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Abstract. Let S = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0} be a basic closed

semialgebraic set defined by real polynomials gi. Putinar’s Positivstellensatz

says that, under a certain condition stronger than compactness of S, every real

polynomial f positive on S posesses a representation f =
∑

m

i=0
σigi where

g0 := 1 and each σi is a sum of squares of polynomials. Such a representation

is a certificate for the nonnegativity of f on S. We give a bound on the degrees

of the terms σigi in this representation which depends on the description of

S, the degree of f and a measure of how close f is to having a zero on S. As
a consequence, we get information about the convergence rate of Lasserre’s

procedure for optimization of a polynomial subject to polynomial constraints.

1. Introduction

Always write N := {0, 1, 2, . . . } and R for the sets of nonnegative integers and
real numbers, respectively. Denote by R[X̄] the ring of polynomials in n ≥ 1

indeterminates X̄ := (X1, . . . , Xn). We use suggestive notation like R[X̄]
2
:= {p2 |

p ∈ R[X̄]} for the set of squares and
∑

R[X̄]
2
for the set of sums of squares of

polynomials in R[X̄]. A subset M ⊆ R[X̄] is called a quadratic module if it contains
1 and it is closed under addition and under multiplication with squares, i.e.,

1 ∈M, M +M ⊆M and R[X̄]
2
M ⊆M.

A subset T ⊆ R[X̄] is called a preordering if it contains all squares in R[X̄] and it
is closed under addition and multiplication, i.e.,

R[X̄]
2 ⊆ T, T + T ⊆ T and TT ⊆ T.

In other words, the preorderings are exactly the multiplicatively closed quadratic
modules.

Throughout the article, we fixm ∈ N and a tuple ḡ := (g1, . . . , gm) of polynomials
gi ∈ R[X̄]. It will be convenient to set g0 := 1 ∈ R[X̄]. The quadratic module M(ḡ)
generated by ḡ (i.e., the smallest quadratic module containing each gi) is

(1) M(ḡ) =

m∑

i=0

∑

R[X̄]
2
gi :=

{
m∑

i=0

σigi | σi ∈
∑

R[X̄]
2

}

.

Using the notation
ḡδ := gδ11 . . . gδm

m ,
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the preordering T (ḡ) generated by ḡ can be written as

(2) T (ḡ) =
∑

δ∈{0,1}m

∑

R[X̄]
2
ḡδ :=







∑

δ∈{0,1}m

σδ ḡ
δ | σδ ∈

∑

R[X̄]
2






,

i.e., T (ḡ) is the quadratic module generated by the 2m products of gi. It is obvious
that all polynomials lying in T (ḡ) ⊇M(ḡ) are nonnegative on the set

S(ḡ) := {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Sets of this form are important in semialgebraic geometry (see [BCR]) and are called
basic closed semialgebraic sets. In 1991, Schmüdgen [Smn] proved the following
“Positivstellensatz” (a commonly used German term explained by the analogy with
Hilbert’s Nullstellensatz).

Theorem 1 (Schmüdgen). Suppose the basic closed semialgebraic set S(ḡ) is com-
pact. Then for every polynomial f ∈ R[X̄],

f > 0 on S(ḡ) =⇒ f ∈ T (ḡ).

Under a certain extra property on M(ḡ) which we will define now, this theorem
remains true with T (ḡ) replaced by its subset M(ḡ). We introduce the notation

‖X̄‖2 :=

n∑

i=1

X2
i ∈ R[X̄].

Definition 2. A quadratic module M ⊆ R[X̄] is called archimedean if

N − ‖X̄‖2 ∈M for some N ∈ N.

Note that this definition applies also to preorderings since every preordering is a
quadratic module. As a corollary from Schmüdgen’s Theorem, we get the following
well-known characterization of archimedean quadratic modules.

Corollary 3. For a quadratic module M ⊆ R[X̄], the following are equivalent.

(i) M is archimedean.
(ii) There is a polynomial p ∈M such that S(p) = {p ≥ 0} ⊆ R

n is compact.
(iii) There is a tupel ḡ of polynomials such that S(ḡ) is compact and M contains

the preordering T (ḡ).
(iv) For all p ∈ R[X̄], there is N ∈ N such that N − p ∈M .

Proof. Observe that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). All of these implications
are trivial except (iii) =⇒ (iv) which follows from Theorem 1. ¤

In particular, we see that S(ḡ) is compact if and only if T (ḡ) is archimedean.
Unfortunately, S(ḡ) might be compact without M(ḡ) being archimedean (see [PD,
Example 6.3.1]). What has to be added to compactness of S(ḡ) in order to ensure
that M(ḡ) is archimedean has been extensively investigated by Jacobi and Prestel
[JP, PD]. Now we can state the Positivstellensatz proved by Putinar [Put] in 1993.

Theorem 4 (Putinar). Suppose the quadratic module M(ḡ) is archimedean. Then
for every f ∈ R[X̄],

f > 0 on S(ḡ) =⇒ f ∈M(ḡ).
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Both the proofs of Schmüdgen and Putinar use functional analysis and real
algebraic geometry. They do not give information how to construct a representation
of f showing that f lies in the preordering (an expression like in (2) involving 2m

sums of squares) or the quadratic module (a representation like in (1) with m+ 1
sums of squares).

Based on an old theorem of Pólya [Pól], new proofs of both Schmüdgen’s and
Putinar’s Positivstellensatz have been given in [Sw1, Sw3] which are to some extent
constructive. By carefully analyzing a tame version of [Sw3] and using an effec-
tive version of Pólya’s theorem [PR], upper bounds on the degrees of the sums of
squares appearing in Schmüdgen’s preordering representation have been obtained
in [Sw2]. The aim of this article is to prove bounds on Putinar’s quadratic module
representation. They will depend on the same data but will be worse than the ones
known for Schmüdgen’s theorem.

Since it will appear in our bound, we will need a convenient measure of the size
of the coefficients of a polynomial. For α ∈ N

n, we introduce the notation

|α| := α1 + · · ·+ αn and X̄α := Xα1

1 · · ·Xαn
n

as well as the multinomial coefficient
(|α|
α

)

:=
|α|!

α1! . . . αn!
.

For a polynomial f =
∑

α aαX̄
α ∈ R[X̄] with coefficients aα ∈ R, we set

‖f‖ := max
α

|aα|
(
|α|
α

) .

This defines a norm on the real vector space R[X̄] with convenient properties il-
lustrated by Proposition 14 below. For any k ∈ R≥0, we now define convex cones
T (ḡ, k) and M(ḡ, k) in the finite-dimensional vector space R[X̄]≤k of polynomials

of degree at most k (i.e., at most bkc) by setting

T (ḡ, k) =







∑

δ∈{0,1}m

σδ ḡ
δ | σδ ∈

∑

R[X̄]
2
,deg(σδ ḡ

δ) ≤ k






⊆ T (ḡ) ∩ R[X̄]≤k,

M(ḡ, k) =

{
m∑

i=0

σδ ḡ
δ | σδ ∈

∑

R[X̄]
2
,deg(σδ ḡ

δ) ≤ k

}

⊆M(ḡ) ∩ R[X̄]≤k

We now recall the previously proved bound for Schmüdgen’s theorem.

Theorem 5 ([Sw2]). For all ḡ defining a basic closed semialgebraic set S(ḡ) which
is non-empty and contained in the open hypercube (−1, 1)n, there is some c ≥ 1
(depending on ḡ) such that for all f ∈ R[X̄] of degree d with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0,

we have

f ∈ T

(

ḡ, cd2

(

1 +

(

d2nd ‖f‖
f∗

)c))

.

In this article, we will prove the following bound for Putinar’s theorem.
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Theorem 6. For all ḡ defining an archimedean quadratic module M(ḡ) and a set
∅ 6= S(ḡ) ⊆ (−1, 1)n, there is some c ∈ R>0 (depending on ḡ) such that for all
f ∈ R[X̄] of degree d with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0,

we have

f ∈M

(

ḡ, c exp

((

d2nd ‖f‖
f∗

)c))

.

In both theorems above, there have been made additional assumptions compared
to Schmüdgen’s and Putinar’s original results. But these are not very serious
and have only been made to simplify the statements: For example, if S(ḡ) = ∅,
then −1 ∈ T (ḡ, k) for some k ∈ N by Schmüdgen’s theorem. Therefore 4f =
(f +1)2+(f −1)2(−1) ∈ T (ḡ, 2d+k) for each f ∈ R[X̄] of degree d ≥ 0. The other
hypothesis that S(ḡ) be contained in the open hypercube (−1, 1)n is only a matter
of rescaling by a linear (or affine linear) transformation on R

n. For example, if r > 0
is such that S(ḡ) ⊆ (−r, r)n, then Theorem 5 remains true with ‖f‖ replaced by
‖f(rX̄)‖. Here it is important to note that the property that M(ḡ) be archimedean
is preserved under affine linear coordinate changes. This is clear from Corollary 3.
Confer also the proof of Proposition 9 below.

In both Theorem 5 and 6, the bound depends on three parameters:

• The description ḡ of the basic closed semialgebraic set,
• the degree d of f and
• a measure of how close f comes to have a zero on S(ḡ), namely ‖f‖/f ∗.

The main difference between the two bounds is the exponential function appearing
in the degree bound for the quadratic module representation. It is an open research
problem whether this exponential function can be avoided. It could even be pos-
sible that the same bound than for Schmüdgen’s theorem holds also for Putinar’s
theorem. In view of the impact on the convergence rate of Lasserre’s optimization
procedure (see Section 2 below), this question seems very interesting for applica-
tions. Whereas the bound for the preordering representation cannot be improved
significantly (see [Ste]), this seems possible for the quadratic module representation.

The dependance on the third parameter ‖f‖/f ∗ is consistent with the fact that
the condition f∗ > 0 cannot be weakened to f∗ ≥ 0 in neither Schmüdgen’s nor
Putinar’s theorem. Under certain conditions (e.g., on the derivatives of f), both
theorems can however be extended to nonnegative polynomials (see [Sch, Mr2]).
With the partially constructive approach from [Sw4] to representation of nonneg-
ative polynomials with zeros, one might perhaps in the future gain bounds even
for the case of nonnegative polynomials which depend however on further data (for
example the norm of the Hessian at the zeros).

In special cases, Prestel had already proved the mere existence of a degree bound
for Putinar’s Theorem depending on the three parameters described above (see
[PD, Section 8.4] and [Pre]). He used model theory and valuation theory to get
the existence of such a bound. But the only information about the bound he gets
(using Gödel’s theorem on the completeness of first order logic) is that the bound
is computable.

In contrast to this, our more constructive approach yields information in what
way the above bound depends on the two parameters d and ‖f‖/f ∗. The constant
c depends on the description ḡ of the semialgebraic set, but no explicit formula is
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given. For a concretely given ḡ, one could possibly determine a constant c like in
Theorems 5 and 6 by a very (probably too) tedious analysis of the proofs (cf. [Sw2,
Remark 10]).

We conclude this introduction by considering the one variable case, i.e., n = 1.
Scheiderer showed in [Sch, Corollary 3.4] that, in this case, compactness of S(ḡ)
implies that M(ḡ) = T (ḡ) (and therefore M(ḡ) is archimedean). Now the equality
M(ḡ) = T (ḡ) implies in particular that ḡδ ∈ M(ḡ) for all δ ∈ {0, 1}m. As an easy
consequence, we get that Theorem 5 remains valid with T replaced by M in the
case of univariate polynomials. The bound in Theorem 6 is thus far from being
sharp in the one variable case. As said above, in the multivariate case it is not
known if the bound can be improved considerably.

The rest of the paper is organized as follows. In the next section, we use our
result to investigate the accuracy of Lasserre’s “sums of squares relaxations” for
optimization of polynomials. In Section 3, we give the proof of Theorem 6.

2. Convergence rate of Lasserre’s procedure

Consider the problem to compute (by a numerical procedure, i.e., up to some
prescribable error) the minimum

(3) f∗ := min{f(x) | x ∈ S(ḡ)}
of a polynomial f ∈ R[X̄] on a non-empty basic closed semialgebraic set S(ḡ).
In other words, you want to minimize a polynomial under polynomial inequality
constraints. When all the polynomials involved are linear, i.e., of degree ≤ 1, this
is a linear optimization problem (a linear program) and there are very efficient
algorithms to solve this problem. For general polynomials this problem gets very
hard. It is therefore a common approach to solve a much easier related problem, a
so called relaxation, namely to compute for k ∈ N,

(4) f∗k := sup{a ∈ R | f − a ∈M(ḡ, k)} ∈ R ∪ {−∞}
which is clearly a lower bound of f∗. The problem of finding f∗k can be written as a
semidefinite program whose size gets bigger when k grows (see the references below).
Semidefinite programming is a well-known generalization of linear programming for
which very efficient algorithms exist (see for example [Tod]). One can now solve
a sequence of larger and larger semidefinite programs in order to get tighter and
tighter lower bounds for f∗. Lasserre [Las] was the first to interpret Putinar’s
theorem as a convergence result.

Indeed, it is easy to see that Putinar’s theorem just says that the ascending
sequence (f∗k )k∈N converges to f∗ under the condition that M(ḡ) be archimedean.
In this section, we will interprete our bound for Putinar’s Positivstellensatz as a
result about the speed of convergence of this sequence.

For an introduction to the interplay of semidefinite programming, sums of squares,
optimization of polynomials and results about positive polynomials, we refer to
[Las, Mr1, Sw1] (with special regard to Putinar’s Positivstellensatz) and [JL, NDP,
NDS, PS]. There are several software tools which translate the problem of com-
puting f∗k into a semidefinite program and call a semidefinite programming solver.
See [HL, KKW, Löf, SoS].

The following technical lemma will also be needed in Section 3.
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Lemma 7. For any polynomial f ∈ R[X̄] of degree d ≥ 1 and all x ∈ [−1, 1]n,
|f(x)| ≤ 2dnd‖f‖.

Proof. Writing f =
∑

α aα
(
|α|
α

)
X̄α (aα ∈ R), we have ‖f‖ = maxα |aα| and

|f(x)| =
∣
∣
∣
∣
∣

∑

α

aα

(|α|
α

)

xα1

1 · · ·xαn
n

∣
∣
∣
∣
∣
≤
∑

α

|aα|
(|α|
α

)

|x1|α1 · · · |xn|αn .

for all x ∈ [−1, 1]n. Using that |aα| ≤ ‖f‖ and |xi| ≤ 1, the multinomial identity

now shows that |f(x)| ≤ ‖f‖∑d
k=0 n

k ≤ (d+ 1)nd‖f‖ ≤ 2dnd‖f‖. ¤

Now we are ready to prove the main theorem of this section.

Theorem 8. For all polynomials ḡ defining an archimedean quadratic moduleM(ḡ)
and a set ∅ 6= S(ḡ) ⊆ (−1, 1)n, there is some c > 0 (depending on ḡ) such that
for all f ∈ R[X̄] of degree d with minimum f∗ on S and for all integers k >
c exp((2d2nd)c), we have

(f − f∗) +
6d3n2d‖f‖

c

√

log k
c

∈M(ḡ, k)

and hence

0 ≤ f∗ − f∗k ≤
6d3n2d‖f‖

c

√

log k
c

where f∗k is defined as in (4).

Proof. Given ḡ, we choose c > 0 like in Theorem 6. Now let f ∈ R[X̄] be of degree
d with minimum f∗ on S and

(5) k > c exp((2d2nd)c)

be an integer. The case d = 0 is trivial. We assume therefore d ≥ 1. Note that
k > c and hence log(k/c) > 0. Setting

(6) a :=
6d3n2d‖f‖

c

√

log k
c

,

all we have to prove is h := f − f∗ + a ∈M(ḡ, k) because the second claim follows
from this. By our choice of c and the observation deg h = deg f = d, it is enough
to show that

c exp

((

d2nd ‖h‖
a

)c)

≤ k,

or equivalently

d2nd‖h‖ ≤ a
c

√

log
k

c
= 6d3n2d‖f‖.

Observing that ‖h‖ ≤ ‖f‖+ |f∗|+ a, it suffices to show that

‖f‖+ |f∗|+ a ≤ 6dnd‖f‖.
Lemma 7 tells us that |f∗| ≤ 2dnd‖f‖ and we are thus reduced to verify that

a ≤ (4dnd − 1)‖f‖
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which is by (6) equivalent to

6d3n2d ≤ (4dnd − 1)
c

√

log
k

c
.

By (5), it is finally enough to check that 6d3n2d ≤ (4dnd − 1)(2d2nd). ¤

As already said in the introduction, the hypothesis that S(ḡ) is contained in the
open unit hypercube is just a technicality to avoid that the bound gets even more
complicated. In fact, if one does not insist on all the information given in Theorem
8, one gets a corollary which is easy to remember and still gives the most important
part of information.

Corollary 9. Suppose M(ḡ) is archimedean, S(ḡ) 6= ∅ and f ∈ R[X̄]. There is

• a constant c > 0 depending only on ḡ and
• a constant c′ > 0 depending on ḡ and f

such that for f∗ and f∗k as defined in (3) and (4),

0 ≤ f∗ − f∗k ≤
c′

c

√

log k
c

for all large k ∈ N.

Proof. Without loss of generality, assume f 6= 0. Set d := deg f . Since M(ḡ)
is archimedean, S(ḡ) is compact. We can hence choose a rescaling factor r > 0
depending only on ḡ such that S(ḡ(rX̄)) ⊆ (−1, 1)n. Here ḡ(rX̄) denotes the tuple
of rescaled polynomials gi(rX̄). Now Theorem 8 applied to g(rX̄) instead of ḡ yields
c > 0 that will together with c′ := 6d3n2d‖f(rX)‖ have the desired properties by
simple scaling arguments. ¤

Remark 10. The bound on the difference f ∗ − f∗k presented in this section is much
worse than the corresponding one presented in [Sw2, Section 2] which is based on
preordering representations (i.e., where f ∗k would be defined using T (ḡ) instead of
M(ḡ)). This raises the question whether it is after all not such a bad thing to use
preordering (instead of quadratic module) representations for optimization though
they involve the 2m products ḡδ letting the semidefinite programs get huge when
m is not small. However, it is not known if Theorem 8 holds perhaps even with the
bound from [Sw2, Theorem 4]. Compare also [Sw2, Remark 5].

3. The proof

In this section, we give the proof of Theorem 6. The three main ingredients are

• the bound for Schmüdgen’s theorem presented in Theorem 5 above,
• ideas from the (to some extent constructive) proof of Putinar’s theorem in

[Sw3, Section 2] and
• the ÃLojasiewicz inequality from semialgebraic geometry.

We start with some simple facts from calculus.

Lemma 11. If 0 6= f ∈ R[X̄] has degree d, then

|f(x)− f(y)| ≤ ‖x− y‖d2nd−1
√
n‖f‖

for all x, y ∈ [−1, 1]n.
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Proof. Denoting by Df the derivative of f , by the mean value theorem, it is enough
to show that

(7) |Df(x)(e)| ≤ d2nd−1
√
n‖f‖

for all x ∈ [−1, 1]n and e ∈ R
n with ‖e‖ = 1. A small computation (compare the

proof of Lemma 7) shows that

∣
∣
∣
∣

∂f(x)

∂xi

∣
∣
∣
∣
≤ ‖f‖

d∑

k=1

k(|x1|+ · · ·+ |xn|)k−1 ≤ ‖f‖
d∑

k=1

knk−1 ≤ ‖f‖d2nd−1,

from which we conclude for all x ∈ [−1, 1]n and e ∈ R
n with ‖e‖ = 1,

|Df(x)(e)| =
∣
∣
∣
∣
∣

n∑

i=1

∂f(x)

∂xi
ei

∣
∣
∣
∣
∣
≤

n∑

i=1

∣
∣
∣
∣

∂f(x)

∂xi

∣
∣
∣
∣
· |ei| ≤ ‖f‖d2nd−1

n∑

i=1

|ei|.

Because for a vector e on the unit sphere in R
n,
∑n

i=1 |ei| can reach at most
√
n,

this implies (7). ¤

Remark 12. For all k ∈ N and y ∈ [0, 1],

(y − 1)2ky ≤ 1

2k + 1
.

The next lemma is a version of [Sw3, Lemma 2.3] caring about complexity issues.
In [Sw3, Lemma 2.3], it is shown that, if C ⊆ R

n is any compact set, gi ≤ 1 on C
for all i and f ∈ R[X̄] is a polynomial with f > 0 on S(ḡ), then there exists λ ≥ 0
such that for all sufficiently large k ∈ N,

(8) f − λ

m∑

i=1

(gi − 1)2kgi > 0 on C.

The idea is that, if you want to show that f ∈ M(ḡ), you first subtract another
polynomial from f which lies obviously in M(ḡ) such that the difference can be
proved to lie in M(ḡ) as well. This other polynomial must necessarily be nonneg-
ative on S(ḡ) but it should take on only very small values on S(ḡ) so that the
difference is still positive on S(ḡ). On the region where you are outside and not too
far away from S(ḡ), the polynomial you subtract should take large negative values
so that the difference gets positive on this region outside of S(ḡ) (where f itself
might be negative). The hope is that the difference satisfies an improved positivity
condition which will help us to show that it lies inM(ḡ). To understand the lemma,
it is helpful to observe that the pointwise limit for k →∞ of this difference, which
is the left hand side of (11), is f on S(ḡ) and ∞ outside of S(ḡ).

Lemma 13. For all ḡ such that S := S(ḡ) ∩ [−1, 1]n 6= ∅ and gi ≤ 1 on [−1, 1]n,
there are c0, c1, c2 > 0 with the following property:
For all polynomials f ∈ R[X̄] of degree d with minimum f∗ > 0 on S, if we set

(9) L := d2nd−1 ‖f‖
f∗

, λ := c1d
2nd−1‖f‖Lc2

and if k ∈ N satisfies

(10) 2k + 1 ≥ c0(1 + Lc0),
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then the inequality

(11) f − λ

m∑

i=1

(gi − 1)2kgi ≥
f∗

2

holds on [−1, 1]n.

Proof. By the ÃLojasiewicz inequality for semialgebraic functions (Corollary 2.6.7 in
[BCR]), we can choose c2, c3 > 0 such that

(12) dist(x, S)c2 ≤ −c3 min{g1(x), . . . , gm(x), 0}

for all x ∈ [−1, 1]n where dist(x, S) denotes the distance of x to S. Set

c4 := c3(4n)
c2 ,(13)

c1 := 4nc4(14)

and choose c0 ∈ N big enough to guarantuee that

c0(1 + rc0) ≥ 2(m− 1)c4r
c2 and(15)

c0(1 + rc0) ≥ 4mc1r
c2+1(16)

for all r ≥ 0. Now suppose f ∈ R[X̄] is of degree d with minimum f∗ > 0 on S and
consider the set

A :=

{

x ∈ [−1, 1]n | f(x) ≤ 3

4
f∗
}

.

By Lemma 11, we get for all x ∈ A and y ∈ S

f∗

4
≤ f(y)− f(x) ≤ ‖x− y‖d2nd−1

√
n‖f‖ ≤ ‖x− y‖d2nd‖f‖.

Since this is valid for arbitrary y ∈ S, it holds that

f∗

4d2nd‖f‖ ≤ dist(x, S)

for all x ∈ A. We combine this now with (12) and get

min{g1(x), . . . , gm(x)} ≤ − 1

c3

(
f∗

4d2nd‖f‖

)c2

for x ∈ A. We have omitted the argument 0 in the minimum which is here redundant
because of A ∩ S = ∅. By setting

(17) δ :=
1

c4Lc2
> 0,

where we define L like in (9), and having a look at (13), we can rewrite this as

(18) min{g1(x), . . . , gm(x)} ≤ −δ.

Define λ and k like in (9) and (10). For later use, we note

(19) λ = c1L
c2+1f∗.
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We claim now that

f +
λδ

2
≥ f∗

2
on [−1, 1]n,(20)

δ

2
≥ m− 1

2k + 1
and(21)

f∗

4
≥ λm

2k + 1
.(22)

Let us prove these claims. If we choose in Lemma 11 for y a minimizer of f on
S, we obtain

|f(x)− f∗| ≤ diam([−1, 1]n)d2nd−1
√
n‖f‖ = 2

√
nd2nd−1

√
n‖f‖ = 2d2nd‖f‖

for all x ∈ [−1, 1]n, noting that the diameter of [−1, 1]n is 2
√
n. In particular, we

observe

f ≥ f∗ − 2d2nd‖f‖ ≥ f∗

2
− 2d2nd‖f‖ on [−1, 1]n.

Together with the equation
λδ

2
= 2d2nd‖f‖,

which is clear from (9), (14) and (17), this yields (20). Using (10), (15) and (17),
we see that

(2k + 1)δ ≥ c0(1 + Lc0)δ ≥ 2(m− 1)c4L
c2δ = 2(m− 1)

which is nothing else than (21). Finally, we exploit (10), (16) and (19), to see that

(2k + 1)f∗ ≥ c0(1 + Lc0)f∗ ≥ 4mc1L
c2+1f∗ = 4mλ,

i.e., (22) holds.
Now (20), (21) and (22) will enable us to show our claim (11). If x ∈ A, then in

the sum

(23)
m∑

i=1

(gi(x)− 1)2kgi(x)

at most m − 1 summands are nonnegative. By Remark 12, these nonnegative
summands add up to at most (m− 1)/(2k+1). At least one summand is negative,
even ≤ −δ by (18). All in all, if we evaluate the left hand side of our claim (11) in
a point x ∈ A, then it is

≥ f(x)− λ
m− 1

2k + 1
+ λδ ≥ f(x) +

λδ

2
︸ ︷︷ ︸

≥ f∗

2
by (20)

+λ

(
δ

2
− m− 1

2k + 1

)

︸ ︷︷ ︸

≥0 by (21)

≥ f∗

2
.

When we evaluate it in a point x ∈ [−1, 1]n \ A, all summands of the sum (23)
might happen to be nonnegative. Again by Remark 12, they add up to at most
m/(2k+1). But at the same time, the definition of A gives us a good lower bound
on f(x) so that the result is

≥ 3

4
f∗ − λ

m

2k + 1
≥ f∗

2
+
f∗

4
− λm

2k + 1
︸ ︷︷ ︸

≥0 by (22)

≥ f∗

2
.

¤



PUTINAR’S POSITIVSTELLENSATZ 11

Proposition 14. If p, q ∈ R[X̄] are both homogeneous (i.e., all of their respective
monomials have the same degree), then ‖pq‖ ≤ ‖p‖‖q‖. For arbitrary s ∈ N and
polynomials 0 6= p1, . . . , ps ∈ R[X̄], we have

‖p1 · · · ps‖ ≤ (1 + deg p1) · · · (1 + deg ps)‖p1‖ · · · ‖ps‖.
Proof. The statement for homogeneous p and q can be found in [Sw2, Lemma 8].
The second claim follows from this by writing each pi as a sum pi =

∑

k pik of
homogeneous degree k polynomials pik. Multiply the pi by distributing out all such
sums and apply the triangle inequality to the sum which arises in this way. Then
use

‖p1k1
· · · psks

‖ ≤ ‖p1k1
‖ · · · ‖psks

‖ ≤ ‖p1‖ · · · ‖ps‖.
Now factor out ‖p1‖ · · · ‖ps‖ and recombine the terms of the sum which now are all
constant 1. ¤

Lemma 15. For all c1, c2, c3 > 0, there is c > 0 such that

c1 exp(c2r
c3) ≤ c exp(rc) for all r ≥ 0.

Proof. Choose any c ≥ c1 exp(c22
c3) such that c3 ≤ c/2 and c2 ≤ 2c/2. Then for

r ∈ [0, 2],
c1 exp(c2r

c3) ≤ c1 exp(c22
c3) ≤ c ≤ c exp(rc)

and for r ≥ 2 (observing that c1 ≤ c),

c1 exp(c2r
c3) ≤ c exp(2c/2rc/2) ≤ c exp(rc).

¤

We resume the discussion before Lemma 13. With regard to (11), we can for
the moment concentrate on polynomials positive on the hypercube [−1, 1]n. If
this hypercube could be described by a single polynomial inequality, i.e., if we had
[−1, 1]n = S(p) for some p ∈ R[X̄], then the idea would be to apply the bound for
Schmüdgen’s Positivstellensatz now. The clue is here that p is a single polynomial
and hence preordering and quadratic module representations are the same, i.e.,
T (p) = M(p). The following lemma works around the fact that [−1, 1]n = S(p) can
only happen when n = 1. We round the edges of the hypercube.

Lemma 16. Let S ⊆ (−1, 1)n be compact. Then 1 − 1
d − (X2d

1 + . . . X2d
n ) > 0 on

S for all sufficiently large d ∈ N.

Proof. Consider for each 1 ≤ d ∈ N the set

Ad :=

{

x ∈ S | x2d
1 + · · ·+ x2d

n ≥ 1− 1

d

}

.

This gives a decreasing sequence A1 ⊇ A2 ⊇ A3 ⊇ . . . of compact sets whose
intersection ∩∞d=1Ad is empty by calculus. By compactness, a finite subintersection
is empty, i.e., Ad = ∅ for all large d ∈ N. ¤

Note that in the proof of Putinar’s theorem in [Sw3, Section 2] where we were
not interested in complexity, a different approach has been taken. Condition (8)
has been established for a polyhedron C which is even bigger than the hypercube,
so big that preordering representations certifying nonnegativity on C can be turned
into quadratic module representations certifying nonnegativity on the hypercube.
The advantage was that we could use Pólya’s theorem [Pól] which is much more el-
ementary than Schmüdgen’s theorem. Despite the existence of the effective version
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[PR] of that theorem of Pólya, it seems that establishing positivity on such a big
polyhedron C is too expensive from the complexity point of view. Though it is not
so nice, we therefore work here with a rounded hypercube and Theorem 5 instead.

We finally attack the proof of Theorem 6.

Proof of Theorem 6. By a simple scaling argument, we may assume that ‖gi‖ ≤ 1
and gi ≤ 1 on [−1, 1] for all i. According to Lemma 16, we can choose d0 ∈ N such
that

p := 1− 1

d0
− (X2d

1 + · · ·+X2d
n ) > 0 on S(ḡ).

By Putinar’s Theorem 4, we have p ∈M(ḡ) and therefore

(24) p ∈M(ḡ, d1)

for some d1 ∈ N. Choose d2 ∈ N such that

(25) 1 + deg gi ≤ d2 for all i ∈ {1, . . . ,m}.
Now we choose c0, c1, c2 like in Lemma 13, define L and λ like in (9) and choose
the smallest k ∈ N satisfying (10). Then

(26) 2k + 1 ≤ c0(1 + Lc0) + 2.

Let c3 ≥ 1 denote the constant existing by Theorem 5 (which is there called c and
gives the bound for preordering representations of polynomials positive on S(ḡ)).
Using Lemma 15, it is easy to see that we can choose c4, c5, c6, c7, c ≥ 0 satisfying

c32
c3r2+2c3nc3r ≤ c4(exp(c4r))(27)

2r + 2c1r
c2+1d

r(1+rc0 )+1
2 ≤ c5 exp(r

c5)(28)

c4 exp(2c4d2r(1 + rc0 + 3)) ≤ c6 exp(r
c6)(29)

cc35 c6 exp(c3r
c5 + rc6) ≤ c7 exp(r

c7)(30)

c7 exp(r
c7) + d1 ≤ c exp(rc)(31)

for all r ≥ 0. Now let f ∈ R[X̄] be a polynomial of degree d ≥ 1 with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0.

We are going to apply Theorem 5 to

h := f − λ
m∑

i=1

(gi − 1)2kgi.

By Lemma 13, (11) holds for this polynomial, in particular

(32) h∗ := min{h(x) | x ∈ S(p)} ≥ f∗

2
.

By Proposition 14 and the definition of d2 in (25),

‖h‖ ≤ ‖f‖+ λd2k+1
2(33)

deg h ≤ max{d, (2k + 1)d2, 1} =: dh.(34)

By Theorem 5 (respectively the above choice of c3 ≥ 1), we get

(35) h ∈ T (p, kh) where kh := c3d
2
h

(

1 + d2
hn

dh
‖h‖
h∗

)c3

.
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Note that ‖h‖/h∗ ≥ 1 since 0 < h∗ ≤ h(0) ≤ ‖h‖. We use this to simplify the
degree bound in (35). Obviously

(36) kh ≤ c3d
2
h

(

2d2
hn

dh
‖h‖
h∗

)c3

≤ c32
c3d2+2c3

h nc3dh

(‖h‖
h∗

)c3

≤ c4 exp(c4dh)

(‖h‖
h∗

)c3

by choice of c4 in (27). Moreover, we have

(37)
‖h‖
h∗

≤ 2

f∗
(‖f‖+ λd2k+1

2 ) = 2
‖f‖
f∗

+ 2c1d
2k+1
2 Lc2+1

≤ 2L+ 2c1d
2k+1
2 Lc2+1 = 2L+ 2c1L

c2+1d
c0(1+Lc0 )+1
2 ≤ c5 exp(L

c5)

by (33), (32), (26), (19) and by the choice of c5 in (28). It follows that

dh ≤ d(2k + 2)d2 (by (34))

≤ d(c0(1 + Lc0) + 3)d2 (by (26))

≤ 2d2d
2nd ‖f‖

2dnd‖f‖ (c0(1 + Lc0) + 3)

≤ 2d2d
2nd ‖f‖

f∗
(c0(1 + Lc0) + 3) (by Lemma 7)

≤ 2d2nL(c0(1 + (nL)c0 + 3)) (by (9))

and therefore

(38) c4 exp(c4dh) ≤ c6 exp((nL)
c6)

for the constant c6 chosen in (29). We now get

kh ≤ c4 exp(c4dh)

(‖h‖
h∗

)c3

(by (36))

≤ c6 exp((nL)
c6)(c5 exp(L

c5))c3 (by (38) and (37))

= cc35 c6 exp(c3(nL)
c5 + (nL)c6)

≤ c7 exp((nL)
c7) (by choice of c7 in (30)).

Combining this with (35) and (24), i.e.,

h ∈ T (p, c7 exp((nL)
c7)) and p ∈M(ḡ, d1),

yields (by composing corresponding representations)

h ∈M(ḡ, c exp((nL)c))

according to the choice of c in (31). Finally, we have that

f = h+ λ

m∑

i=1

(gi − 1)2kgi ∈M(ḡ, c exp((nL)c))

since

deg((gi − 1)2kgi) ≤ dh ≤ kh ≤ c7 exp((nL)
c7) ≤ c exp((nL)c)

by choice of d2 in (25), dh in (34), kh in (35) and c in (31). ¤
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plexity 20, 529-543 (2004)
[Sw3] M. Schweighofer: Optimization of polynomials on compact semialgebraic sets, SIAM

Journal on Optimization 15, No. 3, 805–825 (2005)

[Sw4] M. Schweighofer: Certificates for nonnegativity of polynomials with zeros on compact
semialgebraic sets, Manuscripta Mathematica 117, No. 4, 407 - 428 (2005)



PUTINAR’S POSITIVSTELLENSATZ 15

[SoS] S. Prajna, A. Papachristodoulou, P. Seiler, P. Parrilo: SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB

http://www.cds.caltech.edu/sostools/

[Ste] G. Stengle: Complexity estimates for the Schmüdgen Positivstellensatz, J. Complexity
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