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Abstract: In this paper we study the space Ty of triangulations of an arbitrary
compact manifold M of dimension greater than or equal to four. This space can
be endowed with the metric defined as the minimal number of bistellar operations
required to transform one of two considered triangulations into the other. Recently,
this space became an object of study in Quantum Gravity because it can be regarded
as a “toy” discrete model of the space of Riemannian structures on M.

Our main result can be informally explained as follows: Let M be either any
compact manifold of dimension greater than four or any compact four-dimensional
manifold from a certain class described in the paper. We prove that for a certain
constant C > 1 depending only on the dimension of M and for all sufficiently large
N the subset Ti(N) of Ty, formed by all triangulations of M with < N simplices
can be represented as the union of at least [CN] disjoint non-empty subsets such
that any two of these subsets are “very far” from each other in the metric of Tjs. As
a corollary, we show that for any functional from a very wide class of functionals
on T the number of its “decp” local minima in Th(N') grows at least exponentially
with N, when N — oo.

0. Introduction

Let M be a compact PL-manifold, 7y be the (discrete) set of all triangulations of

" M. (By a “triangulation of M” we mean in this paper a simplicial complex such that

its space is PL-homeomorphic to M. We do not distinguish between simplicially
isomorphic triangulations and regard them as identical.) There are many ways to
introduce a natural metric on Tys. For example, the results of Pachner imply that
any triangulation of M can be transformed into any other triangulation of M by
a finite sequence of bistellar operations {[P1,P2]). (A bistellar operation can be
defined as follows. Let n denote the dimension of M. Consider a subcomplex K
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of the considered triangulation of M with the following property: K is simplicially
isomorphic to a subcomplex of the boundary of the standard (» + 1)-dimensional
simplex A"*! which consists of k n-dimensional simplices and ail their faces, where
ke {1,2,....n+ 1}. A bistellar operation consists of removing this subcomplex K
from the triangulation and replacing it by the complementary subcomplex of the
boundary of 4"*! containing all remaining n-dimensional simplices and their faces.)
Therefore one can define the distance between two triangulations of M as the mini-
mal number of bistellar operations required to transform one of them into the other.
Thus, Tys becomes a metric space. (Alternatively, one can use, for example, the
Alexander simple transformations ([A]) instead of bistellar operations to introduce
a metric on Ty.) Let T3(N) denote the set of all triangulations of M with not more
than N simplices. In this paper we prove several quantitative results describing
“bad” properties of geometry of subsets Ty (N ) of the metric space Ty for large N.
For example, we prove that for any n = 5 there exists a constant C(n) > 1 such
that for any compact n-dimensional manifold M and any Turing computable func-
tion O(N) (say, [expexp---exp(N)] (N times)) for all sufficiently large N there
exist (CY(n)] triangulations T\,...,Ticny of M with £ N simplices such that
dist(7;, T;) > O(N) if i+j (Corollary 1.2). (However, this result is false without
the assumption about Turing computability of 6. Also, we would like to stress that
C(n) does not depend on 0, although the minimal N for which such [CN(n)] trian-
gulations exist depends on 0.) Informally, this result implies that for large N Ty (N)
is a union of at least [CY(n)] disjoint non-empty subsets which are “very far” from
each other. This result can be generalized for a very wide class of metrics on Ty
(see Corollary 1.3). Some further generalizations of this result (including a general-
ization for a class of four-dimensional manifolds) and related results are described
in Sect. 1. In particular, we consider a class of discrete variational problems on Ty
and show that these problems have “many” solutions (Theorem 1.5). Our interest
in geometry of Ty and in discrete variational problems on this space is partially
motivated by the fact that it can be regarded as a “toy” discrete model of the space
of Riemannian structures of a fixed volume on M (for smooth M). (The idea is
that given a triangulation one can define a singular metric on the manifold assuming
that all one-dimensional simplices are of the same length. This informal approach to
discretization of the space of Riemannian structures is well-known in String Theory
and Quantum Gravity (cf. [AM, AJK, J]), where it is called the “dynamical triangu-
lation approach.” This approach is a simplified version of the Regge calculus (sce
[CMS] and references there). Theorem 1.5 implies that the action functionals con-
sidered in [AM] or [AJK] will have infinitely many “deep” local minima in Tjy and
the number of these minima among triangulations with < N simplices exponentially
grows with N.) Thus, it is not surprising that the results of the present paper have

differential-geometric analogues. For example, a differential-geometric analogue of

Corollary 1.2 is Conjecture 1.6 in Sect. 1. This conjecture describes the geometry

of the sets of Riemannian structures of volume one and injectivity radius greater

than ¢ on a fixed compact manifold of dimension greater than three, when & — 0,

and can be approached using the methods of the present paper (see [N2, N5J).

The method of investigation of 7, used in this paper is a quantitative version
of the method used in [ABB and NBA] (and also in a different context in [NO, N1
and N4J; see also [Grl, p.212]) and based on S. Novikov’s theorem establishing
the algorithmic unrecognizability of the sphere S” for any n 2 5. This S. Novikov
theorem is proven using the algorithmic unsolvability of the triviality problem *..Q.
finitely presented groups which, in turn, follows from the algorithmic unsolvability
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i roblem for Turing machines. The crucial technical an.m of the present
MMWMM Wuﬁzmuw_mon the ::mo_<mcm::< of the halting vnoc_n.:._ for Turing me:_:nw in
the foundation of this approach by Barzdin’s _.nwcz. providing an .oxvozo_a:m_ lower
bound for the time-bounded Kolmogorov complexity Ow the halting problem for a
certain Turing machine. It turns out that this B.oa_mnu:o: leads to :En.r. stronger
results. The time-bounded Kolmogorov complexity of an :.:.mo_<m2n ann._m—g v:.&-
lem is, roughly speaking, the minimal amount of an w:x:_wQ.oBo_o. Smoﬂsu:ow
required to solve the problem for all instances .Om size M.Z in a time co:myao
by a prescribed computable function of N. (This .mBo:_: is qomm.ana as a :ﬂ-
tion of N. We assume that there is a natural notion o.m size of instances of the
problem. The auxiliary information is represented as a U_q._uQ sequence. Its amount
is just the length of the sequence. Informally, one can imagine that the aoﬂw_os
problem must be solved using a program, say In ._.,O_ﬂ,_;ﬁ\rz or v>m0>rm ,_,_\ ere
only integer data type is allowed. This program 1is mcvvomoa to io_.w. as follows.
For every N it receives as input data a certain amount of arbitrary mcx:*___m_‘m o_.‘m.n_n
information which an be, for example, a partial list of answers for the ecision
”thﬂwowowwﬂwsoﬁo program :Emm“ be able to find the answer for the decision
problem for any given instance of size £ N. Moreover, 1t must be able to noBv_.Qn
this computation in a time not exceeding a prescribed Turing oon.ﬁﬁwgn ?:o.:os
of N. A formal definition of time-bounded Kolmogorov ooan._ox_q will be ~m_<n:
in Sect.3.) Barzdin ([B]) has shown that there exists a recursively aanoSc e set
I ¢ N with the following property. Consider the decision problem P iraﬁrw M_,
not a given positive integer number is in .3: Let us regard 9@. _nn.m:_ %.r o M e
binary expansion of an integer :E:vo.n N (ie. [log(N)]+ .: as its m_an N n:HA Aﬂ
any computable (i.e. recursive) function #(L) for m.: ws.m,_o_o:z% large M aw
mogorov complexity of the decision problem P with time resources bounded by
t(L) is at least ¢, 2t for a certain positive constant n;aovg&sm on ¢ but not %_s
N). (That is, one requires at least ¢,2% — const bits of oracle :.:,oﬂsmco: to be MA e
to solve the problem P for all integer numbers of length < L in time not excee _cs_m
t(L)). This result of Barzdin can be used to show that for any ._.E.Em ooﬂvcﬁ co
function #(N) for all sufficiently large N the Kolmogorov o.oBEQ:Q.om t M\\ v:m. -
lem of recognition of S" (or any other compact .:-&anm_osw_ manifold .v or
n = 5 among triangulations with £ N m::u__oo.m in time bounded 6.% t(N) s not
less than const(rn)"/const,, where const(n) > | is a constant anmn:a_sm only on n
and const, > 0 depends only the time bound ¢ and o:.z..n Bm::..oE M. To prove
this lower bound one must find an “economical” effective Sacocoz.% the r.w::_.m
problem for Turing machines to the recognition Eo.c_o-: for M. This reduction M.m
provided by Theorem 2.1. Although its proof ammnssm_; follows the known proo w
of the unsolvability of the triviality problem for finitely presented groups Eﬁ o
the S. Novikov theorem, a serious difficulty arises due to .%o fact Em.a S. Novikov
uses a technique from homology algebra making one of .:._m constructions not very
effective. To overcome this difficulty we provide an oxm__o: and economical A.m_vn:
tedious) construction of a homology sphere such that its fundamental group is the
universal central extension of a prescribed perfect finitely presented group.
Starting from this point our method works as follows. Oozm_anq some o:mﬁmoaﬂ
istic of geometric complexity of Tu(N) C Ty (for oxui_u_n, the minimal number 0
metric balls of radius O(N) with centers in Tu(N) required to cover Tu(N)). Then
we try to prove an upper bound for the Kolmogorov oo.Bv_nu_Q nm the problem
of recognition of M with a specific Turing oOBﬁ:SZn‘:Bo __B.: 5:835 o.m .En
chosen geometric complexity exhibiting a specific algorithm “quickly” recognmizing
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M using a specific oracle information. For example, we can request from an oracle
a description of a representative from every ball in a collection of balls of radius
O(N) with centers in Ty (N) covering Ty (N ). It is not difficuit to see (see the proof
of Lemma 3.2) that one can “quickly” recognize M among triangulations with < N
simplices using this collection of representatives. Now the juxtaposition of this up-
per bound for the Kolmogorov complexity and of the lower bound following from
the Barzdin result implies a lower bound for the minimal number of balls of radius
O(N) required to cover T (N) (or, more generally, for a considered characteristic
of geometric complexity of Ty (N) C Ty). A detailed description of this method is
given in Sect. 3.

This technique based on Theorem 2.1 and on the usage of time-bounded
Kolmogorov complexity can be applied to study geometry of various moduli spaces
arising in differential geometry. 1 discuss some potential applications of this tech-
nique at the end of Sect. 1 (see also [N2,N3,N5]).

1. Main Results

Using the unsolvability of the triviality problem for finitely presented groups (proven
independently by Adyan and M. Rabin, cf. [Mi]) Markov has constructed a trian-
gulation 7p of some compact 4-dimensional manifold M such that there is no
algorithm recognizing whether or not a given triangulation T of a PL-manifold is
combinatorially equivalent to Ty (i.e. the space of Ty is PL-homeomorphic with
My). Several years afterwards S.P. Novikov proved that for any n = S the sphere
§" is algorithmically unrecognizable (in particular, in the sense above). His proof
was published in 1974 as ch.10 of the paper [VKF]. His result easily implies that
any compact PL-manifold of dimension = 5 is algorithmically unrecognizable. (It
is not known whether or not §* is algorithmically unrecognizable.) In Sect.2 we
prove a quantitative version of this result of Novikov. Namely, we demonstrate
the existence of an algorithm which for any given n = 5, any given compact PL-
manifold M", any recursively enumerable set / C N, presented as the halting set of
a given Turing machine T, and any natural number k constructs a triangulation of a
compact PL-manifold M} such that: 1) M} is PL-homeomorphic to M”" if and only
if k € I; and 2) The number of n-dimensional simplices in the constructed triangu-
lation does not exceed const(n, T)Ink + |M"|, where const(n, T') does not depend
on neither & nor M" and |M"| denotes the number of the n-dimensional simplices
in the given triangulation of M”. This result then is applied to a study of geometry
of the space of all triangulations of M” as follows.

Let M be an algorithmically unrecognizable compact PL-manifold (for example,
M can be any compact manifold of dimension greater than four). Then, as it is
known, there is no algorithm which constructs for any given N the list of all
triangulations of M with < N simplices of all dimensions (see [ABB and NBA]
for this and related results). (Indeed, assume the opposite. Then it would be possible
to recognize M using the following algorithm: Let T be a given triangulation with
N(T) simplices. Construct all triangulations of M with £ N(T) simplices. Now
we can compare T with all the triangulations on this list checking every time
whether or not T is simplicially isomorphic to the considered triangulation. Since It
is clearly possible to check whether or not two simplicial complexes are simplicially

isomorphic (cf. [ABB], Proposition 2.16), we have an algorithm recognizing M. §

This yields the desired contradiction with the unrecognizability of M.)

GICONICEY O dpacy ui

Having this in mind, it is natural to consider algorithms Eoi&:m for any mm.<o=
N and any given triangulation Ty of a compact PL-manifold M <<::. < .Z.m_Ev__OWw
a partial list of triangulations of M with = N simplices and oOEEn::W. this work in
a time bounded by a Turing computable function of N. Formally speaking, the term
algorithm™ means in this context a partial recursive function from the product of
N with the set of finite abstract simplicial complexes (regarded as sets of mccm.ogm
of the set {1,...,v} of vertices of the simplicial ooan_n.xv ..um.w fixed dimension
n = dim(M) to the set of finite sets of finite abstract simplicial oo.:.v_oxom.. The
domain of this function must include all pairs (N, T), where T is a c,_msm:_wcoa of
M with £ N simplices, and, moreover, this function must be Hcacm computable ina
time bounded by a recursive function of N. The requirement of Turing ooivcﬁmg_:w
of this function in a recursive time is not automatically satisfied since, in general,
the set of all simplicial complexes triangulating M is not a recursive mccm.aﬂ of
the set of all finite abstract simplicial complexes. However, this requirement will be
automatically satisfied if the algorithm is defined not only for all triangulations of M

but for ali finite simplicial complexes of the dimension dim(M) with < N simplices

(or even just for all finite simplicial complexes 25.. =N mr.sv:oom awmmc_»mnm
pseudomanifolds). This will be the case for ali specific algorithms, considered in
this paper. . .

Let A be such an algorithm. For any N we introduce the relation 24 on a.rn set
Ty(N) of all triangulations of M with < N mva:nmm as mow._oim“ Ty Z4 HN. if and
only if the triangulation T, of M is on the list of n:mam.c_w:onm of M ovﬁioa .cv.
the application of 4 to T, and N. The reflexive Qmmm:zo.n_g:_d;ow a.:m relation
denoted by >4 is a quasi-order on Ty(N). As usual, we write T} = .ﬂ~ if and only
if Ty 24 T; and T, 24 T;. The relation =4 is an equivalence relation on Ty (N).

The set Ty m(N) of equivalence classes of this relation is a poset i:.: .@6 order =4
inherited from Ty (N ). We conjecture that the number my, u(N) of B::Bm_ elements
of T.u(N) grows at least exponentially with N for any .oovaQ Bw:_.».o_a M n.vw
dimension at least four and for any algorithm A. The main result of this paper is
that this conjecture holds in the case when the dimension of M is greater than four
and also for a class of four-dimensional manifolds:

Theorem 1.1.
A. For any n S there exists C(n) > 1 such that for any compact n-

dimensional PL-manifold M and any algorithm A there exists No(4, M) with the
following property: For any N 2 No(4, M),

mam(N) > CV(n).

B. There exists a constant C(4) > | and an integer number k such that for
any algorithm A and any compact four-dimensional PL-manifold Mg there mxwa
No(4, M) with the following property: Let M be the connected sum of My and
k copies of S? x §%. Then for any N 2 No(4, M3),

mau(N) > C(4).

Remark 1. We define Ty(N) as the set of triangulations of M with < N simplices
of all dimensions. Alternatively we could define it as the set of triangulations of M
with < N simplices of the maximal dimension and then define the vOm.Q ﬁ.izv
exactly as it was defined. Theorem 1.1 will remain true in this case with virtually
the same proof.
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Remark 2. Note that many of the results of [ABB] can be interpreted as the state-
ment that for certain algorithms A4 and for any compact PL-manifold of dimension
2 5 for all sufficiently large N m4 1,(N) > 1.

The proof of Theorem 1.1 is based on the analysis of time-bounded Kol-
mogorov complexity of the decision problem, “Is a given compact PL-manifold
PL-homeomorphic to M?”

Consider an algorithm A satisfying the following very mild restriction: There
exists an algorithm A~' constructing for a given N and a given triangulation
T € Ty(N) the list of all triangulations 7} € Ty(N) such that T is on the list
A(N, T1). (All algorithms considered in this paper satisfy this condition. This condi-
tion holds, for example, when the algorithm A4 can be applied to arbitrary triangula-
tions (not just triangulations of M) producing triangulations of the same polyhedron,
or when 2, is an equivalence relation. In this last case one can take 4~' = 4.)

Consider the algorithm 4 producing for given T and N the union of the lists AN, T) -

and A7'(N,T). (Note that if >, is symmetric, then 4 = 4.) It is clear that 21 is
an equivalence relation on T(N), and 7y(N) can be represented as the union
of m; \,(N) disjoint equivalence classes with respect to this relation. We will call
these equivalence classes A4-simple sets. (It is clear that there exists an algorithm
constructing for a given N and a triangulation T € Tj(N) the A-simple set con-
taining T. This observation justifies the name A-simple sets.) Theorem 1.1 implies
that for all sufficiently large N the number of A-simple sets in the representation
of Ty(N) as a union of disjoint non-empty A-simple sets is greater than [C¥(n)].
Informally speaking, A-simple sets (for a fixed algorithm A) can be regarded and
used as an analog of connected components of Ty (N) (see Remark | after Corol-
lary 1.3 and the proof of Theorem 1.5). Therefore, it is desirable to know more
about general properties of partitions of T,(N) into A-simple sets. The fact that
one can prove an independent of 4 asymptotic lower bound on the number of sets
in such partitions (provided by Theorem 1.1) encourages me to ask several further
questions:

What can be said about the possible distributions of sizes of A-simple sets when
N — o0?

(This question can be compared with the discussion in Sect. 48, of [Gr2]. The
question is of interest also for specific algorithms 4, for example, for the algorithm
A which for given N and T produces all triangulations of M with £ N simplices
which can be obtained from T by one bistellar operation or, alternatively, by a

N . .
sequence of, say, 22 bistellar operations.
q y p

How large is the number Ly y(N) of elements in the maximal A-simple set in

comparison with the number tyy(N) of all triangulations of M with < N simplices?
In particular, is it true that sup,limsupy_, nluvkcm% < 1?7

(In other words we ask how large is a part of the set of all triangulations of
M with £ N simplices which can be recovered using some fixed algorithm, when
N — 00? This question is of interest also for Quantum Gravity; see the discussion
at the end of [NBA].)

Now [ am going to describe several specific applications of Theorem 1.1. A
class of the algorithms of the considered kind is based on the usage of elementary
moves (or elementary transformations). The most well-known examples of such ele-
mentary moves are the Alexander simple transformations of arbitrary order (see the
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definition in [A, p. 299] or in [G, p. 8], where the Alexander simple transformations
arc called “clementary starrings™) and their inverses (called in [G] “elementary weld-
ings”). These operations do not change a combinatorial equivalence class of the
simplicial complex. Alexander proved that any two triangulations of a compact PL-
manifold can be transformed one into another by a finite sequence of the Alexander
simple transformations (elementary starrings and weldings) (see [A, Theorem 15.1]
and [G, Theorem 11.17]). Another such set of elementary moves is called “bistellar
operations” or “Pachner’s moves” (cf. [P1,P2].) (The definition of the bistellar op-
erations was given in the Introduction above). U. Pachner proved ([P1, P2], see also
[GV]) that any two triangulations of the same compact manifold can be connected
by a sequence of bistellar operations. Given a set of elementary moves and a re-

cursive (i.e. Turing computable) function O(N) (say, &(N) = Zzzv one can define
an algorithm which will apply all possible chains of < 8(N) elementary moves. Its
output is the list of all triangulations with < N simplices which can be obtained
in this way. Denote this algorithm in the case when the set of elementary moves
is the set of all bistellar operations for the considered dimension by Apisetiar,g- The
relation ="bisellarnd s a symmetric relation on Tj(N). Hence, the resulting poset
Tuyienar, o.M (V) Will be an antichain and all its elements will be minimal.- Being

applied to Apisteitar,g Theorem 1.1A easily implies that:

Corollary 1.2. Let n be greater than four and C(n) > 1 be the constant defined
in Theorem 1.1A. For any compact PL-manifold M of dimension n and for any
Turing computable function 6 there exists Ny with the following property: For any
N = Ny there exists triangulations Ty, T»,..., Hﬁz?_ of M with not more than N
simplices such that there is no sequence of less than O(N) bistellar operations
transforming one of these triangulations to another of these triangulations.

As it was noted in the introduction one can define a metric on T, as the
minimal number of bistellar operations required to transform one of two considered
triangulations of M into the other triangulation. Corollary 1.2 can then be regarded
as a lower bound for the number of balls of radius 6(N )/2 required to cover Tj,(N).
This version of Corollary 1.2 can be stated for a very general class of metrics
on 7,

Corollary 1.3. Let M be a compact PL-manifold of dimension n > 5. Let dist :
Ty x Tiy — R be a metric on Ty satisfying the following condition: There exists
an algorithm constructing for a given triangulation T of M and given integer
numbers N and K the set of all triangulations S of M with < N simplices such
that dist(S,T) < K in a time bounded by a recursive function of N, K and the
number of simplices in T. Then for any recursive function 0 for all sufficiently
large N the minimal number of metric balls of radius O(N) in Ty required to
cover Ty(N) is not less than [C(n)], where C(n) > 1 is the constant defined as
in Theorem 1.1A.

Indeed, one can immediately prove Corollary 1.3 applying Theorem 1.1 to the
w_monn:: Agisi.20 Which for any triangulation from Tj,(N) finds the intersection of
1ts neighborhood of radius 26(N ) (in the metric dist) with Th,(N).

Remark 1. One can better understand the geometric meaning of Corollary 1.3
considering the partition of Tj(N) as into disjoint Agg 29-simple sets. The dis-
tance between any two triangulations from different Ag 20-simple sets will be
more than 20(N). Thus, informally one can regard these Agiq g-simple sets as
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connected components of Ty (N). Corollary 1.3 says that for large N there will
be at least [CV(#n)] sets in this partition.

Remark 2. The techniques of [NO] and [ABB] immediately imply the following
result explicitly stated (in an equivalent form) in [NBA]: The diameter of Ty (N)
in the metric considered in Corollary 1.3 cannot be majorized by any recursive
function of N. This result is much weaker than Corollary 1.3.

Another class of algorithms 4 has the following property: The relation =4 de-
fined as above on Ty (N) is antisymmetric for any N. (Thus, the relation =7 is
trivial, and every equivalence class of =* contains only one triangulation.) For
some non-trivial algorithms 4 the minimality of a triangulation with respect to =4
has interesting combinatorial interpretations. This suggests the following idea. For
a combinatorial property of interest we can try to find an algorithm A such that the
relation =4 on the set Ty (N) of all triangulations of M with- £ N simplices is
antisymmetric and the minimality of a triangulation with respect to = is equiva-
lent to the considered combinatorial property. For example, if we are interested in
triangulations which are not rectilinear subdivisions of another triangulation, then
the corresponding algorithm will be the algorithm described in [ABB], finding all
rectilinear subdivisions of a given triangulation of M with < N simplices. Thus,
Theorem 1.1 will immediately imply the existence of infinitely many triangulations
M which are not rectilinear subdivisions of another triangulation for every com-
pact manifold M of dimension = 5. (Let us call such tnangulations prime. More
formally, (a simplicial isomorphism class of) a (finite) simplicial complex C; is
called a prime triangulation if there is no simplicial complex C; with the following
properties: (a) The number of simplices in C; is less than the number of simplices
of C;; and (b) There exists geometric realizations of C; and C, in an Euclidean
space such that the geometric realization of C; is a rectilinear subdivision of the
geometric realization of C,.) Actually, it is not difficult to construct explicit exam-
ples of prime triangulations even in the case when the dimension of M is equal
to three. (Such a construction can be found, for example, in [Ca]. See also [CH]
for a discussion of related questions. I would like to thank Prof. R. Connelly, who
informed me about this construction and pointed out the references.) However, the
described approach permits, for example, to prove the existence of a “large” set of
prime triangulations such that no two of these triangulations can be transformed one
into another by a “not very long” sequence of bistellar operations. More precisely,
consider for any Turing computable function 8 an algorithm, which for any given
triangulation of M produces the union of the list of all triangulations of M with
< N simplices which can be obtained by not more than 8(N) bistellar operations
and the list of all rectilinear subdivisions of M with £ N simplices. We can apply

Theorem 1.1A to this algorithm. As the result we immediately obtain the following
corollary:

Corollary 1.4. Let n be greater than four and C(n) > 1 be the same as in the text
of Theorem 1.1. For any compact n-dimensional PL-manifold M, for any Turing
computable function 0 for all sufficiently large N there exists at least [C¥(m)]
prime triangulations of M with < N simplices with the following property. No
two of these prime triangulations can be transformed one into the other by less
than O(N) bistellur operations.

Observe, that Corollarics 1.2, 1.4 will remain true for elementary starrings
and weldings instead of bistellar operations. One just needs to change the set
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[ ele ary moves used in the algorithm Apistettar.o- ﬁrocqn_s I.1B _Ev:nm that
oﬂ*oM”‘_MMM“ ,_QN\_.A arc also true for all compact ?:7&30:!03_ 1r-dm=_ww_am M.nc-
resentable as the connected sum of a PL-manifold and k copies of S x S .:<< Q_n_
k is the same number as in Theorem 1.1B. 208 also, that the expression moq. a .
sufficiently large N ...” in the text of Corollaries 1.2, 1.4 has the mo__o%::eW meaning:
“there exists a number Ny depending on M and 0 such that for any N = Zc. ..

We already mentioned in the introduction that T can be regarded as m _ﬂ_mnw\wﬁo
analogue of the space of Riemannian structures on M (for maoo& manifolds ).
Moreover, it is used as an easier model for study of the space of Riemannian ms._.ﬂ-
tures in some papers in Quantum Gravity (e.g. [AM, AJK,J]). ,_,rnmw mwoam vSSa.o
a motivation for a study of variational problems on Ty _.LQ M m.w:m@ the con :_-
tions of Theorem 1.1A or B. Consider the mﬁ.d.x of all Emsmc_mﬂ._osm of M as the
metric space with the metric defined as the B::E& :E:_.uﬂ of bistellar ovo_wcozw
necessary to transform one of the considered triangulations to w:oﬂwon“}_»r HM.MMMM
tively, one can use any other set of o_nﬁ_u_‘aswmhw HMMMM. %MM Mwmws%m”.m »owaammwnm e

i tions or, more generally, i
MM”W__W“& mew.o_.mw F:Ty—R cm a ?:oaosﬁ and 0 .co.m H.E.Sm 83@:.82@ ?MW..
tion. We will say that a triangulation T of M is a O-distinctive SSNA::E%:S m
if F(T) £ F(S) for every triangulation S € Ty mﬂ.uor that dist(S,7) = mM_ a.:..A %8
|T| denotes the number of simplices in N...v Similarly, one can define 6- _m.w=o _ﬂﬂa
local minima and maxima of the restriction of F on the mQ.dxAZ v..Ooumm %n Zw
algorithm Agist,p Which finds for any N maa T e .ﬂtAZ ) ﬁ.ro ::onmmo:o:ro QRA
with the ball of radius 6(N) around T A=._ the dist Eoﬁov. Consider t M ooo:”-
position of Tu(N) into the union of disjoint k&a.e-m_a.c_n sets. Uo:oxw t oM.wzmo s
by Dy,...,Di1. By virtue of Theorem 1.1 .mca all mca.o_.oa_w large N > M:wu
Minima of F on sets D; will be 9-distinctive local minima o.m the restriction ow 5
on Ty(N). Indeed, let T be a minimum of £ on D; for some i. The aom_.:zﬂm of D;
implies that if dist(S,T) = O(N) and S € Tyy(N) then S € D;. Ea:no?_srﬁ is Mmmoo.
F(S) = F(T). Hence for any computable 0 wow w.: m.cmwo_o:z% _N.ﬁmo the _no.m .
tion of F on Ty(N) has at ledst [CN(n)] O-distinctive local minima. App S:m%

similar but more sophisticated argument one can prove the following theorem (the

proof will be given at the end of Sect.3):

5. For any n = 4 there exists a constant Cu(n) > 1 .S;.S the \w:ex::m
M.MMVMM_W _hm& \.M.Smwk: W!m and M be any compact :-&Smm&c:& :SE\\QE, or
n=4 and M be any compact four-dimensional whuias\om& Qw‘m.mmxgv»m.n,w:a
connected sum of a compact PL-mani old and k copies of §* x S%, where k is the
constant defined in the text of Theorem 1.1B. \.Arazia that F: Ty — R h&wnﬁwu
the following condition: There exisis an :RR.&SQ unbounded ﬂ::‘.ﬁ newﬁ.: a ﬂm
function y(N) £ N such that for any z&mma::.& large N, any :.WSQ: a.:cd. !
of M with < y(N) simplices and any triangulation @.c\ M with 2 N simp RMG
F(Ty) = F(T,). Then for any Turing computable function 0 and .\3 M: &&.mﬁm\m ly
large N the number of O-distinctive local minima of F (on N&v with < N simp RmM
is not less than [C.(nY™]. In particular, if for some positive constant const an
for all sufficiently large N y(N) Z const N, then there exists a constant G**Qv. >
1 such that for all sufficiently large N the number of O-distinctive local minima

of F is not less than [C,(n)).

i i “regularized action™ considered in

Theorem 1.5 is applicable, for example, to the “regu : onsid
some papers in Quantum Gravity (e.g. [AM], mo_._dc_mn. (1) m,:a G:.. It :.:n:om that
if M satisfies the conditions of Theorem 1.5, then this action has infinitely many
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“deep” local minima and that the number of these minima among the triangulations
of M with < N simplices grows exponentially with V.

As it was mentioned in the introduction, the proof of Theorem 1.1 is based on
the following idea involving the notion of time-bounded Kolmogorov complexity.
Barzdin found a Turing machine t such that the time-bounded Kolmogorov com-
plexity of the halting problem for this machine for any prescribed Turing computable
time bound 7 is not less than ¢, 2% for all sufficiently large L, where a positive con-
stant ¢, depends on the available time resources and L denotes the length of the
considered inputs for 1. (These inputs are binary sequences on the tape.) This re-
sult of Barzdin and Markov’s proof of the algorithmic unrecognizability of certain
manifolds imply for compact four-dimensional manifolds satisfying the conditions
of Theorem 1.1B that the time-bounded Kolmogorov complexity of the recognition
problem is bounded from below by an exponentially growing function of the number
of simplices of a given triangulation (Lemma 3.1 (b)). Also, Theorem 2.1 together
with the Barzdin result imply that a similar lower bound for the time-bounded
Kolmogorov compiexity of the recognition probiem is vaiid for aii compact mani-
folds of dimension greater than four (Lemma 3.1 (a)). On the other hand it is not
difficult to see that if one knows a collection of representatives from all minimal
elements of T4 »(N) then one can construct all triangulations of M with < N sim-
plices and, thus, recognize M in the class of all simplicial complexes with < N
simplices. Moreover, this can be done in a time a priori bounded by a computable
function of N (depending on 4). This observation implies an upper bound for the
time-bounded Kolmogorov complexity of the recognition problem linearly depend-
ing on my y(N) (Lemma 3.2). The juxtaposition of these two results implies an
exponential lower bound for the number m4 (N ) of minimal elements of 7T am(N).

Now I would like to describe several potential applications of the methods of
this paper in differential geometry. As it was noted, the space 7 is regarded in
some papers on Quantum Gravity as a discrete analogue of the space of Riemannian
structures (i.e. isometry classes of Riemannian metrics) on M because one can as-
sign for every triangulation T of M the same length to all one-dimensional simplices
of T, obtaining in such a manner a singular piecewise flat metric on M. We can
choose this length such that the volume of M in this metric will be equal to one.
If the number of simplices in T is equal to N, then the contractability radius of the

resulting metric space is not less than const(n)-'-, where n = dim(M). Thus, in-
N7

formally, for large N Ty(N) can be regarded as a discrete analogue of the space of

Riemannian structures on M of volume one and of contractability or injectivity ra-

dius greater than ¢, where ¢ ~ z“ 7 1s small. The corresponding differential-geometric

analogue of Corollary 1.2 will be the following:

Conjecture 1.6. For any n 2 4 there exists a constant Cy(n) > | with the fol-
lowing property. Let M be a compact smooth differentiable manifold of dimen-
sion n greater than four. Let for any positive ¢ Riem,(M) denote the space of
Riemannian structures on M of volume one and injectivity radius greater than e.
For any Turing computable function 0 for all sufficiently small positive ¢ there ex-

]
ist [C _H (n)] Riemannian structures from Riem (M) such that no two of them can
be connected by a continuous path in the space Riem, /(M) of Riemannian
structures of volume one and injectivity radius greater than 1/0([1/¢]) on M.

In particular, Conjecture 1.6 implies that Riem (M) is disconnected _w:a the
number of path connected components grows at least exponentially with 5, when
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&£ goes to zero. Some results in the direction of Conjecture 1.6 are proven in ﬁz.w_.
I am going to present a proof of Conjecture 1.6 for n = 5 in my paper [N5] which
is currently in preparation.

In [N1] 1 proved the following theorem (Theorem 5.1 in [NI], see also
Theorems 5.2 and 4.1): Consider the space of compact C''-smooth hypersurfaces in
R"t!, diffeomorphic to the sphere $", where n is any number greater than four. Con-

sider the functional x on this space defined by the formula «(2") = <o_»AM= )iz,
where i(Z") denotes the injectivity radius of the normal exponential map of a hy-
persurface X" in R"*! (or, informally, the maximal radius of a non-selfintersecting
open tube around S” in R"*'). Then the set of values of « at its local minima
is unbounded. This result was obtained using the algorithmic unrecognizability of
S". n = 5. The method of Sect. 3 can be used to obtain a quantitative informatior
about the distribution of values of x at its local minima.

Another possible application of the technique of the present paper (based or
an analysis of the time-bounded Kolmogorov complexity of a relevant membershir
problem) was suggested to me by Prof. M. Gromov. Namely, in [Grl] Gromov
noted that if the fundamental group of a compact Riemannian manifold has an un-
solvable word problem then this manifold has infinitely many geometrically distinc
contractible closed geodesics. In [Gr2, Sect. 5.C, p. 102-103] he asks how one car
estimate the number of contractible closed geodesics of the length < x in terms of
the fundamental group n;(M). In [N3] I described the relationship between time
bounded Kolmogorov complexity of the word problem for the fundamental grouy
of M and the distribution of lengths of contractible closed geodesics on M. Ir
particular, if the fundamental group of a compact Riemannian manifold has a mi..
ficiently “logically complicated” word problem, then the :::.&Q of contractible
closed geodesics of length < x grows at least exponentially with x.

2. An Effective Version of the S. Novikov Theorem on Algorithmic
Unrecognizability of S”, n > 4

The goal of this section is to prove the following theorem:

Theorem 2.1. There exists an algorithm which for any n 2 5, any compac
PL-manifold M of dimension n (presented by a triangulation), any given Tur
ing machine T and its input w constructs a triangulation Ry(w) of a compac
n-dimensional manifold Mr(w) such that:

(i) Mr(w) is PL-homeomorphic to M if and only if T eventually halts, wher
it starts to work on w. If T does not halt with input w, then the fundamenta
groups of M and Mr(w) are not isomorphic.

(ii) There exists c,(T) > 0 depending only on T and n (but not on w and M
such that the number of simplices in Rr(w) does not exceed c,(TY|w|+ 1) + [M|
where |wl| is the length of w and |M| is the number of simplices in the giver
triangulation of M.

Proof. The theorem is an effective version of S. Novikov’s theorem on algorithmic
unrecognizability of the standard sphere §”, n = 5 first published as ch. 10 of [VKF
(see also the detailed exposition in [N4]).

Observe that it is sufficient to construct the algorithm only for the case wher
M = §" (and is presented by the standard triangulation). In order to get the requirec
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triangulation Rr(w) for an arbitrary M we take the connected sum of the given
triangulation of M and the triangulation kw..?i constructed for the case M = §".

To describe the algorithm for M = §” we start from the observation that the
proof of the classical Boone-Novikov theorem stating the unsolvability of the triv-
iality problem for finitely presented groups given in [R] provides for any Turing
machine T and its input w an explicit finite presentation of a group Gr depending

only on T and a word v in Gr such that (i) v represents the trivial element of Gr -

if and only if T eventually halts when it starts to work on w; (ii) the length of v
is bounded from above by c(T)|w|, where ¢(T) > 0 depends only on 7. We also
observe that the proof of the classical Adyan—Rabin theorem stating the unsolvabii-
ity of the triviality problem for finitely presented groups given in [Mi], pp. 13-14
actually gives for any finite presentation of a group G and a word vy in G an
explicit finite presentation of a group G,, such that (i) the number of generators
and the number of relations of G,, depend only on G and the maximal length of
a relation of G, is bounded from above by a linear function of the length of vg;
(i1) Gy, is trivial if and only if vy represents the trivial element in G. This finite
presentation given by Lemma 3.6 of {Mi] can be described as follows: The set of
generators of G,, contains all generators of G xi,...,x,, (g denotes here the number
of generators of G), and also three new generators a,b,c. The set of relations of
G,, includes all relations of G. Besides that it includes g relations

[Ata 3 xblxi=e i=1,..,q,
and the following three relations:
¢ 'b ?Q;_uS =e,

F%qiva.&gL =e,

and
[b,d’c v, blb = ¢,

where for any x, y € G [x, y] denotes the commutator of x and y. (These relations
are equivalent to the formulae (1)—(4) on p. 14 of [Mi].) Observe that only the last
of these relations depends on vg. Note, that it is clear from this finite presentation
of G,, that G, is perfect, i.e. that H,(Gy,) = {0}. Let us apply this construction
to the group G(T) and the word v (depending on the given input w) discussed
above. Let us denote the resulting group by Gr,. Gr, will be trivial if and only if
T eventually halts, when it starts to work on the input w. Below we will need a
slightly different finite presentation of Gr,. Namely, for every generator g of Grw
we add a new generator § and a relation gg = e. Now the inverse of every generator
of G, will be equal to another generator of Gr,. Also, for convenience we prefer
at this stage to redenote all generators of Gry, by fi,..., fm, Where m is the number
of generators in the finite presentation described above.

Another construction we need is a part of S. Novikov’s proof. For every finite
presentation of a perfect group G by generators f,, i€ {1,...,m} and relators
ri, j € {1,..., p} he considers a group G defined as follows. G is generated by the
same set of generators f. Its set of relators includes all commutators [fir) 1€
{1,...,m},j € {1,..., p} and besides that the elements g;, i € {1,...,m} defined
for every i as follows: Since G is perfect (and, thus, coincides with [G, G]) every
generator f; can be represented as a product of an element g, = »\.5 and an

et
clement ¢, € [F,F], where F is the frce group generated by fi. It is not difficult
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to see that this group is perfect. Novikov notes that one can prove that H(G) s
trivial using homological algebra and shows that the kernel of the obvious surjec-
tive homomorphism G — G is isomorphic to F>(G). (Both these statements are
consequences of the fact that G is the universal central extension of G the proofs
can be found in [N4]. We will not need these facts in our proof.) The second
statement implies that G is trivial if and only if G is trivial. Hence, applying this
construction to Gr, we obtain a finite presentation of a perfect group Grw such
that ENAN.,P.V is trivial, and G, is trivial if and only if T eventually halts when it
starts to work on w. Moreover, the number of generators and the number of rela-
tions of Gr. do not depend on w, and the maximal length of a relator is bounded
from above by const(jw| + 1). Furthermore, the words ¢; introduced in the defini-
tion of g, can be represented as the product of not more than const commutators
of words in F of length bounded from above by a linear function of |w]. These
facts can be easily seen from the finite presentation of Grw described above. Now,
one performs the Dehn construction to build a compact n-dimensional manifold
Mo, such that its fundamental group is Grw, its sccond and (n — 2)-th homology
groups are free abelian and homology groups H3y(Mrpy), ..., Hi_3(Mp,) are trivial.
To construct this manifold one first takes the connected sum of several copies of
S' x §"!. Their number must be equal to the number of generators of Gr,. Then
one realizes relators of Gr, by embedded circles and performs the surgeries killing
these generators (i.e. one deletes small tubular neighborhoods of these circles which
are PL-homeomorphic to §' x D"~! and attaches instead 5§72 x D?). The result-
ing manifold will have the required properties. Its second homology group will
be generated by the two-dimensional chains corresponding to the axes of the at-
tached 2-handles corresponding to the relators [f;,r;] in the presentation of G,
described above. The resulting manifold can be triangulated using not more than
const(T)(jw| + 1) simplices of dimension n for some constant const(T').

A classical result of M. Kervaire ([K]) is that if a finitely presented group
G is perfect and H(G) is trivial, then for every n > 5, G can be realized as a
fundamental group of a smooth n-dimensional homology sphere. Kervaire’s con-
struction (for Gp,) is a part of Novikov’s proof. Indeed, by virtue of H. Hopf’s
theorem ([H]) the condition H(Gp,) = 0 implies that the Hurewicz homomorphism
n2(Mp,) — Ha(Mr,) is surjective. Thus, all generators of H>(Mr,) can be repre-
sented by PL continuous maps $2 — Mr,. These maps can be then approximated
by embeddings of S? to Mr,. Note that small neighborhoods of these embedded
2-dimensional spheres will be PL-homeomorphic to §? x D"2, A priori knowledge
that these spheres exist enables one to find them by a trial and error algorithm.
(However, a priori we have no upper bound for the number of simplices required
to represent these spheres.) Then one performs surgeries killing these elements of
(M, ). The result will be a homology sphere St with the fundamental group
Grw. Now the application of S. Smale’s h-cobordism theorem completes the proof
of Novikov’s theorem.

An analysis of the described construction implies that Theorem 2.1 would
follow from the fact that there exist embedded 2-dimensional spheres realizing
the generators of Hy(Mrp,) and made of not more than consty(T)(|w| + 1) two-
dimensional simplices in a triangulation of My, with not more than consty( T )(|w| +
1) simplices.

We are going to prove Theorem 2.1 in a slightly different manner. First, we need
a different finite presentation of Gr.. We start from the finite presentation of G de-
scribed above. We will call the generators and relators in this finite presentation old
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generators and relators. Let v € G(T) be the word depending on w and used in the
construction of Gr,.. Let v = :wn_\&\. where s = length(v), fi, are some generators
of G(T) (and hence of Gy, and Q?.v and & =1 or —1. Now we introduce new

gencrators vy,....v; and new relations vy = fi! fi2, 01,0 = oifil 1€ {2, s~ 1}

of Gr,. Then we change old relators of the type [r, f], where r is the last relator
(involving [v,b]) of the finite presentation of G, described above substituting v,
for v. We also change the old relators of the form §,, replacing words v and v!
entering §; by v, and v;!. (The words v and v™' can enter g; because g; are prod-
ucts of relators of Gr,, and the last relator in the finite presentation of G, written
above involves v.) At last, we add (s — 1)p new relators of the form [r,v;], where
r runs over the set of relators of Gp,, v; runs over the set {va,...,v5} of all new
‘generators of Gr,, and p denotes the number of relations in the finite presentation
of Grp, considered above. (These new relations are consequences of old relations of
Grw of the form [r, f] = e, where f are old generators. This can be easily proven
using the identity [u,xy] = [u,x]{u, y][[y,u],x], valid for any elements u,x, y of any
group.) It is not difficult to see that we got another finite presentation of the same
group Gr,. The numbers of generators and relators of this finite presentation are
bounded from above by const(jw| + 1) and the length of every relator is bounded
by a constant (not depending on |w|). Note that every generator f of Gr, is repre-
sentable as a product of an element § which is a product of not more than const;
relators and of not more than const, of commutators [c;,c;], where ¢,c; denote
some words in generators of Gp, and in v of length not exceeding const;. (Here
const;, const; and const; are some absolute constants.) This fact immediately fol-
lows from an examination of relations of G, written above. The lengths of all
elements g; used as some old relators of Gr, became bounded by an absolute
constant, too.

Now, as above, we use this finite presentation of Gy to construct a compact
n-dimensional manifold Mr, such that n;(Mp,) = G, using the Dehn construc-
tion. After this manifold is built, we are going to kill by surgeries its second
homology group and to get the desired homology sphere. It is easy to see that
Hy(Mry) is freely generated by 2-cells corresponding to relators of Gr, of the
form {r, f] or [r,v], where r are old generators of Gy, and f and v are old and
new generators of Gr,. We are going to represent these generators of Hy(Mr,)
by embedded two-dimensional PL-spheres and then to kill them one by one by
surgeries. In order to make sure that we will not need more than const(|w|+ 1)
simplices we must ensure that every of these embedded 2-spheres will contain
not more than Const simplices, where Const does not depend on |w|. We are
going to deduce this fact from the following lemma which will be proven later.
(This lemma is a constructive version of the statement that the second homology
group of the universal central extension of a perfect finitely presented group is
trivial.)

Lemma 2.2. There exist absolute constants const,,const, € N with the following
property. Let F be the free group freely generated by f,..., fn. Assume that for
every i € {l,...,m} m; € N and g;,cy1,ciu2 € F are such that

m;
Si=gil[Hen,cnl .
i ,

Then for every element r € F and for every i € {1,...,m} there exists a number
gi < const; Y1 (length(cin) + length(cin)) and elements ty € F, j € {1,...,4i}

GCOICINY 01 DPAcy 0 HELIEZWAHOIS 0b et s iicig

such that .
length(1yx) < consty | length(r)+ 5 (length(cin) + \mxciﬁ._s:v ,
=
and

m;

41 .
(r.gi) T1 U /0% ™ || Tllenscadr| . gi)
k=1 {=1

i

T.f\.._

where [;, are generators of F,&, 0k, wy are equal (independently) to +1 or —1.

Now we are going to explain how to represent the generators of Hy(Mr.,) rep-
resented by cells bounded by loops, corresponding to elements [r;, fi] of the fun-
damental group of Mr.. (Here f; are old generators of this group, and r; are
old relators.) Consider one such cell C. Applying Lemma 2.2 to the free group
generated by old generators of Gr, for g; =g; and rj=r we can mmm:Bo.i:r-
out any loss of generality that the boundary of C is the _won corresponding to
the product (in some order) of commutators [r;,g;], [[ci,r;), 4;] and not more than
const Y1+, (length(cin ) + length(ci;2)) commutators om. the mww.B ([r}, Jial%e,1,]% (as
in Lemma 2.2). (Here and below we denote for brevity EL.LD.:.Q:L by n._p We
are going to modify this product representation of [r;, f;} in order to get rid of
the commutators of the form [[r), f7 17% 4,192, Recall that for every original gen-
erator f, of Gr, we introduced a new generator [ together with the relation
fafb = e We can replace f, Uby f smv_, where r,; denotes the nw_man fafb. We
can assume without any loss of generality that f, is one of Ea original generators
of Gr, and f} is the generator added together with the relation f, f» = e. Since
fo= f7"ra and f, enters only the relation f, f, =e, we can »mmc.ao that the
element §, in the aoooan.omaoz of f is equal to g, 'ras (changing, .;. necessary,
the finite presentation of G, ). Substituting f} m.@n_ g, ! for £ mn@ using identities
(b)—(f) stated in the proof of Lemma 2.2 given below we can rewrite the commuta-

tor [[r;, M;?,Esn as a product in some order of the commutator [[r;, p1%, 1,10
m:amo<nB_835:383&9032: :mn» »ixfuzf,iraawm»mnoQaSm?xT

xx and v, are independently equal to +1 or to —I, s, are words .om the length
not exceeding const(length(r;) + length(ty) + length(g,)), m:@ const is an absolute
constant. (We refer the reader interested in the details of this computation to Eo
proof of statement B which is a part of the proof of Lemma 2.2 c.&oi. This
proof involves a quite similar computation.) We can regard C as an image .Ow a
continuous map ¢ defined on the lower hemisphere 52 of the two-dimensional
sphere S2. We are going to extend ¥ to the upper hemisphere S} in such a man-
ner that the resulting map ¥ : S> — Mp, will map the fundamental homology class
of 52 to the class represented by C. First, we map 52 onto the wedge of two-
dimensional disks By,....By,. Their number /;; must be equal to the .:cEcQ of
commutators in the product decomposition of [r;, fi], existence of which follows
from Lemma 2.2, modified as described above to get rid of the double commu-
tators involving f;'. Every of these disks will correspond to exactly one of the
commutators {r;,4;1, [lci,r;], 4.1, (g%, 1%, se]', :J..\L?,Een (c=aor 3.. The
part of the boundary of S2 corresponding to one of these commutators will be
mapped to the boundary of the disk, corresponding to the commutator. (Recall,
that 952 = 9S2 = ~'(0C).) These disks then will be mapped into Mr, as fol-
lows. The boundary of a disk By, (k € {1,...,1;}), will be mapped to a loop
My, representing the commutator, corresponding to B;. (Here and below one 3_._.&
choose loops, representing various clements of the fundamental group of Mr,, in
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the most obvious “cconomical” way in the I-skeleton of Mp..) Assume that By
corresponds to the commutator ([r;, fa)>. 1) for some a. (The case when By
corresponds to [r;.g;], or {[¢i,r;].g;), or [{g:*, rj 1%, 5] can be treated quite sim-
ilarly.) Assume that By lies in the XY-plane. Let us cut it by two vertical lines
parallel to the Y-axis into three parts. Without loss of generality we can assume
that By is attached to the wedge of the other disks at a point of intersection of
one of these vertical lines with its boundary. The middle of these three parts will
be first projected on a horizontal segment and then mapped onto a loop, repre-
senting f,, in Mp,. The remaining two parts are mapped to the 2-dimensional
cell in Mr,, bounded by a loop, representing {rj, fals with opposite orientations.
(By virtue of our construction of Mp, such a two dimensional cell exists, because
[rj, fa) is one of the relators of Gr, = m(Mr,).) It is clear that the so defined
map  will map the fundamental homology class of §? to the element of Hy(Mn,)
represented by C.

An analysis of the new finite prescntation of Grw easily shows that m;, length
(cixt), length(cuz) and length(r) = length(r;) do not exceed a constant indepen-
dent of |w|. As a corollary, we see that the number I;; of disks in the construc-
tion of Y can be regarded as an absolute constant and that the upper bound for
the length of words f, provided by Lemma 2.2 is bounded by another absolute
constant.

The image of { will not be, in general, an embedded sphere, but we can make
it simlicially embedded by a small perturbation and a subdivision of the original
triangulation of Mp,. A simple analysis shows that the total increase of the number
of simplices due to these perturbations and subdivisions will not exceed constyX
the number of simplices in the image of y, where consty is a constant depending
only on the dimension of the manifold. Thus, the total increase of the number of
simplices will not exceed a constant not depending on [wl.

Now we are going to represent by embedded spheres the generators of Hy(Mrp,)
corresponding to relators [r;,v;], where 7; are old relators and v; are new genera-
tors. (Afterwards we will kill them one by one. The generators, corresponding to
relators of the form [r,v;3,] will be killed only after the generators, corresponding
to relators [r,v;].) The idea is essentially the same as before. Namely, we are going
to complement the map of a disk to Mr, representing a cell bounded by a loop
corresponding to [r;, v;] by a map of another disk with the same boundary to Mp, in
such a manner that the resulting map of S? would map the fundamental homology
class of S? to the homology class we are going to kill. We are going to use the
identities

(7,021 = [, S0 Mo SENU 730 ST

[r, vi41] = [ S:?\wﬂ__::w@__ il

instead of Lemma 2.2. (At the moment when we will be killing the homology
class corresponding to [r;,v41], the homology class corresponding to [r;,vi] is al-
ready killed and can be regarded as trivial. The homology classes corresponding to
[rj, fi], will be also already killed.) Otherwise the construction is quite similar to
the representation of elements of H(Mr,) corresponding to [r;, fi] by embedded
spheres described above. After all the generators of H>(Mr,) are qummgaa by
embedded spheres, we will perform surgeries killing these generators one by one.
This completes the proof of Theorem 2.1. [
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Proof of Lemma 2.2. To prove Lemma 2.2 we perform a computation using some
tricks described on p. 49 of [Mn]. We start from the identities

(@) [vou)=luo]™",
(b) [u,vw] = [u,v][y, wi{[w, ul,v].

which are valid for any elements u,v,w of any group. Also, we will need the
following generalization of (b) which can be deduced from (b) using induction:

k
(¢) [wov...] =[u,01] m [u, v:){[wi, u), 1 .- D1 ] -

Now note that identity (b) implies that

T&\L ={r;g;cil = {rj, gdlry, clllei ;1. 4i1

where ¢; denotes :ﬂu.,_?:rn:&. So, we must show that [rj,ci] can be represented

as the product of not more than constm; commutators of the form [[r;, fi* 1P, 1,]%e,
where the lengths of words #, do not exceed the upper bound given in the text of
Lemma 2.2. Using (c) we see that

m;
T&nLH Vs ET._.:,D.;_ =[r; {cins cin2d]
=1

m; k—1
X »E [}, [ewr, ciw2d) | Leir, ciad, 13l Nﬂ_ [cin, i)
=2 =
Note that the right-hand side of this formula is the product in some order of m; terms
of the form [r;, [cik1,Cu2]] for various k and of m; — 1 terms of the form [[,r;], W],
where 1w are words of length not exceeding 2(length(cik1) + length(ci2)) and w are
words of length not exceeding 23~ (length(cu1) + length(ci2)). Now we see that
Lemma 2.2 would follow from the validity of the following two statements:

A. There exist absolute constants Ny and const such that for any yi, y; € F the
commutator [r;,[y1,y2]] can be represented as the product zww_ [r» 261 1%, k2%,
where 8 and w; are (independently) equal to +1 or to —1 and zy|, 242 are words
in generators of F and their inverses such that length(zx1) < const(length(y1) +
length(»,)), length(ziz) < const(length(y1) + length(y,) + length(r;)).

B. There exists an absolute constant const such that for any z,z; € F the
commutators [[r;,z1],z2] and [{z1,7,],22] can be represented as products of & =
const length(z;) commutators of the form {[r;, E?,Esﬁa € {1,...,k}, where
t, are arbitrary words of length not exceeding const(length(r;) + length(z1) +
length(z,)), and w,,&, and d, are equal to +1 or to —1.

First, we are going to prove the statement B. We will prove the existence of

the product decomposition only for the commutator [[rj»21),22]. The proof for the
« . Ej
commutator ([z1,r;},22] is similar. Let z; = EW_.N_E_G: f _.w, where f;, are generators

of F and ¢, = | or —1. Note that the identity (c) implies that

length(zy)

" , 5 & k-1 b
lrj,z1),22] = HJ,\.“..____ »: T\.,\;: m.\;\f ril, \:_\:N > 22
=2 =
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£y £y iy o . A )
Denote the commutators [ /5 ' |, [ri /3, LG n) S ],... in the right-hand side

of this cquality by wy,w;, w3, .... In these notations
2length(zy)—t
([rj,z1}.22] = [T wiz

k=1
Applying identities (a), (c) and once again (a) we see that

2length(z)—2 2length(z )—k—1

[[rizikz21 = T1 It Wi, [Walengih(z,)— k> 22]
k=1 =

X TQNFE:EN_ VITN~: ﬂs\_uNNU_ .

Denote —._wun_ w; by wy. The identity (c) implies that

-t -1 '
Wy = rjs HIH_\,MJ s Wopyy = ¥, H.M_.\.Ma _”\\.,\MJ.
5= 5=
Hence the elements of F represented by the words Wy can be represented by words
of length bounded from above by 4(length(r;) + length(z,)).
Thus, we represented [[r;,21],22] as the product of 4length(z;) ~ 3 commutators

of the following four types: :J.,\N.J,Nm. E\Mﬁi, Ewnl__\w;h&, [V, :J,\wj.

2;]] and Dy, [[LSf Nﬁi, I \wj,NN:. In order to replace triple and quadruple
commutators by double commutators one can use the following identities:

() [llr.x}, 5.2} = [[rx], Yl x) 217 [lr 21,2
(&) [nlrxlzl = [Inx] )7 [lrx) 217 [rx) 2],
(f) [wlllxr) y)2]} = [ [xr), INEx 7], ) w2)z, ([x, r) v1)

valid for any elements r,x, y,z,u of any group. (These identities follow from the
identity (b) above.) These identities can be applied in the obvious way to replace
the triple and quadruple commutators entering the obtained product representation of
[r;,21],22] by the double commutators. This completes the proof of the statement B.

To prove the statement A formulated above note that it is sufficient to prove the
existence of the product decomposition with the desired properties for [r;, [y1, y2]]
[y1,[y2, 71y [rj, ;1] instead of [r;,[y1, y2]]. Applying identities (a) and (b) one
can easily see that

i, v y2llyns (2, £l 2, [rjs 0] = Lrns v2dlv2, rillva, »il
x [y1ya, rillrjs il 2 Q2 i, y2n, il €]

For brevity let us call the words of the form [[r},21]°,2,]%, (6,6 = 1 or —1) allowed.
We are going to show that the right-hand side of (*) can be represented as a product
of several allowed words. To achieve this goal we can transform the right-hand side
of () permuting terms of the form {r;, y] or [y,r;], where y can be an arbitrary
word (in particular, y; or y,), with any word y, and taking into account that the
allowed words of the form [[r;, ¥], o] or [[.7,], yo] or their inverses also appear
in the cxpression as the result of the transformation. These allowed commutators

Geometry of Space of Triangulations of Compact Manitold 3214

then also can be permuted with any term in the resulting product because of the
identities (d) and (e) above. (Of course, new commutators of the allowed type arise
as the result of such permutations.) These permutations of commutators in the right-
hand side of () are aimed to make the commutators [r;, v1] and (vi.r;), [r), y2] and
[v2,r;] in the right-hand side of (x) to cancel each other. 1t is not difficult to exhibit
explicitly a sequence of several such permutations (and reductions) transforming the
right-hand side of (*) into the product of [r;y1, y21(y2, yilly2rjs 1111, y21ly1 y2. 75}
and several allowed words appearing as the result of these transformations. These
allowed words in principle can be written explicitly and their length does not
exceed const(length(y,) + length(y,) + length(r;)) for a certain absolute constant
const.
Observe that
riye, v nliniyaril=e.

Thus, to complete the proof of statement B it is sufficient to exhibit a sequence of
several permutations of commutators of the form {r;, y] or {y,r;] with arbitrary terms
of the product transforming the product [y2, yil[y2rs. Y11y, y21 into [yarj, y1]. (Of
course, several allowed commutators will appear as the result of such permutations.
But, as it was noted above, these new allowed commutators can be “moved aside”
of the triple product using appropriate permutations and the identities (d) and (e).)
Note that
[z, yillyars, il y2l = D ke »dyy

and .
y2rj, »il = yalri m1yy 2, ]

Permuting [r;, 1] with y; !in the first equality and also permuting [r;, y1] first with
y, and then with [y, y1] in the second equality, we obtain the desired result. This
completes the proof of the statement A and, thus, the lemma.

3. Algorithmic Information Theory and Proof of Theorem 1.1

Before proving Theorem 1.1 we would like to recall some facts about the
Kolmogorov complexity. The Kolmogorov complexity was introduced independently
by Solomonoff, Kolmogorov and Chaitin. We refer the reader to reviews [ZL,LV],
books [C and M], and paper [D] for discussions of the Kolmogorov complexity.
Here we will use only the notion of Kolmogorov complexity for decision problems.
Informally, this notion can be explained as follows:

Assume that we deal with a decision problem. This can be the problem to find
out whether or not a given Turing machine starting to work with the empty tape will
eventually halt, or the problem whether or not a given abstract simplicial complex
is a triangulation of some given fixed compact PL-manifold. This problem can be
unsolvable. Further, there exists a natural complexity parameter such that when its
value is < N there is only a finite set of the instances of the problem. In the
first example we could regard the number of states of Turing machines as such a
parameter. In the second case the number of simplices can be considered as the
complexity parameter. The unsolvability of these problems implies that there is no
algorithm which for a given N and a given problem instance of complexity = N
solves the problem. However, if one is permitted to ask for additional information
(the amount of which can depend on N), then the problem clearly can be solved.
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(The additional information will be regarded as the input data for the algorithm
solving the decision problem). The most obvious way is just to use the list of all
answers as the additional information. Usually, however, one is able to solve the
decision problem using much less information. If the decision problem is solvable
one does not need any additional information at all. Let us regard the minimal
amount of bits of information necessary to solve the decision problem D for all
instances of complexity < N as a function K(D,N) of N. Furthermore, one can
modify this definition imposing the following restriction on the considered programs:
Let 4 be a fixed recursive function. One regards as permitted, only programs which
perform < A(N) elementary operations to solve the decision problem for any given
problem instance of complexity < N. This restriction on the considered programs
can lead (and sometimes leads) to a considerable increase of the minimal amount of
input data required to solve D. Denote the minimal amount of input data required to
solve D for any instance of length < N performing not more than A(N) elementary
operations by K(D,N). .

The model of computation used here, in principle, can be defined as fol-
lows: Take any programming language of high level (say, FORTRAN or PAS-
CAL) and strip it of all data types except for the integer type. This will
be the language in which it is permitted to write the discussed programs.
The notion of “minimality” of the input data requires the following clarifica-
tion: it is defined only up to a constant. That is, it is possible to show that
there exists a program ny requiring K. (D,N) bits of additional input informa-
tion able to solve D for any instance of D of complexity < N such that for
any other program =n; the corresponding amount of bits Kn (D,N) satisfies the
inequality

Kn(D,N) £ K (D,N) + C(mo,m; ),

where C(mg,7y) is a constant which does not depend on N (but depends on g, m;
and the used model of computations). Thus, it is natural to regard K(D,N) as the
equivalence class of functions with respect to the equivalence relation “~” de-
fined as follows: f = g iff 3C such that for any N |f(N) — g(N)| £ C. Then
K(D,N) will be a rigorously defined equivalence class. Moreover, it will not de-
pend on the choice of a model of computation in a wide class of models (in-
cluding the one considered above and also more traditional models considered in
the references above). The reason is that one can write in one language a fi-
nite program interpreting the commands of another equivalent language. So no
new input information will be necessary. Similarly, for any model of computa-
tion p and any recursive function 4 we can define the equivalence class NAM\:AD,Z )
as the equivalence class of the functions of N defined as the minimal number
of bits of additional input information necessary to be able to solve D for all
instances of complexity < N using a program performing not more than A(N)
operations.

Now let us be more formal. Following [ZL, M, B] define for any partial recursive
function ¢ : N> — N and a set M of natural numbers the Kolmogorov complexity
K4(M,N) as the minimal number of binary digits of a number p such that for any
natural x < N,

I, ifxeM
0, ifx¢gM

If no such p exists we set Kg(M,N) = +oo. It is well-known (cf. [M, Theorem 9.2,
p- 226], [ZL]) that there exists a partial recursive function. R( p,x) such that for any §

%

d(p,x) =

f.frl__r.:u N L R . '
other partial recursive function ( p.x) and any M,
Kp(M.N) < Ky(M,N) + C(R.Y) ,

where C(R, ) is a constant independent of M and N. ::.caé_v: R can be Soina
as a system of programming, and p as a number, the cimQ expansion of which
codes both the program and the additional oracle information required to mo_<.n for
x the decision problem D: “Is x in M?” Following [M, p. 226], let us aomozcm a
construction of one such R. Let v: N x N — N be a recursive wacoaa_:m ?:m:os
which has a recursive inverse function and which satisfies the following linear
growth condition in one of its arguments: v(k,j) < kB(j), for all k,j and some
function f. For example, we can take w(k,j) = (2k — 1)2/7". Let u: _Z — ._Z x N
be the inverse function of v. Consider a Gidel numbering by consecutive integers
of all Turing machines working with two input binary sequences. (To be precise
one can assume that at the beginning of computations one of these sequences is to
the left of the scanning head and another one is to the right of the scanning head.)
The function R(p,x) can be described as follows: Consider r.A p)= At.; ), w2 p)).
R(p,x) is the result of the computation performed by the Turing Bmo?:o coded by
u2( p) starting from the inputs u(p), x. (Informally, .EA p) can vo :.:o:unnﬂom as
the oracle information and x as the data for the considered algorithmic problem.)
If this computation does not stop, then R(p,x) is not defined. Oo.muo t(p,x) as H.ro
time required to the Turing machine coded by p( mv and starting to work with
inputs u;(p), x to complete the computation. If this computation n._oam not stop
then we assume that #(p,x) = oo. Let A, compl be arbitrary recursive functions.
Assume that compl is increasing. Define 3@:3&.2 ) as the minimal length of the
numbers p (written in the binary system) such that for any natural number x such
that compl(x) £ N
i 1, ifxeM
@RED=10 irany

(b) ((p,x) £ AN).

We will call RM:QS,Z ) the time-bounded Kolmogorov complexity or A-bounded

Kolmogorov complexity. Of course 3@@52 ) depends also on En. choice of compl.
In the standard definitions of time-bounded Kolmogorov complexity compl(x) = x.
Here we will use mostly compl(x) = length(x) = [log,(x)] + 1. Also, ivn: we &::
consider the recognition of a PL-manifold problem and x .<<_= code a Bmsm:_.m:on,
compl(x) will be the number of simplices in this Ew:mc_m:o.:. (The n&ucﬁ:wrﬁ be-
tween A-bounded Kolmogorov complexities for different choices of oaam_ is entirely
obvious, so the choice of a way to measure complexity of the input is just a matter
of convenience when we discuss decision problems involving complicated objects
coded by numbers.) It is clear that the definition of ::.go-cozsaoa _Ao_.Bo.moﬁo<
complexity is a formalization of the informal definition given at the cam:i_:m of
this section and in the introduction. Similarly, one can define very close :oﬁ._o:m of
Kolmogorov complexity and time-bounded Kolmogorov complexity of m,ES and
infinite binary sequences. Let m = (my,...) be a sequence of 0’s and 1’s of the
" length at least N. Define the Kolmogorov complexity Kgr(m,N) (resp. A-bounded
Kolmogorov complexity 5«:?52: as the number of digits in the binary rep-
resentation of the minimal number p such that for all x £ N R(p,x) = m, (resp.
R(p,x) = m, and in addition 1( p,x) < A(N)). Note that the' i-bounded Kolmogorov
complexity of the decision problem “Is x in M?” for compl(x) = x is equal to the



4-bounded Kolmogorov complexity of the sequence of values of the characteristic
function of M(C N).

Barzdin ([B, Theorem 3]) discovered the existence of a recursively enumerable
set H C N such that for any recursive function 4 for all sufficiently large N the
A-bounded Kolmogorov complexity of the recognition problem whether or not
is an element of H for all k < N (i.e. for compl(x) = x) is bounded from below
by mRD for some constant ¢(4) (depending on 1 and R but not on N). If we will
consider the length of the binary expansion of k instead of the number £ itself as the
complexity (that is, if we take compl(x) = [log,(x)] + 1), then for all sufficiently
large N,

KPHN) 2 2V/e(d) . )

The left-hand side of (2) is the time-bounded Kolmogorov complexity with time
resources bounded by A of the problem of recognition whether or not k € H for in-
teger numbers & having the binary expansion of length £ N. A construction of the
characteristic function of such a set 4 can be found in the proof of Theorem 2.5 in
{ZL). (A very close result with a similar proof can be found in {D] (Theorem 9).)
More precisely, in [ZL] the authors construct an infinite binary sequence such that:
1) For any recursive 4 for all sufficiently large N the A-bounded Kolmogorov com-
plexity of this sequence is not less than N/c(4); and 2) This binary sequence is the
sequence of values of the characteristic function of a recursively enumerable set.
For the sake of completeness we are going to outline a construction of such
an infinite binary sequence. (Our exposition follows [ZL, p.97] and [D].) Only
the following two obvious properties of the time-bounded Kolmogorov complexity
are used: First, the time-bounded Kolmogorov complexity majorizes the “standard”
Kolmogorov complexity (without restrictions on time). Secondly, there exists an
algorithm computing k.m:?rz ) for any given N, any given finite binary sequence
m of length = N and using a given value of J(N). (Indeed, we can find the minimal
p trying one by one all p’s. For each p we find the Turing machine coded by p( p).
For every x such that x < N we apply this machine to y(p), x and wait for the
time A(N). If for some x the computation does not stop in this time, then we pass
to the next p. Otherwise, we compare the results of computations with numbers
m,. In the case of coincidence we can be sure that we found the minimal p.)
As a corollary of these two properties, there exists an algorithm which for every
N and a partially recursive function A defined on N finds a binary sequence of
length < N and of the A-bounded Kolmogorov complexity not less than N. (The
existence of such a sequence follows from the fact that there are not more than
21 binary sequences m of length N for which there exists p < 2¥~! such that
R(p,x)=m, for all x=1,...,N.) The required infinite binary sequence can be
now constructed by a diagonalization construction using these finite sequences of
high time-bounded Kolmogorov complexity. Namely, the sequence will consist of
pieces written one after another. The length of the i piece is equal to 2'. This
piece is filled by 0’s and 1’s as follows. Denote the maximal number & such that
2% divides i by k(i). (Observe that for every & the set of j such that k() = k forms
an arithmetic progression.) For every j define a partial recursive function A; by the
formula 4,(x) = R(k(j) + 1,x). If 4,(2') is not defined, then we fill the i piece of
the sequence by zeroes. Otherwise, we place in the /™ piece the binary sequence
of length 2 and of J-bounded Kolmogorov complexity = 2' constructed by the
mentioned above algorithm. Obviously, the resulting infinite sequerice is a sequence
of values of the characteristic function of a recursively enumerable set H. Observe,

that every partial recursive function £ will be among functions 4;. Moreover, the set
of j such that A=4; contains an arithmetic progression. It is not difficult to prove
using this observation that the constructed recursively enumerable set M satisfies
the inequality (2) for every recursive function A.

Consider a Turing machine 1g such that the set of binary expansions of elements
from the set H is precisely the set of inputs for which 1 halts. Consider the halting
problem for 1o (i.e. the problem whether or not for an input binary sequence w g
starting to work with w will eventually halt.) Obviously, the left-hand side of (2)
can be interpreted as the A-bounded Kolmogorov complexity of the halting problem
for 7o for input (binary) words of length < N. Thus, the halting problem for ¢
has A-bounded Kolmogorov complexity bounded from below by 2Y/c(4) for all
sufficiently large N.

Now we can outline the idea of the proof of Theorem 1.1. Let an effective enu-
meration of finite simplicial complexes increasing with the number of simplices be
fixed. Let Hyn» denote the set of numerals of simplicial complexes such that their
spaces are PL-homeomeorphic to M". Consider the number of simplices N in a sim-
plicial complex as the complexity parameter in the algorithmic problem of recogniz-
ing whether or not the space of a given simplicial complex is PL-homeomorphic to
M". If n = 5 then the quantitative version of the algorithmic unrecognizability of §”
(Theorem 2.1) immediately implies the exponential lower bound for NMtQ.?...Z )
(Lemma 3.1(a)). Also, in the case, when n =2 4 and M" is a connected sum of a
compact PL-manifold N" and a sufficiently large number of copies of §% x §"~2
one can derive the same exponential lower bound for NAMVQ&S,Z ) reviewing the
Markov proof of unrecognizability of M" (Lemma 3.1(b)). (Of course, only for
n = 4 this bound does not immediately follow from Theorem 2.1.) On the other
hand we will find for an appropriate recursive function A an upper bound for
Nmtﬁmtfz ) linearly growing with m4 »(N) (Lemma 3.2). The juxtaposition of
these lower and upper bounds implies Theorem 1.1.

Lemma 3.1. (a) For any n = 5 there exists a constant Co(n) > 1 such that for
any compact n-dimensional PL manifold M and for any recursive function A there
exists Ny (depending on M, A and R) such that for any N 2 Ny,

K (Hy,N) > CY(n).

(b) There exists k such that for any n Z 4 there exists a real constant
Co(n) > 1 with the following property: For any manifold M of dimension n = 4
representable as the connected sum N"#kS* x 5772, where N" is a compact
n-dimensional PL-manifold, there exists Ny (depending on A, R and N") such that
SJor all N = Ny,

K (Hy,N) > CY(n) .

Proof. (a) Theorem 2.1 implies that the halting problem for any fixed Turing ma-
chine and, in particular, for the defined above Turing machine 7o can be reduced to
a problem of recognizing whether or not a given triangulation is a triangulation of
M. Moreover, when the Turing machine is fixed, the number of simplices in this
triangulation is bounded from above by a linear function of the length of the input
w in the halting problem for the Turing machine. Denote by Halt,, the set of in-
puts of 14 for which it eventually halts, by A, (N) the maximal time of work of the
algorithm defined in Theorem 2.1 on a set of input data, consisting of the manifold



M, the Turing machine 79 and any of its inputs w of the length not exceeding N.
Then for any recursive function 4 such that 4 > £, inequality (2) implies that for

all sufficiently large N,

T

(4—4yy

2Ye(A) € K$(Halty,N) < K Y(Hyt, cal10)N + ca(t0) + |M]) + const .

(Here const is a constant not depending on N and A, c,(19) ts the value of the
constant ¢,(T) defined in the text of Theorem 2.1 for T = 15. Of course, c,(1p)
does not depend on A.) This double inequality implies that

K (Hy,N) 2 2N =enio)=IMDientro) o3 4 7y — const

which proves part (a) of the lemma.

(b) For any n = 5 this part of the lemma is an immediate corollary of part (a).
However, since we still need to prove part (b) for n = 4 we will give a proof not
referring to Theorem 2.1 or any other material in Sect. 2 and valid for any n 2 4.
Our proof will be based on a quantitative analysis of the Markov proof explained
in [BHP] of the algorithmic unsolvability of the PL-homeomorphism problem for
compact PL-manifolds of dimension n = 4. Since this proof uses the unsolvability
of the triviality problem for finitely presented groups (the Adyan—Rabin thcorem)
we will briefly review a proof of this result too:

Step 1. Let a Turing machine T and its input word w be given. There are several
ways to effectively construct a finite presentation of a group G(T), which depends
only on T but not on w, and its element g(w), such that g(w) is trivial in G(T) if
and only if T starting to work with the input w will eventually halt. For example,
one such construction is described in [R]. Note that the number of generators, the
number of relations, and the length of relators in the finite presentation of the group
G(T) constructed according to [R] are bounded by a constant depending on 7, but
of course not on w, and the length of g(w) is bounded by const; N, where N is
the length of w and const; is a factor independent of w. On this step we apply this
construction to the defined above Turing machine 1.

Step 2. We intend to construct starting from a given finite presentation of a group
G and an element g € G a finite presentation of a group G, in such a manner that
g=-e in G if and only if G, is trivial. To achieve this goal we use the effective
procedure described in [Mi], pp. 13-15. When we apply this construction to the
finite presentation G(tp) and the word g(w) constructed on the previous stage, we
obtain a finite presentation of a group G(7g)gw). The number Gen of generators
and the number Rel of relations in this finite presentation do not depend on g(w)
(see [Mi]) and, hence, on N. The length of every relator in this finite presentation
is bounded by const; N, where N is the length of w and const; is a constant factor.

Step 3. Now we add to the finite presentation of G(1g)yw) several empty relations.
According to the exposition of the Markov construction in [BHP], it is necessary
to add 4Rel + 5Gen empty relations, where Rel and Gen are, correspondingly, the
numbers of relations and generators of the finite presentation. (Actually, one can
add just Gen empty relations, as in [F]. But this improvement is of no importanc¢
for us.) Afterwards we build a hypersurface in R"*' (n is any number = 4) dif-
feomorphic to the connected sum of Gen copies of S' x §"~!. Then one realizes
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relators of G(To)yw) by pairwisc non-intersecting embedded smooth closed curves
in this hypersurface and performs surgeries killing the elements of the fundamental
group of the hypersurfacc corresponding to the relations. The fundamental group
of the resulting manifold is G(tg)yw). It is clear that this manifold can be triangu-
lated using not more than consts N simplices. Let k be equal to 4Gen + 5Rel. (Our
choice of k is not optimal. This value can be improved by adding only Gen empty
relations instead of 4Rel + 5Gen to the finite presentation of G(7g)yw), as in [F].
This version of Markov’s construction enables one to take k = Rel.) After 19 and
the specific construction of G(tg)gw) Were fixed, k is just a constant. It is shown in
[BHP] that the resulting manifold M, will be PL-homeomorphic to the connected
sum of k copies of §? x $"~2 if and only if n(M,,) is trivial, or, equivalently, if 7o
eventually halts when applied to the input w. Thus, the halting problem for 7o for
input binary sequences of length < N can be effectively reduced to the problem of
recognition of the connected sum of any compact PL-manifold N" and k copies of
S2 x S"~% (n = 4) among triangulated PL-manifolds with < consty N + |[N"| sim-
plices. Here consts depends only on n and [V*| denotes the number of simplices
in an arbitrary fixed triangulation of the manifold N". Now the lemma follows im-
mediately from the Barzdin lower estimate (2) for the time-bounded Kolmogorov
complexity of the halting problem for 7p. U

The next lemma provides an upper estimate of NM»;XEE,Z ) for an appropriate
recursive function A4(N):

Lemma 3.2. There exist a recursive function A4(N) and a constant C independent
of N such that

K¥(Hy,N) < CN InN - myp(N) .

Proof. We must give an upper estimate for the number of bits of oracle information
sufficient to solve the problem of recognition of M among simplicial complexes with
< N simplices in a time bounded by a recursive function of N. This information
will be the following: I require a list Lo of triangulations representing all m4 »(N)
minimal elements of T (N ) and containing precisely one triangulation from every
minimal element. (Recall, that these minimal elements are sets of triangulations of
M with < N simplices.) Observe, that a triangulation T of M with < N simplices
can be coded as follows: First, we list the number of vertices in 7. Assume that all
vertices of T are numbered by consecutive natural numbers starting from 1. We list
for any face of T of the maximal dimension numbers of all vertices forming this
face. Thus, we obtain not more than N lists of (n + 1) numbers from 1 to not more
than N (n is the dimension of M). Thus, in total we have 1 + (n+ )N numbers
and the binary expansion of each number contains not more than log, N + 1 digits.
Of course, not every such set of data corresponds to a triangulation of M and there
are .many possible ways to assign such set of data to any element of m4 4 (N). But
if such a set of data defines an element of m4 (N, it defines this element uniquely.

These data describing the list Lo and containing not more than CN InN m y(N)
bits of information (where C does not depend on N) are sufficient to solve the prob-
lem whether or not a given simplicial complex with < N simplices is a triangulation
of M in a time, bounded from above by a recursive function of N. Indeed, first
construct the complete list of all triangulations of M with less than or equal to N
simplices using the following algorithm: Apply the algorithm A4 to the number N
and to each of these given my p(N) triangulations. If no new triangulation from
Ty(N) have appeared, then stop. Otherwise consider the list L, containing all new
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:_mzm:_m:gm from Ty (N) produced by 4 and all m, s (N) initial triangulations
Now we s.:: proceed recursively. On every step we will apply the algorithm ;
to every triangulation from the list of triangulations L,_, obtained on the previous
step. If no new triangulations with < N simplices appeared as the result (i.e. if
Cﬂmrﬂ_ A(N,T) C Lx—y), then the algorithm stops. Otherwise we form a new list

Ly adding to the old list L,_, all new triangulations of M with £ N simplices
produced by 4. (In other words we define Ly as Ly Cﬂm: _\:2, T).) Then the

algorithm passes to the (k + 1)-th step. This algorithm must stop after a number of
steps not w«on&m:m the (finite) number of triangulations of M with £ N simplices.
The aom::._o: of the poset T4 (N) and the fact that we started from the list of
representatives from all minimal elements of the poset guarantee that the described
m._mo:.::: constructs the list Ly (N) of all possible triangulations of M with < N
simplices. B
When :.6 list Ly(N') is known, one can check for any given abstract simplicial
moEv_wx with £ N simplices whether or not this complex is in My just compar-
ing this complex with all simplicial complexes from the list Ly(N) and checking
frnﬂro.n or not this complex is simplicially isomorphic to one of them. (Obviously, it
is .@ﬁmm_v_.o to check whether or not two given abstract simplicial complexes are mm:-
E.oi:% isomorphic; cf. [ABB], Proposition 2.16.) Our definition of 4 implies that
En time of work of A when it is applied to N and to a triangulation from Ti(N)
is bounded from above by a recursive function of N. Hence, the time of work
o.w the recognition algorithm described above is also bounded by a recursive func-
tion of N. Thus, for a certain recursive function 1, the problem of recognition
irM.Mron nwa not a simplicial complex with < N simplices (of all dimensions) is
a E ) .
o Mw,w: M._M_MZ%. :D has A4-bounded Kolmogorov complexity not exceeding

Now we can prove Theorem 1.1 by a simple juxtaposition of results of
ro.BBm 3.1 and Lemma 3.2. Indeed, such a juxtaposition shows that for all suf-
ficiently large N,

Gy (m)
CNInN
Here C(n) is an EE:.wQ constant greater than one and less than Cy(n) (for example,
we can take C(n) = 3(1 + Cyp(n)). This proves Theorem 1.1. [J

map(N) 2 > C(n).

Now we are going to prove Theorem 1.5. The conditions of Theorem 1.5 im-
v_.w that mon. any triangulation T € Ty (y(N)) and for any triangulation S of M
with = N simplices F(S) = F(T). Consider the algorithm A4 ¢, finding for given
N,T € Ty(N) all triangulations ¥ from Ty(N) such that dist(7, V) < 6(N). Con-
sider the partition of Ty(N) into Agis e-simple sets. Let b_,.:.Plao:o"n those
of these Agist, 0-simple sets which have a non-empty intersection with Tar(Y(N )):
Theorem 1.5 is an immediate corollary of the following two statements:

. .: For every i the minimum of the restriction of F on D; is a -distinctive local
minimum of F : Tyy — R.
2) For all sufficiently large N the number / of the sets D; is not less than

#N) :
[CI")(n)], where C,(n) > 1 is a constant depending only on n.

To prove 1) note that the definition of D; implies that if T is a minimum

of the restriction of F on D; and a triangulation § ¢ D; satisfies the inequality
dist(S,T) < O(N), then S & Ty(N). Therefore the number of simplices of S is
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greater than N. Since D; contains a triangulation T, from Tu(y(N)), F(T) £
F(T,) < F(S). Hence, F(S) 2 F(T).

To prove 2) note that there exists an algorithm working in a ume bounded by
a recursive function of N which for a given N and T € Tu(y(NV)) finds the set
D; containing T. (It uses the algorithm finding the O(N)-ball in the metric dist
around T in Ty(N) in the same fashion as the algorithm, described in the proof of
Lemma 3.2 uses an algorithm A4.) Thus, similarly to the proof of Lemma 3.2, we
can conclude that a collection of representatives from sets D; N Ty (y(N)) for all
ie{1,...,1} is sufficient to construct Ty(P(N)) and solve the recognition prob-
lem for all triangulations with < ¥(N) simplices in a time bounded by a recur-
sive function 4; of y(N). This argument yields an upper bound const y(N)Iny(N)!

for kM_AER,XZ )). The comparison with the lower bound provided by Lemma 3.1
implies the required lower bound for [ quite similarly to the proof of

Theorem 1.1. O
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Abstract: We define and study the properties of observables associated to any link
in £ x R (where X is a compact surface) using the combinatorial nESaN»:.o: &.
hamiltonian Chern—Simons theory. These observables are traces of holonomies in
a non-commutative Yang-Mills theory where the gauge symmetry is w:mEnm c%.w
quantum group. We show that these observables are link invariants taking <E=nm. in
a non-commutative algebra, the so-called Moduli Algebra. When 2 = .m..m Eo.mo link
invariants are pure numbers and are equal to Reshetikhin-Turaev link invariants.

1. Introduction

Since the fundamental discovery by V. Jones in 1984 of a new link invariant, there
has been a tremendous interest and activity in low dimension topology using field
theory techniques. The original definition of the Jones 10.%:95& was purely com-
binatorial and a geometrical understanding of it was finally given by E. Witten
in 1989 [22]. He showed that the Jones polynomial could be interpreted as the
correlation function of Wilson loops (i.e. traces of holonomies) in Chem-Simons
theory. His work opened a new area of research in what is now called ﬁ._‘:,on .&-
mensional topological field theory. Although this theory is purely Suo_.om_om_ (ie.
in a hamiltonian picture the hamiltonian is zero) and therefore contains no dy-
namics, the quantization of this theory is not at all a trivial task, mainly voowc.mo
there is no direct procedure to quantify this theory. The original method of m Wit-
ten is a brilliant use of path integrals, heuristic regularization (by a mBBva.Sa
Wilson loops and relations with conformal field theory. Although very wvvn.m__:m
and having far reaching consequences, his formalism is not at all B&roBmsow:v\
well defined and this is one of the reasons why many researchers in this field
have used other approaches. These methods can be roughly divided in two classes:
perturbative and non-perturbative methods. On the one hand perturbative methods
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