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ON THE TOURS OF A TRAVELING SALESMAN*

KATTA G. MURTY +

Abstract. Adj i i
hichstract. A .M_MMn“ﬂ\nnﬂdva:.om of tours on their convex hulil are discussed. A rule is given b
€r any two tours are adjacent i i : ,
which i : ‘ . : lj vertices on this convex hull or
an algorithm is described for generating all the adjacent tours of a given tour ot Based on

B_.E.h..mu.“ww.ﬁ.n:c:. ,:5. traveling salesman problem is the problem of finding 3
our covering a set of n cities given the costs of traveling between

Ocnﬂw HVOMWZU—Q wm: O— O—:OW. :Q~0 b aif} CO .(-.-m «ir il CITICS C ‘.:u\
a tour 1s a path coverin u: ‘_.ﬂ,‘ CS, €4 -

Tﬂ:‘um co cﬂﬁﬂa once N:Q w i _v > €
o—.: once in ﬁ—ﬂﬂ N.H: i i iti

Let us denote the cities by 1,2, .., n. We put

I if in the tour the salesman goes from i toj
0 otherwise. ,

Then the matrix X = (x
tour.
If in a tour the salesman j j
. oes fr [, iy 1
A g om i, to i,, then (i, i,) is called an arc or cell
We use the letters i, j to denote cities
_lnﬂ = - - . .- .
arge no%m n - Mwww Wm :,mﬂ«mw_im from i :.u St # j; ¢ = a, an arbitrarily chosen very
e e er. Then 0 = (c;;) is the cost matrix for the problem and this
8:5_:.. Ing irom any city, the salesman can choose to g0 to any of th
e Qmﬁ :l% cities initially. From that city he can g0 to any of the 3::::50
2 vomw_.n_ﬁ ﬁwwnmﬂ.m M::m.ﬁﬁmn ~”o:: number of distinct tours is (n— D! The mmm
enote T and thei d s
he letters ¢ or s to denote tours, ’ reomvex hull'by K. We shall use
Given any tour ¢ i i
. 1 We describe an algorithm in thi i
djacent tours of ¢, on the convex polyhedron K, Hhis paper for sencrating the

X =

ij)» Which is a cyclic permutation matrix, represents the

2. Notation. The convex polyhedron K, is the set of all feasible solutions

X = (x;), an n x n matrix, where the x;; satisfy
Xij = —. j

‘.M\A..\.“r N.“_,...qwf
x; = 0.
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An extreme point of K, is called an assignment. Every assigrnment is a per-
mutation matrix, i.e., it is an n x n matrix with a single nonzero entry equal to 1
in each row and column. We use the letters a, b to denote assignments.

Occasionally it is convenient to denote an assignment by its unit cells, i.e.,
the cells in the matrix X representing the assignment which have: unit entries in
them. All the other cells have zero entries, of course. Thus,

_qv a= \PA#«.\.—Vw Tty Awf\.:vw

is an assignment, where j;, -+, j, is @ permutation of the numbers 1,2, .-+, n.

We also write
(r.jyea

which means that in the matrix X representing the assig a,
cell (r,j,) is 1. The same fact is also expressed by saying that (r,j,)is a cell in the
assignment a, or that the assignment a has an allocation in the cell (r,j,).

For any assignment a we shall denote specifically by {a} the szt of cells of a,

ie.. if a is the assignment given by (2), then
AQ“, = \Mcw&._v, Tt qu.\:vw.
A tour is an assignment whose cells can be written down as a. complete path

covering all the cities and then returning to the starting point, without any sub-
tours. In other words a tour ¢ is an assignment whose cells can be written down as

ment

the entry in the

t= A_,.\.My A.\.w».\.uv‘ 4A.\.=|: mvw'

where j,.ja, - » ja_1 is a permutation of the numbers 2, 3, ---, n.To be specific,
we can say that t is a tour covering the cities {1,2,---,n}. Thus, T< 4 and
Krc K,.

By a self-loop at a city we mean a cell of the form (i, i). It corresponds to an
allocation along the principal diagonal of the matrix X represenling an assign-
ment. Any cell of the form (i, i) is also called a diagonal cell. Any eell of the form
(i, j) where i # j is called a nondiagonal cell.

Pick any subset S of the cities {1,2, -+, n} such that § = {1.2.---, n} and
S+# !1.2.---,n}. Then any tour covering the cities in S only is known as a
subtour.

A nontour is an assignment which is not a tour and which has no self-loops.
In other words it is an assignment without any allocation along the principal
diagonal. whose unit cells constitute at least two subtours.

D.A. is an abbreviation for the diagonal assignment which is the assignment
represented by the unit matrix.

Two assignments a, and a, are called adjacent assignments if the linc segment
joining them is an edge of the convex polyhedron K 4, i.e., if and only if every point
of the form Aa, + (1 — Aa, forall 0 £ A < | has a unique representation as a

convex combination of assignments.

Two tours t, and t, are called adjacent tours if the line segment joining them
forms an edge of the convex polyhedron K, ie., if and only if every point of the
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form it, + (1 — A, foral0 £ A <1 hasa unique representation as a convex
combination of tours. Since K < K ,, two tours which are not adjacent as assign-
ments may be adjacent as tours.

Suppose the tour ¢ = {(iy, i), (i, i3), -+ -, in, i)}. Then the tour = {(iz, i),
(i3, i3), - -+, (i1, i)} is called the reflection of the tour t.

The 6-loop of a nonbasic cell. Consider a basis for (1) representing an assign-
ment a. Such a basis consists of 2n — 1 basic cells, the n cells of a which are at value
land n — 1 other independent cells which are at value 0 1 the basis.

Let us try to obtain a new basis by bringing the nonbasic cell (iy,J,) into the
basis. To do this, we put an entry of +8 in the nonbasic ceil (i;,J1). Since the sum
of all the entries in each row and column should equal 1, we should puta —@
entry somewhere else in column j, and row i,. Make all these subsequent entries
among the basic cells only. Taking up from column j,, put alternate entries of
—0and +6 among columns and rows untii the + 0 entry in each row and column
is canceled by a — 0 entry. The set of all the basic cells along the — and +6 path
is called the 6-loop of the nonbasic cell (i, j,) in this basis. The maximum value
which § can take without the resulting solution violating the nonnegativity con-
straint of the x;;’s is known as the value with which the nonbasic cell (iy,J,) enters
the basis.

ZBC is an abbreviation for any zero-valued basic cell in any basis for (1).
In any basis for (1), if a nonbasic cell (i, , j,) enters the basis with a value of zero,
then it can be brought into the basis as a ZBC replacing any of the old ZBC’s
in its 6-loop. If it enters the basis with a unit value, then it can be brought into the
basis by replacing one of the unit-valued cells in its 0-loop. But in this process some

of the other unit-valued basic cells might become ZBC’s.

3. Mathematical theory. We shall first of all look at a characterization of the
set of all tours T as a subset of the set of all assignments A. This leads to the
‘corollary that the traveling salesman problem is a special case of the general
problem of finding the minimal cost adjacent vertex of a given vertex in a linear
programming problem. This can be solved easily when the linear programming
problem is nondegenerate. But if the given vertex is a degenerate vertex, the
problem of finding its minimal cost adjacent vertex becomes very hard, which
explains the difficulty in solving the traveling salesman problem.

THeOREM 1. Considering K ,, the set of all feasible solutions to (1), we have :

(1) all tours are adjacent assignments to D.A.:
(i) every nontour is not an adjacent assignment of D.A.;
(iii) the class of all adjacent assignments of D.A. consists of
(a) all the tours,
(b) all the subtours in a smaller number of cities with self-loops at the
remaining cities.

This theorem has been proved by Heller in [1].

(i) can be proved by taking a basis for (1) representing the D.A., with
(1,2),(2,3),---,(n — 1,n) as ZBC’s. In this basis for (1) if the nonbasic cell (n, 1)
is brought into the basis, the tour {(1,2),(2,3), ---, (n, 1)} is obtained. Thus the
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tour {(1,2),(2,3), -+, (m, 1)} is ocSmnma.U« nolo:.:w:m a mim_o pivot Msrm Wﬂw
for (1) representing the D.A., and hence it is an adjacent assignment o the D.A.
A similar argument holds for every other tour.

iii) 1 ved by a similar argument.

Mm_wmw_mmm cnowcwn any 2n Im_ of the cells among those nm the U.>.. mﬂa ﬂ%
nontour are not linearly independent and :n:.oo cannot constitute a _umm_.w or (1).
Thus any nontour cannot be obtained by a single pivot step in any basis repre-
senti ., which proves (11). .
Vmszmw_mww._ww _%,;m %nem:.:wA mvm%:a: problemis a %m.ﬁ.& case of the \c:oé:w
problem: given a feasible vertex V (i.e., an extreme point) in a linear programming
problem, find the minimal cost adjacent vertex of ﬁx o "

Proof. Consider the assignment problem with C as the .oOmH matrix, i.e., the
problem of minimizing Z = Y, ; ¢;;x;; subject to the oo:m:m._a.:m 1.

The cost of any self-loop is &, which is a very _mmmo Uom:._<.a number. En:nnm
(iii) of Theorem 1 implies that the minimal cost tour is the minimal cost adjacen

assignment of D.A. v . .
COROLLARY 2. Consider any assignment a which has no self-loops :

ii#j, r=1---,n

a= \::7\.;, ) T.:Y\.:vv.

If the cells of a together with any n — 1 of the diagonal cells as ZBC’s form u basis
\AE. the system of constraints (1), then a must be a tour and conversely. .

, Proof. This follows easily because if a contains at jnm% two subtours, .ﬂ M:
any 2n — 1 of the cells {(I, 1), ---, (n, n), (i1, 1), -+ » (iy. Ju)} cannot constitute
a basis for (1) as in (ii) of Theorem | and conversely.

4. Properties of nonadjacent tours. The following theorem provides a test for

determining whether two given tours are adjacent tours or not. B
THEOREM 2. Two tours t, and t, are not adjacent tours if and only if'it is possible

to form another tour t, distinct from t, and t,, by taking some cells out of :~ 243&,
the others out of t,. but no cells outside those of t, and t;. Such a 85.?, con :S,J
all the common cells of t, and t,. In other words, t, and t; are not adjacent tours
if and only if there exists a tour t3, 1y # ty, t3 # {3 such that
e (¢ 1
(ty) < U lty) and {1 0 {t) < sy

Proof. 1f t, and t, are not adjacent tours, then by definition there exists

0 < « < 1 such that

,
(3) at, + (1 — oty = Y. fisi,
i=1
where ;> 0, Y_ B, =1, each of the s; for i = 1.---.r is a tour and at least
kl i=

one of them, say s,, is distinct from ¢, and ¢,. . .

In (3) none of the s, for i = 1, ---, r can contain any cell outside those of t,
and t, since B; > Oforalli=1tor.

It also implies that each of the s; must contain all the common cells of t, and
t,,since f; > O0fori=1,---,r
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Hence, the tour s, which is disti i ,

3 ' is distinct from ¢, and ¢, satisfies all the requi

- .. n

in the proposition for the tour ¢5. ’ aurements
On the other hand, if there exists a tour like t; above, then t, such that

Vo
{ta) = [{t.} N {e2}1 0 [y} U {e2) \{t3)],

i”wﬂ\ W/:E&nmwm mmﬂ_ﬁraoqmzn difference, represents another tour by Lemma 1|

which follows. And, ¢, + it, = 3t + 4t j ,

whict 3t = 3ty + 3t4. Hence, t; and ¢, are not adjacent
DerFINiTION. Consider any tour ¢, where

t= A:.~, va, T.Nq muv. e .:.=¢ :vw

Then, a subset of ¢ like

(i i ; .
Wi da), - (o, i)y

%ooﬁw_w.maﬁm mmmsgm_.mxﬂxxcs iy to i,. It consists of all the cells of t along a path
1 to i, mn t. The arc (i, i,) itself may be consid
. . , ered
o y ed as a segment of ¢ from
LEMMA 1. Suppose t, and t isti
. ar > ) ]
at D ' 2 are two distinct tours and t is another tour such

Ly # 1y, ty # by,

|
Wa) 2t N,
IFHECR THIVE{ AR
Then, the cells
fp 0 1
ey = [t 0 {t)] O [l )\ {13)],
where '\ indicates set theoretic difference, represent another tour
. . — ~ - )
. %ﬁ%\. Since both |5} and {t,] contain all the common cells of ¢, and ¢,, it
is su o_w—:. to mqo.é the lemma for the case when ¢, and ¢, have no common cells
. In {#,}; U {t;; there are two cells in each row and column. Of these ¢, con
. - . " U .
M_M_M.oam n Q_y_n: row and column, since ¢; is a tour. Thus, t,, which consists of the
ining cells, contains one cell from each
: row and i
restanment column. Hence, ¢, is an
M remains to m:os.g.ﬁ in t, there is a path from any city to any other.
N ince t; is a tour, it must consist of some segments of ¢, and some of ¢,

Q:.m:? it consists of alternating segments from ¢, to t, respectively, i.c., it may
consist of a segment from i, to i, of t,, then a segment from i, to i, of t,, then
again a segment from i, to i, of t,, etc. ’ " "

" h.:‘:m., t,, which no.:mmmﬂm of the remaining segments of ¢, and ¢, (after striking
o .ﬁ ose in common with ¢;) contains a path from each city to each other. Hence
ty 1s a tour. . ,

LEMMA 2. t and §, the reflecti i i
: . , ection of t, are always adjacent tours for n >
. ‘ ) ¥ ad g nz=3.
Proof. Consider / =’

t={(1,2)(2.3)(3,4)(4.5)(5.6) (6. 1)},
U2, 1(3.2)(4,3)(5.4)(6.5) (1.6). .

i

p
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If these are not adjacent tours, then by Theorem 2 it is possible to form a tour s

distinct from ¢ and # from the cells {t} U {F}.

Suppose (1.2) € s. Then, since s contains only one ceil from each row and
column. (1. 6) ¢ s and (3.2)¢s. So, (5.06)€s, (3,4)es. Hence, (5.4 ¢ s. Now, since
 cannot contain any subtours, (1,2) e s implies that (2, 1) ¢ s. Similarly, (6,5) é¢s,
(4. 31 ¢ 5. Hence, (2,3) €5, (6, 1)es, (4,5) €s. Hence, s = L. Hence, it is not possible
(o form a tour distinct from ¢ and 7 with the cells of {t} U {#}. Therefore, by
Theorem 2, t and T are adjacent tours.

In general, by renumbering the cities, we can assume that

t= %= {(1,2),(2.3), -, (n— 1,n),(n 1)}.

By a construction similar to the above, we verify that the only tours that can

be formed using only the cells f*! U [F*) are t* and P*. Hence, by Theorem 2,

t* and 7* are adjacent tours. Only whenn =2t =% ={(1,2),(2, 1)}.
LEMMA 3. Suppose n =2 4 and r = n — 3. Let
L= :—.M—V,A:L.NV,:.N;N.“L, ,T.:ln,m:l;,::!—. ~:
be any tour. Pick any r of the cells of t. Then there exists an adjacent tour ty of t
containing exactly those r cells in common with t.
Proof. The tour t may be represented by the sequence

ligiy - In-2in—1
indicating the order in which the cities are visited in the tour .

The sequence which represents 7. the reflection of ¢, is obtained by reversing
the order in which the cities occur in the sequence representing . Thus 7 is repre-
sented by the sequence

iy yines o iaiy L.
Case 1. Suppose the r cells which were picked constitute a segment of t from

We wish to find an adjacent tour of t which contains this entire scgment,
along the segment as a singlc
withir

1 toi,,say.
For this we shall treat all these cities from 1 to i,
block of cities. This is indicated by enclosing the segment from 1 to i,

brackets, in the sequence representing ¢, which then becomes
T NA-_IN_.=I L

We treat this entire block as if it were one location. Any arc entering this blocl
_In t, the n — r cells whicl

enters at 1 and any arc leaving the block leaves from i,

are not on the segment from 1 to i, form a tour in the cities i, ., -+ ip- AN
the block. the reflection of which has all the properties desired of t,. To generat
it we write down the reverse sequence obtained by reversing the order of th
cities 4, -+, ip-, and the block in the sequence for t. In reversing the orde
of the cities, we treat the block as if it were another super-city, and we reverse it
position in the sequence, but keep the order of the cities within it unchangec

This gives rise to the sequence
fn— pin—2 """ ~.w+;:~ U ~L

[ligiy - i Jiren
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The tour represented by this sequence

ty = 1{( i e (i i ;
—12%0—-2)s L ¥ : . R .
n n-2) A\+NL~+L.:~+T:.A_LL,...,T~|T~L.:3..=|_:.

is an adjacent tour of t which has a
with £, I the cells of the segment from 1 to i, in common

Case 2. Suppose the r ¢ i i
. ells which were picked consti
nstitute k nono i
segments of ¢, say from 1 to i, from i, to i, etc verlapping
3° *

>m UQ‘OHQ write QOS-H H__nw wﬂﬂ:ﬂ:ﬂ@ ~0—:ﬂwnw_:—: _—0 our ¢ a::— n :—Nﬂ
y m t t r
mﬁﬂ:@:ﬂﬂ Hﬂﬂvnﬂmﬂ=n Wmor O% ﬁrﬂ \A WOWBQSHM NUO(O as a U-COW

(Liy =iy ig oy e iy, - 0] -

Any ma\ which is not in any block is known as an our of block city

moncnzmu “mewmmwmmoﬁnn of the out of block .oEmm and the blocks in the above

sedue mo, nging the order of the cities inside each block. This gives
quence and let ¢, be the tour represented by it. Then ¢, is an adjacent

tour of t and its common cells with ¢
a ! )
(oomtained within the blocke, re exactly the r cells which were picked

As an illustration, if
=
t=1(1,3),(3,2),(6,5),(9.8):(2.7),(4,9). (5, 1), (7, 10), (8. 6), (10, 4!
the tour ¢, obtained by the above procedure, containing the first four cells in ¢, is
ty = {(1,3),(3,2),(6,5),(9,8); (2,6),(5,9),(8,4), (4, 10),(10,7), (7, ;.

LEMMA 4. Whenn 2 6, it i ; .
Proof. 1f n = 6, let Z 6, it is always possible to find a pair of nonadjacent tours.

=
oy
Il

{(1,2),(2,3),(3,4),(4,5),(5.6),(6, 1)},
{(1,3),(3,2),(2,4),(4, 6),(6, 5, (5. 1)},
ty = {(1,2),(2.3),(3,4),(4,6),(6,5),(5,1)!,

-
o
I

and if n > 6, let

ty = (L(T,8), -, (n = 1,n),(n2),(2,3).(3,4).(4,5),(5,6),(6, 1),
=
= {0 n)(nn =1 = Ln=2),- (8 7).(7.3),(3.2),(2, 4).(4, 6),(6. 5).(5, )}
— f * ]
ty = UL, (7.8), -+ ,(n — 1,n),(n,2).(2,3),(3,4).(4,6).(6,5),(5, 1)}.

Then, t; # ¢, t
S A G and () e () o). H
. 1 . Hence,
are not adjacent tours. chem e by Theorem 2, ¢, and ¢,

LemMma S. 1
When n 2 6, the number of adjacent tours of any given tour is

n
2

"=l +n+

v

%v. : ~ o .
roof. When n = 6 and r < n — 3, by Lemma 3 we know that there exists

Nﬂ” — oo P 3¢ M M
cast one adjacent tour of t containing exactly any selected r cells of ¢ in common

e g
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with it. Hence, if U, is the number of adjacent tours of given tour, then

n—3
Y Mor—lt+n+ M

n=0 r

1\

Un

This indicates that the number of adjacent tours of a given tour goes up at least in

the order of 27. This completes the proof.

The important steps in the simplex algorithm for minimizing a linear function
onaconvex polyhedral set described by a set of linear inequalities are the following :

(i) An easy method has been developed by which adjacent vertices of any

given vertex may be obtained.

In the simplex method this is done by bringing a nonbasic variable into the
basis (one pivot step).

(ii) If the present vertex does not minimize the linear function on the solution

set, then a simple criterion has been developed, by which one can obtain
an adjacent vertex at which the linear function takes a value less than or
equal to that at the present vertex.

In the simplex method this is done by bringing into the basis a nonbasic
variable whose relative cost coefficient is negative.

Even though it is not easy to describe the convex polyhedral set K by a set
of linear inequalities, it is possible to develop a simple method by which adjacent
tours of a given tour may be obtained. This corresponds to Step (i) of the simplex
method discussed above.

The method for obtaining adjacent tours of a given tour uses pivot steps on
the assignment matrix, which is characterized by the set of linear constraints (1).

This is discussed below.

4.1. An algorithm for generating an adjacent tour of a given tour. Any basis
for the system of constrains (1) with the n — 1 ZBC’s along the principal diagonal
represents a tour by Corollary 2. Such a basis is known as a diagonal basis (DB)
of that tour. Using the test developed in Theorem 2 and Lemma 2, an algorithm
which starts with a DB of a given tour and leads to a DB of an adjacent tour is

described below.
Consider a given tour . Then, the cells of ¢ are known as the original basic

cells (OBC’s).
Step 1. Start with any DB for ¢. Bring any nonbasic cell which is not a diagonal
cell into the basis replacing an OBC (or a diagonal cell if this is not possible) in its

row or column.
The new cells that are brought into the basis are called the new basic cells

(NBC’s),
At any stage an OBC in the row or column of an NBC is known as an ¢xcess
cell. A row (or column) is known as a deficit row (column) if it has
(i) only one basic cell in it and if this is either a diagonal cell or an excess ccll :
(ii) only two basic cells in it and if one of them is a diagonal cell and the

other an excess cell.
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TaBLE 1
e ) th or
Step Current basis nMn__mM * qa”nu M”n nnﬂ_u__ﬂmwmw__:
columns in
(1.2)(2,3)(3,4)(4.5)(5, 6) (6, 7) (7. 8)(8.9)
G._OZ_O.:“:,_ZN.N:u.uZa.AIm. 5) &7 &3
(6,6)(7,.7)(8,8)(9,9)
1 (2, 7)(7, 8) (8, 9) (9, 10) (10. D(1,2)3,3) 6,7) row 3
g B s . 6,5
4, 4) (5, 5) (6, 6); (1, 1) (2, 2)(3,4) (4, 5) (5, 6) col. 3 v 9
(7, 7) (8, 8) 9, 9)(6,7)

2 (2,7)¢6, 5) (5, 6) (7, 8) (8, N (9, 10) (10, 1) 6.7 4
(1,2)(3,3) (4, 4); 1,12, 2)(3,4) (6, 6) 7.7 AAH 5) anoo—”\ 3 9 9
(8,8)(9,9) (s, 7) (4, 5) .

3 (2.7)(6,5)(5.6)(7.8) (9 10)(10,1)(1,2)(3.3)

s , , . (8,9) row 8 (8, 6) 6,7
(4.4)(8.9);: (4,9 (1. D(2.2)(3,4)6,6)(7.7) 6,7 col. 3 7
(8.8)(9.9)(6.7)
4 (2, 7) (6, 5)(7.8)(9 10) (10, 1) (1 2)(3,3) (5,5) row §
s X ,2) (3, ) 5.1 L1
4.4)(5,6)(8,9); 4, 9)(8,6)(1,1)(2,2)(3, 4) (8.9) col. 3 0
(6.6)(7,7)(8,8)(9,9)
5 2, 7) (6, (U, 2)(7 8)(9,10)(3 3)(4,4)(5,6) (5. 6) row 10
> s . . . . (10, 4) 10, 1
8,9 (10, 1); (4, 9) (5, 1}(8,6)(2,2)(3,4) (6, 6) (8,9) col. 3 A v
(7.7)(8.8)(9,9) (10, 1
6 (2,7)(10,4)(4,9) (8 6)(6,5)(5, 1) (1,2)(7 8) (3,4) row 3
s 8 y , , N 3.2 3,4
9.10)(3,3);(2,2) 4,4)(6,6)(7,7) (8, 8) (5.6) col. 3 e o9
(9.9)(3,4)(5,6)8,9) 8,9)
7 12,7)(10,4)4,9) (8, 6) (6 35, 1)(3,3)(7,8) (1,2 row |
3 s , s s .3 .3 1,2
%, 10(1,2):3,2) (2,2)(4,4) (6, 6) (7, 7) (5. 6) col. 3 ' 2
(8,8)(9,9) (s, 6)(8,9) (8.9)

8 [(8,6)(6,5)(5,1)(1,3)(3,2) (2,7)(10,4)(4,9) (5.6 (5.5 (5,6)
(7, 8) (9, 10);(2,2) (3,3)4,4) (6,6)(7,7)(8, 8) 8. 9) ,
9,9) (5, 6)(8,9)

9 (8, 6) (6, 5) (5, (1, 3)(3,2) 2, 7) (10, 4)(4,9) 8.9 (1. 1) (7, 8)
(7,8)(9,10):(2,2)(3,3) 4, 4) (5, 5) (6, 6) .
(7.7(8,8) (9.9 8,9

10 (10,4)(3,9) (1. 1) (2, 2)(3.3)(5,5) (6, 6) (7 7 8.9) row 7 7
. s s . . .10 9
(8,8) (9. 10): 8, 6) 6. 5) (5, 1) (1. 3) (3. 2) B
2.7)(4,4)09.9)(8,9)
1 10,4)(4,9 (1, 1) 2, 2)(3,3)(5, 5) (6 6}(7,7) 9, 10) row 9 8
, 3 , s N 9
(8, 8) (9, 10); (8, 6) (6, 35, 1D)1,3)3,2) ! v o 10
2,7)(7,10) (4, 4) (9, 9)
12 (1,3)(3,2) (2, ))(7, 10) (10, 4) (4, 9) (9, 8)

(8.6)(6,5)(5,1):1.1)(2,2) (3. 3) (4, 4) (5. 5)
(6,6)(7,7)(8, 8) 9,9)

— oot i e .
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Subsequent steps. Bring into the basis a nonbasic cell which is not a diagonal
cell and which is in a deficit row or column and not in a row or column of any
NBC, replacing if possible an OBC in its row or column or otherwise a diagonal
basic cell in the same row or column.

The process terminates when a DB is reached.

If at any stage a DB is not reached, but there is no deficit row or column,
then the number of diagonal basic cells must be < n — 1. Bring a nonbasic
diagonal cell back into the basis replacing an excess cell if possible, or otherwise
an OBC in its f-loop. When n — 1 diagonal basic cells are again in the basis,
either a DB is obtained or some deficit rows and columns are created.

The steps are repeated until a DB is reached. The new DB represents the DB
of an adjacent tour of t by Theorem 2.

Also let ¢ be any tour and ¢, an adjacent tour of . Start with a DB for  and
bring successively the cells of {¢,} \ {t} (where \ indicates set theoretic differ-
ence) as NBC’s in the above algorithm. By Theorem 2 there does not exist any
other tour ¢, distinct from ¢ and ¢, whose cells form a subset of {t} u{t,}. Hence
the above algorithm will terminate only when all the cells of t, are brought into
the basis.

Thus by an appropriate choice of NBC’s at the various steps, all the adjacent
tours of a given tour can be obtained by the above algorithm.

4.2. A numerical example. Let ¢ = {(1,2),(2,3), ---, (9, 10), (10, 1);. Starting
with a DB for r, we obtain an adjacent tour of t. The bases for (1) during the various
steps of the algorithm are given in Table 1.

In the table, the basic cells at each stage of the algorithm are arranged in
two groups; the cells listed before the symbol **;™ are unit-valued basic cells and

those that follow the *“;” are ZBC's.
Since Step 12 gave a DB, the tour

6y = {(1,3),(3,2).(2,7),(7, 10), (10, 4), (4, 9).(9.8),(8,6),(6,5).(5,1)!

is an adjacent tour of t.
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