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Abstract

Two well-known questions in differential geometry are “Does every compact
manifold of dimension greater than four admit an Einstein metric?” and
“Does an Einstein metric of a negative scalar curvature exist on a sphere?”
We demonstrate that these questions are related: For every n > 5 the ex-
istence of metrics for which the deviation from being Einstein is arbitrarily
small on every compact manifold of dimension n (or even on every smooth
homology sphere of dimension n) implies the existence of metrics of negative
Ricci curvature on the sphere S™ for which the deviation from being Einstein
is arbitrarily small: Furthermore, assuming either a version of the Palais-
Smale condition or the plausible looking existence of an algorithm deciding
when a given metric on a compact manifold is close to an Einstein metric,
we show for any n > 5 that: 1) If every n-dimensional smooth homology
sphere admits an Einstein metric then S™ admits infinitely many Einstein
structures of volume one and of negative scalar curvature; 2) If every com-
pact n-dimensional manifold admits an Einstein metric then every compact
n-dimensional manifold admits infinitely many distinct Einstein structures
of volume one and of negative scalar curvature.

Einstein metrics are metrics of constant Ricci curvature, i.e. solutions of
the Einstein equation Ric, = Ag, where X is a constant. Isometry classes of
Einstein metrics are called Einstein structures. Many facts about Einstein
structures can be found in [Be] and {S]. A study of Einstein structures is
motivated by possible applications to General Relativity and also, according
to [Be], by the following question of R. Thom: “Are there any best (or
nicest) Riemannian structures on a given compact manifold M?” (Einstein
structures are natural candidates to be considered as nice structures.) One
of our results (Theorem 3) is that there is no quite satisfactory positive
answer to Thom’s question. More precisely, assume that one defines nice
structures in such a manner that: 1) (Existence) A nice structure exists on
every compact manifold of a fixed dimension n > 5; 2) (Scale-invariance) If
a metric is nice, then metries obtained by the multiplication of this metric
by a positive constant are nice; and 3) (Recognizability) Tt is possible to
recognize when a given Riemanuian structure is close to a nice structure.
Then the set of nice structures of volume one for every compact manifold
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of the dimension n is infinite. This result follows F.:: S. 2.:3_,,3<.m theorem
stating the non-existence of an :_Ei::?:;.cm:_s:.m S™ in the class of n-
dimensional manifolds (or even n-dimensional :o.:_o_cm% wvrc:.mv. (In n.ro
.vaob&x“ we present the proof of a smooth version cM this theorem ‘.5:0&
we use in this paper.) The main idea ﬁ.vm this paper is that a mrmma_mcz%
good positive answer for Thom’s question sR.EE imply the wx_mnmc.nm of
an algorithm recognizing S™, which is impossible. The same idea will be
used to prove other results of the paper. Informally, Theorem 1 below
states that the existence of almost Einstein metrics on homology m.vwmnwm
with “large” fundamental groups implies the existence of &Eoﬁ. mimam_n
metrics with negative scalar curvature on S™, (n > 5). Note that in view of
results of [L] the existence of such metrics seems quite plausible. Theorem 2
states that the existence of Einstein metrics on homology spheres implies the
existence of infinitely many distinct Einstein structures of volume one .mca wm
negative scalar curvature on S” if a plausible conjecture about w_mo.:nrs_o
recognizability of Einstein metrics (namely, statement (D) below) is true.
Formulating these theorems the author was, in particular, motivated by the
hope that more complicated topology of the space of Riemannian structures

“on homology spheres with “large” fundamental groups will make proving the

existence of Einstein metrics of negative scalar curvature on such homology
spheres easier than proving the existence of such metrics on S™ (see also
the discussion before the proof of Theorem 1 below).

Let us say that a compact manifold M almost admits an Einstein metric
of negative scalar curvature if there exists an infinite sequence of metrics
{#:i} on M such that the (C°) norm of the tensor Ric,, + y; tends to zero.
(It is clear that if M admits an Einstein metric of negative scalar curvature,
then multiplying this metric by a positive constant one gets an Einstein
metric g of scalar curvature —n (hence, Ricy + g = 0).) Note that this defi-
nition of the intuitive concept of “almost Einstein metrics” can be modified
in various ways, if necessary. It can be replaced, for example, by the follow-
ing definition (and all results below will remain true): Fix arbitrary positive
integer k;. We could demand the existence of a sequence of Riemannian
metrics on M such that exp(||R||cx, Diam? max{1, 1/vol})||Ric + g|| — 0
for this sequence. (R is the curvature tensor of a metric, vol is its volume,
and Diam is its diameter). Or, alternatively, we could demand the existence
of a sequence of Riemannian metrics on M such that Diam?||Ric +g]| — 0
for this sequence. More generally, we could put before || Ric + g|| any com-
putable function of volume, diameter and || R]|x, -

THEOREM 1. Assume that for some n > 5 every n-dimensional smooth
homology sphere with fundamental group of exponential growth almost ad-
mits an Einstein metric of negative scalar curvature. Then S™ almost admits
an Einstein metric of negative scalar curvature. A
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Riemannian structure on a compact manifold can be approximated to any
accuracy by isometry classes of such Nash submanifolds.) We used Nash
submanifolds of Euclidean space only as a way to approximately represent
a Riemannian manifold by a finite set of data. Alternatively, one can use
other ways to represent Riemannian manifolds by a finite set of rational
or algebraic numbers in this definition. For example, one can represent
Riemannian manifolds as was done in the proof of Theorem 1.

THEOREM 3. Let n > 5 be fixed. Assume that for every compact mani-
fold of dimension n Nice(M) is a non-empty set of Riemannian structures
of volume one on M, and Jy Nice(M) is recognizable. Then for every
compact n-dimensional manifold M Nice(M) is an infinite set.

anifa

Assume that for some n > 5 every compact :-&Em:mwomm:ﬂ.@::ca?s

admits an Einstein metric. Then we can regard the set of Einstein structures
of volume one on M as Nice(M). Theorem 3 immediately implies that:

THEOREM 4. For anyn > 5 at least one of the following three statements
is false:
(1) Every compact n-dimensional manifold admits an Einstein metric;
(2) There exists a compact n-dimensional manifold admitting only a fi-
nite number of Einstein structures of volume one;
(3) The set of Einstein structures on compact n-dimensional manifolds
is recognizable.

Similarly to the proof of Theorem 2, one can alternatively replace state-
ment (3) in the text of Theorem 4 by the analogue of statement (D) for-
mulated above, but where g is allowed to be a Riemannian metric on any
compact manifold of dimension n and not just only on S™.

Appendix. A Smooth Version of S. Novikov’s Theorem

Here we are going to give the proof of a smooth version of S. Novikov’s
theorem on the algorithmic unrecognizability of S", n > 5, in the class of
non-singular algebraic hypersurfaces in R*t1. Qur exposition is based on
Novikov's proof sketched in [VKuF, ch. 10] and uses some technicalities from
[BooHPo) and some ideas from semialgebraic geometry (cf. [Co], [BoCoRY)).

THEOREM . For any n > 5 there is no algorithm which for a given d and a
vector of coefficients of a polynomial p : R"*+! — R with rational coefficients
such that the zero set Z(p) of p is non-empty, compact and non-singular,
decides whether or not Z(p) is diffeomorphic to the sphere S™.

)
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Proof: The general idea of Novikov is to prove the algorithmic unsolvability
of the triviality problem in the class of finitely presented groups with trivial
first and second homology groups. Such groups can be realized as funda-
mental groups of homology spheres of any dimension 7 > 5 (see [K]). The
problem of recognizing S™ among such homology spheres will be obviously
equivalent to the triviality problem for their fundamental groups and, thus,
unsolvable.

One starts from a finite presentation of a group G with an unsolvable
word problem. Using this presentation one can effectively construct a se-
quence of finite presentations of groups {G;} such that there is no algorithm
deciding which of them are finite presentations of the trivial group. (In other
words the set of indices i for which groups G are trivial is not recursive.)
(This construction was originally found independently by M. Rabin and
S. Adyan.) An explicit construction of such a sequence from a given finite
presentation of a group with an unsolvable word problem can be found in
M, pp. 13-14]. One can easily see from formulae on pp. 13-14 that groups
with these finite presentations have trivial first homology groups. Now
Novikov explicitly constructs for every group G; a finite presentation of an-
other group G, which turns out to be the universal central extension of G.
This finite presentation can be described as follows. Let F be the free group
generated by all generators fi,--., fr of Gi and R be the normal subgroup
of F generated by all relators gi,...,gm. Since Hy(G;) = Gi/|Gi,Gi] is
trivial, every generator f; of G; can be written as the product §;c;, where
m.... is a product of some powers of the relators of G; and c; € [F, F]. Define
G; as the group generated by fi,..., fi with relations §; = e, =1,...,k
and bbu.ba_&l_ =e l=1,...k,j=1,...,m. To show that the universal
central extension of G; is, indeed, isomorphic to G;, note that the universal
central extension of G; is isomorphic to [F, F|/[R, F] (cf. [Mi2, Corollary
5.8]). Consider the homomorphism ¥ of [F, F]/[R, F] onto G; which is the
composition of the inclusion of [F, F]/[R, F] into F/[R, F] and the natural
surjection of F/[R, F] onto G;. Obviously, this homomorphism is surjec-
tive. (The image of ¢; in [F, F]/[R, F] goes to the image of f; in G;.) To
show that 1 is injective note that ¥(u) = e in G; implies that u lifts to an
element @ in F which is equal to a product of powers of §’s modulo (R, F).
W.mﬂb:ﬁﬂm g’s we see that @ = :wn_ @wizo&m, F]. But @ = emod(F, F].
Since the images of §; in F/[F, F] form a system of linearly independent
generators of F/[F, F], all exponents n; are equal to zero, and @isin [R, F].
Therefore, u = e in [F, F]/[R, F], and ¥ is an isomorphism.

Groups G; have the following properties: (i) The first and the second
r@n.wo_om% groups of mw_. are trivial; (i1) mﬂ, is trivial if and only if G; is
trivial. Property (ii) is obvious. It implies that the triviality problem for
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the sequence {G;} is unsolvable. The triviality of H,(G;) follows from
Theorem 5.3 in [Mi2] or, alternatively, can be casily proven using the finite
presentation of Gy given above. Now Novikov notes that using homological
algebra one can show that Hy(G,) is trivial. This can be done for example
as follows (and the author wants to thank Vladimir Hinich who helped him
to reconstruct this part of the proof): To show the triviality of Hy(G;) not
that G; and the identical homomorphisin constitute the universal central
extension of G;. (This immediately follows from Theorem 5.3 in [Mi2].) But
the second homology group of a group H, such that H,(H) is trivial, is the
kernel of the homomorphism of the universal central extension of H onto H
(cf. Corollary 5.8 in [Mi2]). Therefore Ho(G;) is trivial. Thus, we have an
effectively constructed sequence «Qw of finite presentations of groups with
trivial first and second homology groups such that the triviality problem for
this sequence is unsolvable. Now we are going to construct a sequence of
compact non-singular algebraic hypersurfaces S; in R"*! in such a manner
that S; are homology spheres and m,(S;) = G;. Observe that because S;
are hypersurfaces in R"*1 S; will be diffeomorphic to S™ if and only if G;
is trivial (cf. [Mil, ch. 9, Theorem A}). Thus, the construction of such a
sequence will complete the proof of the theorem.

First, for every ¢ we use the Dehn construction and then smooth out
the corners in order to build a smooth hypersurface @; in R™**! such that
m1(Q;) = G and all homology groups of ; but the second and the (n—2)th
are trivial (and the second homology group is the direct sum of several
copies of Z). The details can be found in [BooHPo|. Q; is the smoothed out
boundary of a sufficiently small neighborhood of a two-dimensional simpli-
cial complex K, embedded in R™*!| with fundamental group G;. Now we
use the fact that Hy(G,) is trivial. By virtue of H. Hopf’s theorem this fact
implies that the Hurewicz homomorphism mo(Q;) — H2(Q;) is surjective.
Thus, it is possible to realize the generators of H,(Q);) by spheroids. More-
over, using a general position argument these generators can be realized by
pairwise non-intersecting embedded spheres. These spheres will have trivial
normal bundles. (This fact easily follows from Lemma 3.5 in [KMi]. These
spheres can be effectively found by a trial and error algorithin which will be
described below.) Now we are going to kill one by one these generators by
surgeries, and we would like to perform these surgeries inside R™*1. At the
beginning the nubounded connected component U; of the complement of @;
in R**! is homotopy equivalent to the complement of the two-dimensional
complex I; in R**! and, thus, is 2-couneccted. So, any embedded sphere
o in @y, realizing a generator of H,((Q);), will be null homotopic in U;. If
n 41 > 7. then the standard general position arguinent implies that we
can always realize this homotopy by a 3-disc embedded in U;, meeting Qi
transversally along o, If n 4+ 1 = 6. then one must also apply the Whitney
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trick to get the embedded disk. Thus, we can perform the first surgery
inside R**1. After several surgeries we get a E:ownr hypersurface ;5. To
show that the next surgery can be done inside R**t! we need to demonstrate
that the first and the second homotopy groups of the outer connected com-
ponent Ui;j of the ooEEmBmE.Om @..N. are trivial. @..m. is the vc::;.pQ %Jm ﬂm
tubular neighborhood of a 3-dimensional complex K;; mEWQEcL in R*+1
Thus, U;; is homotopy equivalent to the noEEmBo:‘n om K;;. . If n +1< 7
this implies that U;; is 9-connected. If n + 1 = 6, this immediately :svrww
that U;; is simply connected. In oaoa. to show that mo(U;;) = EMAS.V.G
trivial, note that H3(;;) is trivial (this follows from the fact that Ha(K)
was free abelian and K;; was obtained from K; by adding several 3-cells
killing several linearly independent generators of Hy(K;)), and apply the
Alexander duality theorem.

When all generators of the second homology group of @; will be killed, we
must smooth out the corners. The result will be a compact hypersurface S;
which is a boundary of a small neighborhood of a finite 3-dimensional acyclic
complex K; such that 7 (I{;) = Gi. It is easy to see that the fundamental
group of the constructed hypersurface is isomorphic to 7 (K;) and, thus,
to G;. Using the Mayer-Vietoris exact sequence and the Alexander duality
theorem one can easily see that the constructed hypersurface is a homology
sphere.

All steps of the construction described above are, in fact, effective. But
the shortest way to show the existence of an algorithm constructing homol-
ogy spheres S; is to use a semialgebraic trial and error algorithm (somewhat
similar to the algorithm described in the proof of Theorem 1). For example,
to perform the smoothing of the corners on the last stage, we look for a
polynomial p € Q[z;,...,Zn41] such that its gradient does not vanish at
any point of its zero set Z(p), and such that its zero set approximates the
piecewise smooth (semialgebraic) hypersurface () obtained at the previous
stage in the following sense. Let r(Z(p)) denote the injectivity radius of the
normal exponentional map for Z(p). (Informally, r(Z(p)) is the maximal
radius of the non-selfintersecting open tube around Z(p).) We require that
on the normal to every point 2 € Z(p) there exists a single point y(2) € Q
such that |z — y(z)| < 7(Z(p))/2, and the map z — y(z) is a homeomor-
phism. It is not difficult to check that this condition is a first order formula
in the theory of real closed ficlds. (Here we regard the coefficients of p as
real variables.) By virtue of the Tarski-Seidenberg theorem (cf. [Co}, [Bo-
CoR}) this condition can be verified for every fixed vector of cocfficients of
a polynomial of n + 1 variables. Thus, we can find p checking one-by-one all
polynomials of degree d with rational coefficients with the numerator and
denominator bounded by M (and gradually raising d and A).

Also, to find the disjoint embedded spheres realizing generators of Ha(Q,)
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(represented by simplicial chains in a triangulation of @Q;) we should look
for a collection of disjoint polynomial (over Q) embeddings of S2 not to the
manifold Q; but to its neighborhood N(Q;) of a sufficiently small radius
(say, half the injectivity radius of the normal exponential map for @;). For
every such embedding we check whether or not its projection to Q; is an
embedded sphere (this is a semialgebraic condition, as well as the disjoint-
ness with the other embeddings) and whether or not this sphere represents
the required element of H2(Q;). The fact that we will find such a collection
of embeddings in a recursive time follows from the fact that the algorithm
must stop for every i by virtue of the already proven existence part of the
construction. o

Remark: Observe that we could choose the original group G with unsolvable

word problem as we like. In particular, we can assume that G has the |

exponential growth. Now Lemma 3.6 from [M], which we used to construct

the groups G, implies that if G; is not trivial, then the original group

G embeds into G;. So, in this case G; is of exponential growth and has
unsolvable word problem. One can easily see, that G, is also a group of
exponential growth and has an unsolvable generalized word problem. .

Acknowledgements. [ would like to thank Professors Michael Gromov
and Gang Tian for stimulating discussions.

References
(A] M.T. ANDERSON, Ricci curvature bounds and Einstein metrics on compact
manifolds, J. Amer. Math. Soc. 2 (1989), 455-490.
[BT} E. BaLLIco, A. ToGNoLl, Algebraic models defined over @ of differentiable
manifolds, Geom. Dedicata, 42 (1992), 155-162.
Be] A. BEssE, Einstein Manifolds, Springer, 1987.
BoCoR] 1. BocHNak, M. CosTE, M.-F. Roy, Geometrie Algebrique Reelle, Springer,

1987.

[BooHPo] W. Boone, W. HAKEN, V. PoENARU, On recursively unsolvable problems
in Svo_o@~ and their n_wmm_mowSoP in “Contributions to Mathematical
Logic” (H. Arnold Schmidt, K. Scutte, H.-J. Thiele, eds.) North-Holland,

1968.

[C] J. CHEEGER, Finiteness theorems for Riemannian manifolds, Amer. J.
Math. 92 (1970), 61-74.

[Co] M. Coste, Ensembles semi-algebriques, in “Geometrie Algebrique Reelle

et Formes Quadratiques”, Journees S.M.F. Universite de Rennes (J.-L.
Colliot-Thelene, M. Coste, L. Mahe, M.-F. Roy, eds.) Springer, LN in
Math. 959 (1982), 109-138.

[G1] M. GroMov, Hyperbolic manifolds, groups and actions, in: “Riemannian
Surfaces and Related Topics” (I. Kra, B. Maskit, eds.) Princeton Univ.
Press, Ann. of Math. Studies 97 (1981), 183-215.

[G2] M. Gromov, Asymptotic invariants of infinite groups, preprint
IHES/M/92/8.
[K] M. KEervaiRg, Smooth homology spheres and their fundamental groups,

Trans. Amer. Math. Soc. 144 (1969}, 67-72.

Vol.5, 1995 EINSTEIN STRUCTURES: EXISTENCE VERSUS UNIQUENESS 91
©ol.5,

:A?E M. KERVAIRE, J. MILNOR, Groups of homotopy spheres I, Ann. of Math.
77 (1963), 504-537.

?_ J. Locukamp, Negatively curved Ricci manifolds, Bull. Amer. Math. Soc.
27 (1992), 288-291.

M] C.F. MiLLER, Decision problems for groups - survey and reflections, in
“Combinatorial Group Theory” (G. Baumslag, C.F. Miller, eds.), Springer,
1989.

Em: J. MILNOR, Lectures on the h-cobordism Theorem, Princeton Univ. Press,
1965.

[Mi2] J. MiLnoRr, Introduction to Algebraic K- :503.. Princeton Univ. Press,
Ann. of Math. Studies 72 (1971).

[N1] A. NaBUTOVsKY, Isotopies and non-recursive functions in real algebraic
geometry, in “Real Algebraic Geometry” (M. Galbiati, A. Tognoli, eds.),
Springer, LN in Math., 1420 (1990), 194-205.

[N2] A. NABUTOVSKY, anannn% of spaces of objects with complexity: algebraic
hypersurfaces, knots “with thick ropes” and semi-linear elliptic boundary
value problems, Ph.D. Thesis, The Weizmann Institute of Science, 1992.

[N3] A. Nasurtovsky, Non-recursive functions, knots “with thick ropes”, and
self-clenching “thick” hypersurfaces”, to appear in Comm. on Pure and
Appl. Math.

(Pl S. PETERS, Cheeger’s finiteness theorem for diffeomorphism classes of Rie-
mannian manifolds, J. fur die reigne und angew. Math. 349 (1984), 77-82.

[Pe] P. PETERSEN V, Gromov-Hausdorft convergence of metric spaces, Proc. 0».
Symp. in Pure Math. 54:3 (1993), 489-504.

[s] R. ScHOEN, Variational theory for the total scalar curvature functional

for Riemannian metrics and related topics, Springer, LN in Math., 1365
(1989), 120-154.

[VKuF] LA. VoroDIN, V.E. KuzNETzov, A.T. FoMENKO, The problem of discrim-
inating algorithmically the standard three-dimensional sphere, Russian
Math. Surveys 29:5 (1974), 71-172.

Alexander Nabutovky
Courant Inst. of Math. Sci. and Dept. of Math.
New York Univ. Univ. of Toronto
251 Mercer Street Toronto
New York, NY 10012 Ontario, M5S 1A1,
USA Canada
e-mail: nabutovk@cims.nyu.edu e-mail: alex@math.toronto.edu
Submitted: April 1994



