivision A

(1) then volume ¢ = 1/1"+volume 4.

Proof. Let YoatetsYy be a point in A' = int A - k_)H;j.

If we put a; = [M.y;] and ty=y,; - ai/u it is clear that

1

£y # tj whenever i # j. Hence there is a unique permutation @

such that:
(6] e
< tqtl) < tg(py < < tg(n) < }/u .
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Also it is clear that the connected component of A' determined by the

N N . t ]
point yl yn is the set of points yl---yn such that
o<y} —ag /B e <yl NP
e(1) o(1) 9(n) #(n) BoC

And this we see is the interior of a simplex which modulo a permutation
of the coordinate mxes and a translation equals 1/uM+A, and hence its

. n
volume is 1/K .volume A. g.e.d.

The analogous subdivision of the entire Iflby the hyperplanes H;J

(all ¥ € Z) is just the decomposition into affine Weyl chambers of type

A .
n

()

is projective.

Proof. Let f be the function

= ¥ ., -k
£ pa E: xL al -
i,,i,,k 11215}2
lSll<12$p+l
1<k -1

It is easy to see that f is a good function.

In order to treat the more difficult mixed (M,V)-subdivision
discussed below, we need to analyze the regular subdivision in much
greater detail, describing explicitly all its simplices, their vertices,

and their faces, This will occupy us through (2.17) below.
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Lemma 2.5. There is a natural 1-1 correspondence between n-simplexes Definition 2,6, Let A,u,7M,0 be as in the last lemma. We define
of A(“) and maps M: {1,-«+ . n} — {0,...,p=1]. j /v if 9(d) > k
(H) 5k(i) =
Proof. Suppose first we are given a simplex in A . Then as . (o] if o(i) < x

in the proof of the last lemma, for any interior point yl-- Y, we get

the numbers a, = [u-yi] and a permutation ¢. This does not depend V 1gignm, V 1<k,

on the interior point chosen. The corresponding map will then be Clearly we have:
I ~> a ,.\.
oli -1 -1 -1 1
(1) ogak(a (1)55]((9 (2))_<_---55k(c (n))_<_; .
Conversely, given a map T: {1,:+-,n} — {0,-++,1-1] there is
bl
a unique permutation ¢ satisfying: Hence the point P given by

i k

v, () = 2L g (4)

i) me(i) < we(j)  for i< j

It

ii) (i) = me(j) = (i < j == 6(i) < o(j)).

In fact we have the formula ! lies in A", We call this particular ordering of the vertexes of A

the canonical ordering.

-1 . . .
o™ (k) =¥ {i € (1,-++,n}|M(i) < Mx) or i< kand m(i) = Tf(k)} .
1 : R L. | Example of regular subdivision in the case n= 2, W= 3:
If0 ¢ tu-l(l) < tg—l(g) < e & tc-l(n) < 7 it follows by i) and ii) : :
that the point Yysemes¥y defined by jz’ A
|
me(i) | A0 T
e Teld) L , 2 LAl 1
Yy m tty 5 (ax) (1a) (22>
i
j ) &)
o . . () . | 3 @9 i a3
lies in A. By varying the t's we get a simplex of A which we dencte 3 A2 ry P(l.n P(J.,l) - E(Z.ZJ
by ATT. : (0. (1.0 =1 Z = 3
! o {1.0) 2l2
It is immediate from these definitions that the two maps are ! . % Y
inverse to each other. g.e,.d. ©o
> &

In each triangle we have indicated the function T and the induced

ordering of the vertices.
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Lemma 2.7. Let A,4,TM,0 as before, and let o a2,---,an be real

lJ

negative numbers which are linearly independent over the rationals.

The linear function £ = E:aiyi separates all the vertexes of A(“)'

and hence defines a total ordering on the vertexes of A(“). Moreover

this ordering induces the canonical ordering on each simplex of A(u).

" )
Proof., Let Pj and P; be two vertexes of ATT such that j < k.

We then have

«2]) - a(z]) -
; a; ﬂcii) + aiﬁj(i) -a, Egéil - aibk(i) =
) ay(6,(1)-8, (1)) =

iZa@-l(i)(aj(e’l(in -0, (a7}(1)) =

k-1
ac—l(i)/“ < 0 .,
i=j

g.e.d.

Lemma 2.8, Let 8,u,M, 8 be as before. Then if yi,---,y' are the
——— n —————

. : m_.
cumulative coordinates of A with respect to the canonical ordering

we_have
'
_ ometa) |, Ye(a)
i K I8

: . : i .
Proof. y; is a linear function on A and hence is a linear

on An. Say

combination of the barycentric coordinates xi,"-,x 1
n

. 1
Yy 7 Op% ot ot aFan
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But the coefficients are given by

oy = Yi(P:) = Hgéil + Bk(i)
and so 1
n . n+l
= ), % ﬁgfxl) * i By (1)
=1 k=1
="°‘£i) + Z' ' _}E‘l__:lT_g(Til*._Y—:Lj;l_ g.e.d.
k<o(4i)

Corollary 2.9. Let V be a positive integer and subdivide each

simplex of A(u) with respect to vV and the canonical ordering. By

Lemma 2.7 these subdivisions patch up and give us a subdivision of A

which we denote by A(“)(V). We have

A v) o (ew)

Proof. Immediate by the formula of Lemma 2.8. g.e.d.

Next we want to study some particular properties of adjacent
n-simplexes in A(“). Let © be a map {l,+++,n} —> {0,«++,u-1}, and

g the associated permutation. We may consider & as a permutation of

™

n
the set {0,1,:-+,n+1} leaving O and n+l fixed, If Pl""’Pn+l are

i
the vertexes of A taken with the canonical ordering, the equation

: w f ™ :
of the plane which goes through Pl,---,Pk,--',Pn+l is:
' ' =0,

Y = Yyo1
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s 2 '
Here the convention is Y, = o, y5+l = 1. By Lemma 2.8 this equation is:

Yg-1(x) = Hn(k-m(x-1))) .

T Ya-1 k-1)
Here the convention is m(o) = 0, M(n+l) = p-1.

Lemma 2.10, If we denote the plane through the vertexes

b 4 w u ui
Pl,Pe,---,Pk,---,Pn+l by Hk’ 1 < k £ n+l, we have

(LI
H is a face of A &= m(k) = m(k-1).

Proof. The equation of Hg is

yCf‘l(k) - Yg-l(k_l) = %(ﬂ(k)-ﬂ(k_l)) .

Since the equations of the faces of A are given by equations

Yi =¥, =0
the if part is clear,

Conversely if m(k) - m(k-1) = 0

67l =gpfiels, o n)fn(s) < M) U L€01- +n] | (1)=m(x), isk}

-1 ; .
g (k—l)==*:{1€{l"-n},ﬂ(l) < ™M(k-1) U iE[l--'n}lﬂ(i)=ﬂ(k—l), i<k-{}
We see that the first set is the second set with the element %

adjoined so

e k) = 6 x-1) + 1.
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In the next lemma we intend to write down the coordinates of the
vertices of two adjacent simplexes. The reader is advised to work

out a couple of low-dimensional examples instead of reading through

this mess.

Let A,4,7,¢ be as before and let k be an integer such that

2 < k < n. Suppose moreover that M(k) 4 m(k-1l). By the last lemma

this means that there is a simplex adjacent to AT opposite the

t PTT
vertex x*

Let € be the permutation of {0,-+:,n+l} obtained by interchanging

k and k-1, i.e.,

ek(i) =i for i € {x,x-1}
ek(k—l) =k

ek(k) = k~1.

Let W' be the function ﬂ-ek, and let ¢' be the permutation ek-c.

Then

m
Lemma 2.11. With the above notation, A is the simplex adjacent to

™ . u s . .
A opposite the vertex Pk. U' is the permutation associated to T'.

Proof. First we show that ¢' is the right permutation, i.e.,

has the property i) and ii) of Lemma 2.5. i) is immediate since
AT LS Te €9 = TE. Suppose then that me'(i) = w'e'(j). But then
mH{i) = me(j) so we have i < j «==>6(i) < &(j). By our assumption

m(k) 4 T(k-1) hence the pair {#(i),¢(j)} is not equal the pair
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le,k-1}, so a(i) < @(5) e=>0'(3) < o*(3).
To show that A" and Aﬂl are adjacent we compute the coordinates
of the vertexes.
Let 5 be the function defined in Definition 2.6, and let &' be the

corresponding function for €'. The vertexes are then given by:

vy (2]) = LLIES 6,(1)

™ Tigt(i) Vs
P = ————% + B, .
vy (e]7) = TEAEL 4o6i(a)
Since T@ = T'¢' we just have to compare & and &', But if j 4 kxwe

have ek(i) > j&=>i> j and so 6j(i) = Ej(i) for all i, It follows
i ufl .

that P, = P, for j % k.
3j ] or j 4 g.e.d.

Lemma 2.12 (Quadrilateral lemma in the case 2 < k < n),

1

™ T T
. P R .
The four points Pk-l’Pk’Pk+l’ i lie in a plane and the two lln?

t l‘?.n'P“‘I d PTr P"T t h other i half
gg‘men s * % an *=1 R+l cu eac [e] (=} in =3 .
v _ R
Peri = Peay p¥
%
i PT = p¥

R~} -~}
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Proof. Clearly ak_l(i) = Bk(i) = Bi(i) = 6k+l(i) for

i € o7 (x-1),07 (x), 0" (k1) 1.
When i = B_l(k-l) we have

5 (1) = 1/M4, B

kel (i) = o, ai(i) = 1/u, 6k+1(i) = 0,

k

When i = U—l(k) we have

5k_l(i) = 1/u, Bk(i) = 1/H, ﬁi(i) =0, 6k+l(i) = 0,

When i = G_l(k+l) we have

5k_1(i) = 1/u, ak(i) = 1/u, Bi(i) = 1/u, 6k+l(i) = 1/u.
In all cases
} i '= i 8. i .
6y_ (1) + 8, (1) = B, (i) + B)(4)
Hence for all i
(pﬂ ) +y (PTT ) =y (Pn) + y.(PTT'). g.e.d,
¥V g1 it TR+l itk itk

Next we consider the case k = 1 and we assume that m(1) 4 T(o) = 0,

w .
By Lemma 2,10, there is a simplex adjacent to A opposite the vertex

™
Pl.

Let ' be the function {0,-..,n+l} —> {0,+++,4} defined by
w(0) = 0, T (ntl) = u=1, M (n) = M(1)~1 and w'(i) = W(i+l) for

i & {o,n,n+1}.
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Ll T m w(i) = m . oe(i) - Oh,1
Lemma 2.13. A is the simplex adjacent to A opposite the vertex Pl' -
Proof. The proof is pure calculation. We calculate the coordinate g'(i) = et o(4i)
™ e
functi £ 4 A . Recall that @' i i i) =1 .
unctions o and and compare eca at 1s given by the ma(i) = T € (e (0(1))) - Sn,e_la(i)
formula
4 =) = Bem),a() T TOED o) -
e (k%) =4F{ié{1---n}’n'(i)<n'(k2} +4F i€{l,"',k},ﬂ"(i) = n'(k)} .
-1 -1 As before, we define the functions
Hence @' ~(0) = o0, &' “(n+l) = n+l 1
Teo(k) > i
-1 5;() =
¢ (n) =2 ié{l---n]’ﬂ'(ik”(l)-l} +4F'{;'-€{l"'n}'ﬂ'(i) = n(l)-l} ‘ 0 &= (k) < i
=#{t € (iooem (1) < M} 1
\ TeE=0(x) > 4
=#‘{i € {1---n-1}lﬂ(i+1) < TT(l)} + 1 | ;%) = 0&e=s0'(x) < i
~a{i € (een)[n(a)en(} cpfienn[n(s) = n(a)] . .
. ]
_ Q—l(l) ! Let i € {1,-++,n}, and consider the two vertexes Pi+l and Pi .
: Coordinates are given by
For k € {1,:++,n-1} we have
‘ ! ui g (k)
- | v (P, ) = —24 45, (k)
o k) = :H’{16{1---n]|"'(i)<ﬂ(k+l)} +#{i€{1---k}’ﬂ(i+l) = Tr(k+l)} ! kit M i+l
= #{ie{1 n},TT(:L) < rr(k+1)}+ 5ﬂ(1),ﬂ(k+1) yk(Pi ) = m + Bi(k).
i€f1e e kx+1} (i) = w k+l} -~ b
+4*{; R ]' (l) ( ) m(1),m(k+1) ; Case 1 k 0-1(1)
-1 !
=g (k4) . i In this case we have me(x) = m'6¢'(k), Moreover:
| ) -1 ] =
Let € be the permutation defined by é, k=07(1) &= 9'(x) = n, so
€(0) = 0, e(n+l) = n+l, e(n) = 1, e(i) = i+l 4if i € {1,--+,n-1]. 5i+l(k) = % &> 0(k) > i+l &= eo'(k) > i+l

We then have

=

&> '(k) 2 i (since o'(k) 4 n) &= 5/(x) =
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m m ) . -1
Hence P, and P,  have the same y -coordinates for k 4 ¢77(1).

+1

Case 2. k= U—l(l) &=> 0'(k) = n.

We have ¢(k) = 1 < i+l for all i

and 6k) = n» i for all i.
Hence: ( )
T ok
¥e(Py4p) m
ut me'(k) 1
V(P ) = m o
_ ome(x) _Bi,0(x) 1 _ Te(x)
- K H V) "

v T
This shows that P, , = P, for i € {1++n}. g.e.d.

1

Lemma 2.14, (Quadrilateral lemma in the case k = 1).

T T u
With the mctation as in Lemma 2.13 the four points Pl’Pn+l’P2 and
m ie in a d the two 1i ts P'p . and PoP. t
Pn+l lie in a plane and the two line segments 1Fn4e1 28 oFne1 SU
each other in half.,
A ! '
R'=P, T
L 23]
U L
L) =
P Pllﬂ Pu

i
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Proof. ¥ (P)) +y(P) = Im—;(.n]i)“ 8,00 + l%—(})' + Oha (K)
gl 2t g
yk(PZ) + yk(P:+l) = yk(P;') + Yk(P:+l)
= ”—';—'-(k_) + 8 (x) + m’flk) +6_ (k)
_ ni(k) . n':'(k) +%_ g.e.d.

Note that the case k = n+l follows from this case by interchanging w

and T',

Definition 2.15. (Good and bad hyperplanes)

Let A= {Pl,"-,Pn+l} be an n-simplex with an ordered set of

vertexes, S ETRRD AN the cumulative coordinates and H a positive

integer.

A hyperplane H;’J defined by the equation

yj_yi = k/u, 0<icjgntl

is said to be a good hyperplane if it can be written in the form

vy = k'/H, 1¢4¢n.

I

Note that this is the case if and only if j = n+l or i = O,

The hyperplanes which are not of this form will be called bad.

We now state a souped-up version of the hst 5 lemmas.
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Lemma 2.16. Let again 4 be an n-simplex with ordered set of vertexes

{Pl"'Pn+l}’ and let ¢ and T be two adjacent n-simplexes in the

H-reqgular subdivision of A, Let H be the hyperplane that separates

¢ and T. If P is the vertex of ¢ which does not meet'T and Q is the

vertex of T that does not meet €&, there are two vertexes A and B in

9NT such that the four points P,Q,A and B lie in a plane and the line

segments PQ and AB cut each other in half.

Moreover if xn+l is the n+1St barycentric coordinate and

xn+l(P) = xn+1(Q) then x

n+1(A) = xn+l(B) and the plane A,B,P,Q lies

in the hyperplane xn+1 = constant.

However Lf xn+l(P) 4 xn+1(Q), then xn+l(A) 4 xn+l(B) and the hyper-

in a good hyperplane, or H is

plane H cuts the face opposite Pn

+1
£1 = .
defined by xn+l constant
Proof. The proof of the last two assertions follows directly

from the formulas developed so far and is left to the reader.

Observation 2.17. Let A be an n-simplex on our ordered set of

vertexes P_-**P
—_— 1 n+l?

Let H be the hyperplane defined by L.

H an integer > O and k any intéger 0 ¢ k < M.

1= k/M, and let Pi be the

intersection point of H with the line Pi’ Pn+l’ 1<ign.

We denote by A' the truncated simplex with vertexes {Pi---P',P

In this case we have:
A' N A(“‘) - A'(“—k)

i.e., the p-regular subdivision of 4 induces the (R-k)-reqular

subdivision of 4°'.

Proof. Left to reader.

n n+l}"

133

8oc
Example 2.18. (The mixed (V,H) subdivision)

We consider a simplex 4 with vertexes {Pl,---,Pn+l,Q} taken in

this order, and we denote the face opposite Q by AQ = [Pl,---,P 1.

If m: {1,++*n} —> {0, *v-1} is any function we denote as before

(
AQV).

n+l

bl
by AQ the corresponding simplex in

Let A" be the simplex {P:,---,P1T } with vertexes taken

n+l’Q

in this order:

Q

If we now subdivide each ATr regularly with respect to M and the given
ordering, these subdivisions clearly patch up so as to give a
subdivision of A. We call this the mixed (V,n)-subdivision of A

with respect to this ordering. It is easy to see using 1.12 and 2.4°
that this subdivision is projective, The obvious good functions would
not however extend to the global Example D which is our main goal so

we do not stop to do this. Instead we want some facts about adjacent
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simplices in this subdivision ((2.20)) which are the key points for

establishing projectivity in the general case,

Lemma 2.19. Let A,m,M,V be as above. If yl""’yn+l are the cumulative

uj

nel 2ES the cumulative coordinates on A.‘T

coordinates on A and YI,"':Y

we have the formula .

= Ymo(x) ey .+ oy 1< k< nel
TNV Yol T Yo(x) S
_m

Yne1 = Ynaa-

Proof. This follows immediately from Lemma 2.8.
n . . . :
= = - L
Note that Yol Y 1-4 where is the linear function which
takes the value 1 at Q and O at Pi’ 1<ign, g.e.d.

Lemma 2.20 (Main Lemma)

Let A and A(v’u) be as before and consider two adjacent

n+l-simplexes ¢ and T in the mixed (V,d)-subdivision. Let P be the

Vertex of ¢ which does not meet T and let 0 be the vertex of T that

does not meet §, Let H be the hyperplane that separates ¢ and T, Now

three things may happen.

a) The hyperplane H is defined by the equation £ = constant

o0
a?
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b) The hyperplane H instersects AQ = {Pl,---,Pn+l} in a good

hyperplane.
In this case we may assume that £(P) = k/M and £{Q) = k-1/M,

1< k < H=1. And the important fact is that the part of the hyperplane

H which lies below £ = k/K does not meet the interior of any

n+l=simplex in the subdivision.

A
‘\a Seod, kﬂPerFln«heq'

c) The hyperplane H intersects AQ in a bad hyperplane.

[In this case H might cut through interiors of n+l-simplexes

in the subdivision even in the level below £ = max(£(Q),4(P)).

Hence the name bad.]

In this case however the following fortunate thing happens?®

There are two vertexes A and B of ¢NT such that the four points

P,Q,A and B lie in a plane, the two line segments PQ and AB cut
fudant N <
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each other in half and moreover £4(P) = 4(Q) = #a) = 4(B), i.e., the Using the coordinates transformation formula in Lemma 2,19 we get
i —————
four points lie in the hyperplane defined by £ = constant, H defined by the following equation,
Proof. We first consider the case where ¢ and T belong . m(j)+1 ket
(1) Yoml(y) = —v —(1=8) = 5
, T, e=+(j) v
to the same simplex A" @ CL .
™) k
i] - —===(1-4) = —
H (ll) yd-l(j) v ( ) TIRY)
i.e,
p y s
Since £ =0 on AQ both equations restrict to the equation
v -k 1)
e7(j) T v TV
LA«n-
& ,
) i K. and K, defined b
By the coordinate transformation rules Lemma 2.8, we see that H N A" Consider the two hyperplanes 1 389 R Y
is a good hyperplane of ATr if and only if H N A ig a good hyperplane (5) -
Q Q K Yol(s) = v (1-2) = o
J
of AQ, and so by Lemma 2.17 a) and c) follows.
m | T(j)+1
Now for b) the assumption is that H N AQ is a good hyperplane. ‘ K2: Yﬁ'l(') - —Li%—— (1-2) = 0
J
Therefore the equation of H has to be of either of the following two
? We have the following self explanatory picture:
forms.
(i) us L - M-k ;
Y1 Y H
J N
r
(ii) y? = % 1 {kgH-1,

m
Since Yo = l-4 restricted to Ag is identically equal to 1, both of

these equations restrict to the equation

L E on Aﬂ
Yy T 4 Q -
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b) will follow if we can prove that for any simplex of the form‘

‘n’ 1
A which is trapped between K., and K2 the hyperplane H N A" is one

1
. m

of the hyperplanes which defines the M-regular subdivision of A |,

i.e., the equation of H in the accumulative T'-coordinates is of the

form
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T
Now the condition that A is trapped between Kl and K2 is the same

T
as that of the simplex AQ' lying betwen Kl n AQ and K2 n AQ. Hence
L}

m s
for each vertex Pi' of AQ we must have

- RS van
el 4 g
But by some old formula we have

-1
e me'(e”"(4)) -1

= o «
ya—l(j)(Pi ) " +6,(977(4))
Since this holds for all i the trapping condition reads

mee () = m(5) .

Using this condition and Lemma .19 once again, a small calculation

: . it . .
shows that the equation of H expressed in the y coordinates is:

: ' ' -k

(i) Y:+l - Yg.(ﬁ-l(j)) = uu

. m _k

o G Yor(ami(y)) T ®

Next we consider the case where € and T belong to different
-n-l TT L]
simplexes say @ € A ©, Obviously A © and A © are adjacent

simplexes.
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In this case the hyperplane H cuts "nicely" through the subdivision

whether it is good or bad so we are only left with ¢), i.e., H N AQ

is a bad hyperplane.

) ™ T m!
If {Plo’...’Pnil’Q } and {PlO ,"',Pngl,o } are the vertexes
L}

ki L
of A © and A © respectively it follows since H is bad that

for all i 4 k

where k is some integer 2 < k < n, Lemma 2,11.

m
Since @ has a face in common with A © and T has a face in common
1

m* b1 m
with A ©, This face has to be the common face of A © and A ©, namely
)

™ W
the face opposite P, © (resp. P Now & is determined by a map,

o
k k ).
say

m  {0,1,:+s,n+l,n+2}] —— {0,1,+-+,u=1}

when T(0) = 0, M(n+2) = k-1 and T is determined by the same map,
i.e.,

mT.m m™ T
g = (A0°) and ™= (A°) .
L}

T
Let p be the permutation associated to W, Then inthe vy © and y °

coordinates the vertexes of € and T are given by

rpo(e]) = T 45 (x)

mo(k)
N

v o(2]) +8,(x)
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Suppose that Pg is the vertex of & that does not meet T. The

. ¢ . :
equation of the face opposite Pj is then given by Lemma 2.10

mo o

1
g - v = =(m(4) - m(j-1))
o~1(3) p~1(j-1) "

1]
[e

Hence p—l(j) = k, p_l(j—l) = k-1 > 1 and

m(j) = m(j-1) .

Since p-l(j-l) > 1 it follows that j > 2. Since p-l(j) =k<n it

follows that j*n+2, i.e.,
2 i< nHl .

Using the formula 2,19 we get:

v, (B)) = oo (3)(1-2) + (33;9£11 RCKEN Y

(3)
v (e]) = Ymal(5)(1-0) + (oo

+8,(e2(5)] .

noqo we have

Since m'e’
oo

5 = w(3) +%("—"§‘ﬁ3'—) +8,(9_()))

vy(By
T v P
v (21) = o) + A2 46 (02(0))
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We want to show that the four points P? P? PT P? form a (P“ ) =B lﬁ (6 (s)) = 1
j=1 73 "j i+l Y Py q) = B+ 3B, 4(6,0s =B+
quadrilateral :
& 1
e T ys(Pj+l) = B +30,,,(8(s)) = B
P, =P,
j+l T+l
-] 1 1
ys(Pj) =8 +3 ﬁj(co(s)) = B + v
¢ T
Pj Pj
T 1 ] \
vg(Py) =B +50,(0(s)) =8 ,
g T
j-1 " j-1

Eor some constant B.

o -] -4 T
Bence y (P ) + v (Py ) = v (P)) +y (P)).

From these formulas it follows that -1
The case s = 9 (k-1) we leave to the reader.

-]

(2{_1) = v (¢9) = v_(20) = v (2] ) “L(x),67t
YiPja1/ = Yg [ RO FALE T P Y] This completes the proof of c) since n+l € {co (k),Go (k-1)3.

1 1 g.e.d.
for all s § {GS (k),u; (x-1)1.
I believe that we have a quadrilateral also in the case where

—_ -1 m ™
Case s = &_ (x). 6 and T lie in two adjacent simplexes A and A of type k = 1

X computations however are more complicated.
In this case we have

Observation 2,21, Let A be as in Lemma 2.20 and let H be the hyperplane

g (s) = k. g (s) = €6 (s) = e(x) = k=1
defined by £ = k/U. Denote by Pi the intersection of H with the line
L} :
pao(s) = j and PUO(S) = j=1 . segment ‘PiQ' a‘
Since T(j) = W(j-1) we have - !
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The mixed (Vv,H)-subdivision of A induces the mixed (V,H-k)-subdivision

of A' = {Pi""’P;+l’Q}’ and it induces the V-:(M-k)-regular subdivision
3 = § L) '
on bg = {pg,eeenp gt
Proof. Observation 2.17 and Cor. 3.9.
$2D

Final Example: Global mixed (vi,ui)—subdivisions

We are now ready to prove the main result of this section.
We consider a simplicial complex X with a totally ordered set of
vertices Pl,Pe,-- °,0 and such that the open stars of

AT IR E N+s

Q cee,0

N4l® are disjoint. Let Vl,---,vs; ul,---,us be a set

N+s

of positive integers such that
V.M, = V.U =K for all i,j.
Let X' be the subdivision of X obtained as follows:

If A is a simplex in the open star of QN+i we let A' be the mixed

(Vi,ui) subdivision of A with respect to the given ordering.

If A does not contain any of the Qi’s we let A' be the M~regular

subdivision of A with respect to the given ordering.

Exanmple:

These subdivisions clearly patch together. Moreover:

Theorem 2.22, X' is a projective subdivision of X.

Proof. The idea of the proof is simply to write down a function

and prove that it is good using the numerical criterion.
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Let X be the function defined on all of X, linear over each . For all pairs of integers m,k such that 1 < m (N,
simplex of X having the property choose o, and B;, 1 1< s, such that
x,(P.) =5, 1 j N
1(3) ij £J< @ k9t and f_;+f_i_=_l_<_
v_i' LTS v, v, T H T
xi(Qj) = 6ij 14N < j < N+s .
Define
Sometimes we will write "i instead of Xgpio 1<igs.
£, =0
Let f' be the function - X, - -]5‘ if 1
j=1 J . 1 < i S. s
k
[ - - - =
s i Zi x Lo H
172’ i<, a, +1 X . 0< Zi
1< <i SN+ gt . = - x, + 4, ~= -—' if |
=172 m,k Loy "] i v, ]
lsk_(_l-l-l ) j= i !'j =0
a. a; E.J:_ < 4
Now f' is not a good function. What we do is: we restrict f' to the - gx + 4. v_l -5 if Hi -
X j i v, .
J=l 1 1
vertices of X' and extend by linearity over the simplexes of X', The !:J_ =0
resulting function we call £,
and
b, =
s ' k . 1 0
i.e., £f = fo - Xj - E if
=1 1< 1
Note that by Observation 2.21 f = £' over the set defined by Zi = -]I:—- : I a 0< I'i
+ g2k= { -' %, +Jllv—l-§’ if
m, j=1 i L =0
3
i Qv a,+l a, +1 1
i.e. N+t - i i .
- X -+ L_ - if
J iy, Vi y)
& .7 I
P = //“i
I
. . .
j‘ '-'-f s o jood, ;unattew
 here.
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149
Then put Case 1. ¢ and T belong to a simplex of X and this simplex does not
g = <Z Qa contain Qi as a vertex N+l ¢ i < N+s. We clearly have
OZmCN m,k :
1<k<H=1 ;
a=1 t A
a=1,2 AcT(f) > k2 > 0 for some constant X,
‘ ber(g) 2 0
Comparing this with the equations on page 137 we note that g "breaks"
exactly along all the good hyperplanes of X, and possibly along AqT(h) 2. 0.
hyperplanes of the form Li = constant. Hence
Fi ] . A .
inally we define h by . AGT(F€ c ) > LN
12
ne-§ jz .
& -1 : .
Hols Sul * Case 2, & and T lie in a simplex which has Qi as a vertex, and the
i 2, = tant
If El and 62 are positive real numbers put ] hyperplane that separates 8 and T is of the form 5 constan
F_ =h+eg+e,f .
€l€2 1 2

Q

For each pair of adjacent (max dimensional) simplexes & and T of X'
such that ¢ and T beleng to the same simplex of X, we choose a little
line segment through the common face and define [C B GOnst&ut

s (2)

as in the proof of Lemma 1.8,

There are U4 mutually exclusive ways of choosing such pairs, and ’ P.

)

these 4 cases exhaust all possibilities.
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Clearly
IA#T(E)I <X, for some constant K2
!AGT(g)[ <K for some constant Ky

AGT(h) > lo > 0 for some constant A,.

Hence we have

A - -
cr'r(Fe € ) 2 )‘0 €1K1 E.I.Kz
172
Case 3, & and T lie in a simplex which has Qi as a vertex, and

moreover the hyperplane that separates ¢ and T intersects the bottom

face in a good hyperplane,

&

i.e.,

N

-

p.
!:(jood. &fﬁazrfhnc d

Now g "breaks" along all good hyperplanes so that

AgT(G) >Ah >0 for some constant 11

and we have

Case L. Again & and T lie in a simplex of X which has Q, as a vertex
= 1
but this time the hyperplane that separates & and T intersects the botto

face in a bad hyperplane. We have

s, (£) > XE >0 by Lemma 2.20, a)
AﬁT(g) =0 this because g is linear except across
good hyperplanes or Li = const. hyperplan

AGT(h) = 0.

Hence

i A
By choosing €, and ¢, such that 0 < €% < o/2 and

] X x Iy (] 0]
0 < ek, < min{ 0/2,61 l} which is clearly possible, we see that

A _(F )>o0
T
S A
in all the cases. The theorem now follows from Lemma 1.8.
q.e.d.
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§2E‘ and PQR back resp.

Now the subdivision corresponds to blowing up the two lines outside

We conclude this section by giving two rather simple examples Qf S and T. However at S we first blow up the line m and then blow up the

non-projective subdivisions. proper transform of 4 and at T we reverse the order. Of course we can

enple 1 (Hironaka). Fz glue these things together algebraically. The result yields a non-
singular, non-projective complete algebraic threefold first discovered

by Hironaka (Annals of Math,,75 01‘2&?410).

Example 2. (F. Commoner)

This is two triangles which are glued together along the edges PR and QR.

(Hence as a complex not embeddable iniﬁg). Suppose f is a good function

for this subdivision. Adding to £ a function linear on each triangle

we may suppose that £(P) = £(Q) = £(R) = 0. If £ is good on the front A R

triangle we necessarily get £(B) > £(a). But looking at the back we
must have £(A) > £(B). Hence the subdivision is non-projective. Thig |

| in i i i assume £(A) = £(B) = £(c) = 0;
example corresponds to the following "blow-up": Again if £ is a good function, we can ( )

| but then we must have
PR and QR "correspond" to two lines £ and m in 3; }

Y | £(8) > £(F) > £(e) > £(E) .
T }
m |
3 |
|

intersecting in two points S and T "corregponding” to the faces PQR front |




The geometric analogue in this case yields a proper non-projective §
3. Waterman points

i
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i
i

birational morphism
In this section we fix the following:

i
s
xR o
! A is a simplex in nfiwith an ordered set of integral vertices
such that W is an isomorphisg -l ) 3
Phism on X (o). } P_mw,P and we denote the vector P D, by e,. The e,’s generate a
! o n o'i i i
g lattice which we call L.
I
! Considering A as a simplicial complex we get a rational structure
| c s . . ; .
| on A by restricting all integral combinations of 1 and the coordinate
functions to A. We note this rational structure by M. Moreover we

suppose that the multiplicity of A with respect to M and the integer 1

is kx> 1, i.e.,

The quotient group ZP/L we denote by W(A). Clearly we have

Kw(a) = x.

|
l

{

|

i

|

J m(A,M,1) = k .,
f .

!

|

|

I

If Mo denotes the set of linear plus constant functions which take

integral values on the vertices of A we have M C Mo and the evaluation

map gives us a pairing
MO/M X W(A) ———q/z

fle;) ——— f(Pi)-f(Po).

~\
By definition Mo/M > W(A) and therefore *L(MU/M) = k also.

| If [w] is a nonzero element of W(A))[w] has a unique

i
j representation as a vector
t

I
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n
W = a
Z i© where O < ai < 1.

We define v([w]) = {Eéi} where
{8} = min{n €z, n> B},

i.e., {8} = -[-B].
The point P([w]) = w/v([w]) + P, clearly lies in A so P is a
mapping

P: W(a) - (0) ——> 8,

but not necessarily 1-1.

Definition 3.1. The points in the image of P will be called the

waterman points of A,

For any waterman point P([w]) in A,let [w],[wl],[wz],---,[ws] be

the full inverse image of P([w]). The integer

v = min{v([w]),v([wl]),"',V([ws])}

will be called the value of the waterman point.

Note that for a v-valued waterman point P = P([w]), v'P is

an integral point.

Let P be a v-valued waterman point in A. For each i € {0Q,***,n}

such that P does not belong to the face { ---,3;,---,P } we
n

PO"Pi’
» . . A
subdivide the simplex {Po,----Pi---Pn} regularly with respect to

this ordering and the integer v, and take the cones over the
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simplices of this subdivision with apex P. This gives us a rational

subdivision A' of A, The followng lemma is due to Alan Waterman:

Lemma 3.2. With the above notations we have (A',M) integral over

%z and
m(A',M,V) < k.

Proof. We have v-(P-Po) = a,e,H,e 400 0ia e where for all i,

If T is a simplex of A and a face of T lies in the i-th face

of & for 1 £ i < n we have

VOl(T) - det(el.'.’aiei’.'.en)
VvV n.
and hence

m(T,M,v) = cxi-k < k.

If a face of T lies in the face opposite Po we get
m(,M,v) = (v - zéi)-k
and v - E?i < 1 by the very definition of v, g.e.d.

We can illustrate this lemma by a simple example: let A be the

_simplex in ® given by the coordinates {(0,0,0)(100)(010)(1,1,3)}.

Clearly

m(A:M:l) =3
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and we have two 2-valued waterman points P = (= = 1 =11 Lemma 3.3. Let 4 be any face of A, then A and A have the same
P 2 9 2)-' Q {2:2.’1} e a [0
multiplicity if and only if all the waterman points of A lie in the
(1.1.3)
face A .
—_ a
Proof. It is clear that for any o we have injections
g W(Aa) —— wW(4).
|
(0.1.0) ? To say that all the waterman points actually lie in Q: means that
; the above injection is an isomorphism and so the two groups have the
1 !
*) 1 same cardinality, i.e., 4 and A have some multiplicity. The converse
| o
f is also clear.
[
(o.0.0:) ?
! Corollary 3.4. Let A' and A" be two faces of A such that

(1.6.0)

| m(A') = m(4") = m(A) = k then m(A'AA") = k.

This last corollary gives us a remarkable decomposition thea em.

Proposition 3.5. Let X be a simplicial complex with a rational

If A' is the above subdivision of A with respect to P we have
structure L and M an integer such that the functiomsin L take values

m(A',M,2) = 2, in 1/U% on the vertices of X.

Suppose m(X,L,H) = k > 1 and let

In particular if T is as in the picture above we have

m(T,M,2) = 1 , U= U int(ca) .
m(dq,L,H)=k
Remark, Not i : :
ote that we can always find a waterman point P of value Then U breaks up into connected components Ui each being the open
v n/2}. : .
< (n/2] star neighborhood of a simplex of multiplicity k, i.e.,

U= l ’ star(ci).
disjoint
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We end this section with a discussion of the existence of

waterman points in the interior of a simplex.

Lemma 3.6. Let A be as before and suppose that

i) W(A4) is a cyclic group.

ii) For all proper faces 4, of A W(Aa) < k.

Then if [w] is a generator of W(A)

p{[w]) & int A,

Proof. If P([w]) belonged to some face, say Aa, we would have
[w] €w(a).
Since [w] is a generator of W(A) and W(Aa) injects into W(A)

this would imply that W(Aa) = W(A) contradicting ii). g.e.d.

Corollary 3.7. Let X be as in Proposition 3.5 and let 6, *+- @

1 s

be the simplexes such that

U= l } star(ﬁi) .
disjoint

Then if k is a prime number each of the simplices Ui have interior

waterman points.
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§4, statement and proof of the main theorem.

Theorem 4.1 (Main Theorem) Let X be a polyhedral complex, L a rational

structure, and 4 an integer such that (x,L) is integral over %ZL

Then there exists an integer Vv and a rational projective

subdivision X' of X such that (X',L) is integral over E%g!l and

m(X',L,u-Vv) =1 .

Proof. By the transitivity of projective subdivisions we may
as well suppose that X is simplicial since the barycentric subdivision
is rational and projective. We will prove the theorem with induction
on the number k = m{X,L,d). So suppose the theorem is true for all
simplicial complexes X" such that m(X",L",H") ¢ k. For the inductive

step we divide into two cases.

Case 1. k is a composite number.
For each simplex‘c‘i of multiplicity k we pick out a waterman point
Pi € 61, say of value Vi and of order p; < k, p; a prime number and

1< ig s. Then we define a decreasing sequence of rational

structures Mo DM, D "D Ms DL asg follows:

1

all linear functions which take values

© in %Z on the vertices of X
all linear functionsf & M with the
M= 1

extra condition f(Pl) € Z

U'Vl
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all linear functions f € Mi 1 with the

i
extra condition £(P ) € L
i Bevy

2z

Since Mi is obtained from Mi-l by one extra condition it follows by

duality that for any subdivision X" of X and any simplex ¢ € [x"]
a

we have

F M M) =y o 1

Note also that for each i
5]
py (e, o, 0)

hence
m(Ui,Ms,IJ-) >1 .

Now if X" is a projective subdivision of X such that (X",M, 1) is
p

integral over E%;Z and

m(xu’Mi-l““Vn) =1

we will have (x“,Mi) integral over E%;Z and

m(X",Mi,lJ-v“) <P <k.

So by induction we can find a projective subdivision X' of X" and an

integer v''' such that (x"g Mi) is integral over %v"V"'Z and
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m(X'M, vt = 1,
By induction and transitivity of projective subdivisions we may
proceed with this process all the way to s, ie., there is a
projective subdivision X" of X and a number V" such that (X",MS)

is integral over %w"z and

m(X",Ms,uv“) =1.

Since Ms 5L, (X',L) is integral over HMV" as well and moreover all
simplices of multiplicity k with respect to L and M have been
decomposed into simplices with lower multiplicity with respect to L
and Wv", cf. Observation 1l.2.
Hence
m(X",L,uv") < X

and the theorem follows by induction.

Case 2. k = p = prime number.

Let U be the union of all the interiors of simplices of
multiplicity p. Then as in Corollary 3.7, U splits up into a

disjoint union?

U= k_‘} star(ci) .

disjoint
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And each °i has an interior waterman point Qi’ say of value vi.

i Y] =V = V =0 axs = e
Let ui be integers such that 1“1 2H2 3u3 Viui vV,
1< i< s, and let X' be the mixed (vi,ui) subdivision of X with
respect to the points Qi’ 1<1i(s.
Then X' is projective and all the simplices of multiplicity p

have been refined, hence
m(X*,L,H-V) < p,

and the theorem follows by induction. qg.e.d.




