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Abstract

In this paper we prove the Upper Bound Conjecture (UBC ) for some
classes of (simplicial) homology manifolds: we show that the UBC holds
for all odd-dimensional homology manifolds and for all 2k-dimensional
homology manifolds A such that

B(A) <D {Bu(A) ik —2,kk+2and 1< <2k —1},

where 3;(A) are reduced Betti numbers of A. (This condition is satisfied
by 2k-dimensional homology manifolds with Euler characteristic x < 2
when k is even or x > 2 when k is odd, and for those having vanishing
middle homology.)

We prove an analog of the UBC for all other even-dimensional homol-
ogy manifolds.

Kuhnel conjectured that for every 2k-dimensional combinatorial man-
ifold with n vertices, (—1)*(x(A) — 2) < (";i;z)/(%:l) We prove this
conjecture for all 2k-dimensional homology manifolds with n vertices,
where n > 4k + 3 or n < 3k + 3. We also obtain upper bounds on
the (weighted) sum of the Betti numbers of odd-dimensional homology
manifolds.

1 Introduction

In this paper we prove several extensions of the upper bound theorem for convex
polytopes. We start by briefly describing the history of the problem and give
some definitions.

Let Cy(n) be the cyclic d-polytope with n vertices. (That is, Cy(n) =
Ca(x1,22, ..y Ty) = conv{vi,va,...,v,} C R, where z1,23,...,z, € R are all
different and v; = (z;,22,23, ..., 29).

It is well known that the combinatorial type of a cyclic d-polytope does not
depend on the choice of z1, 22, ..., , and that all cyclic polytopes are simplicial
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Definition 1.1 The f-vector of a (d — 1)-dimensional simplicial complez A
is a vector f(A) = (f-1, fo, fi,--, fa—1), where fr denotes the number of k-
dimensional faces of A.

The Upper Bound Conjecture (briefly, UBC) proposed by Motzkin in 1957
[12] asserts that if P is a (simplicial) d-polytope with fo = n vertices, then for
every k=1,...,d—1 ’

fiu(P) £ fe(Ca(n)).
This is obvious for k < |d/2], since every k < |d/2] vertices of the cyclic
d-polytope form a face.

Recall that the Euler characteristic of a simplicial (d — 1)-dimensional com-
plex A, x(A), is defined by

d—1 d—1
X(A) = 1= ST (-1)fi(A) = > (-1)'8(4),
1=—1 i=—1

where 3;(A) are reduced Betti numbers of A (that is 3; = dimy H;(A;k) for
some field k. Note, that if A is a connected non-empty complex, then S_; =
Bo = 0).

Recall also that if A is a simplicial complex and F is a face of A then the link
of FilkF isaset {(eA:FNG@=0,FUG € A}

Definition 1.2 A simplicial complez A is a Eulerian complez, if for every face
F of A (including the empty face) x(IkF) =1+ (—1)dimlkF

In 1964 Klee conjectured that the assertion of the UBC holds for all Eulerian
complexes and proved it for Eulerian complexes with sufficiently large number
of vertices [8]. In 1970, McMullen [11] gave a complete proof of the UBC for
polytopes, and in 1975 Stanley proved the UBC for arbitrary triangulations of
spheres [17],[19].

In this paper we prove the UBC for several classes of homology manifolds:
all odd-dimensional homology manifolds, all even-dimensional Eulerian homol-
ogy manifolds (that is, homology manifolds that are Eulerian as simplicial com-
plexes), and, in fact, an even larger class of homology manifolds. We also obtain
the analog of the UBC for arbitrary even-dimensional homology manifolds.

Definition 1.3 A (finite) simplicial complez A (or, more precisely, the geo-
metric realization X of A) is a homology manifold if for any p € X and any
i <dimX H;(X,X —p) =0 and Hamx = Z, where Hi(X,X — p) is the i-th
relative singular homology with coefficients Z.

Remark

1. The link of any non-empty face of a homology manifold has the homology
of the sphere (see [13]). Therefore, a homology manifold A is Eulerian iff
X(A) = 14 (~1)Hm(&),



2. Note that any (triangulation of a) topological manifold is a homology
manifold, but the converse is not true. In other words, there are the
following relations between various classes of "manifolds”:

homology manifolds O triangulations of topological manifolds

(D combinatorial manifolds)

and all inclusions are strict.

Theorem 1.4 (UBT for odd-dimensional homology manifolds) Let A be
a (2k — 1)-dimensional homology manifold on n vertices. Then

fi(A) € fi(Cox(n)) fori=1,...,2k - 1.

Theorem 1.5 The UBC holds for all 2k-dimensional homology manifolds, such
that
Br(A) <D {Bi(A) 1iFk—2,kk+2and 1 <i <2k -1}

Remark Throughout this paper, 3;(A) are reduced Betti numbers of A, cal-
culated with respect to any field of characteristic two or with respect to any
other field k such that A is orientable over k. Since a homology manifold is a
Buchsbaum complex over any field and since the Euler characteristic does not
depend on the choice of the field, this restriction does not affect our results. On
the other hand, under such an assumption, 3; = B4_1—; forany 0 < i <d—1
by Poincare’s duality theorem. (Statements of sections 2 and 4 hold over any
field k.)

Definition 1.6 The h-vector of a (d — 1)-dimensional simplicial complex A is
a vector h(A) = (ho, ha, ..., hq) such that

d d
Z hizt™" = Z fia(z —1)77
i=0

1=0
or, equivalently,
4 ra_ j
fim(A) = Z (d _ l>hj
7=0
Remark f-numbers of a (d — 1)-dimensional homology manifold A satisfy cer-

tain linear relations, known as Dehn-Sommerville relations. These relations
were derived by V.Klee [7] (for a more general class of simplicial complexes,

namely, all simplicial complexes A satisfying x(lk F) = 1 + (—1)dim kP for any
non-empty face F of A) (see also [10, 19]). These relations can be conveniently
expressed in terms of h-numbers. They assert that

ha—i — hi = (—1)° (‘f) (x(A) — (14 (-=1)* 1)) fori =0,1,...,d. (1)



We will use several versions of these relations (see Lemmas 5.1, 7.3 below)
We prove the following result concerning face numbers and Betti numbers
of homology manifolds.

Theorem 1.7 Let A be a (d—1)-dimensional Buchsbaum complez on n vertices.
Let

J

RY(A) = hyi(A) + <‘j>

K3

Then, ho(A) =1, hi(A) =n —d and

—1
(=1)7"18, 1 (A) for j=0,1,...,d.
=0

d—1 <z
@ s (@ - (T )aa@) =12t

o= () () e (1)

(where ny > npqy > - >mn; > 1> 1) we define

<r> __ nT+1 n'r—l+1 nz+1
“ —<r+1>+< T toet i+1)/)

This theorem is similar in spirit to a theorem of Bjorner and Kalai on face
numbers and Betti numbers of simplicial complexes. (But here we have only
necessary conditions rather than a full characterization.)

Where, for

Remark The main reason for defining the modified h-vector, %', is the Schen-
zel theorem (see Theorem 2.7 below).

To describe our results for arbitrary homology manifolds we need the follow-
ing definition:

Definition 1.8 A simplicial complez A is said to be [-neighborly complez if any
l of its vertices form a face in A.

l-neighborliness has a simple interpretation in terms of h-numbers: a complex A
is I-neighborly iff h;(A) = ("'dj’_l) for any ¢ < [. Note that all d-dimensional
cyclic polytopes are |d/2]-neighborly and it is known (and also follows from
the UBT) that simplicial d-polytopes and, more generally, triangulations of
(d — 1)-dimensional spheres with more than d + 1 vertices cannot be |d/2] + 1-
neighborly. The UBT for odd-dimensional homology manifolds implies that no
(2k — 1)-dimensional homology manifold with more than 2k + 1 vertices can be
(k + 1)-neighborly.

On the other hand, a 2k-dimensional homology manifold A with n > 2k + 2
vertices may be (k + 1)-neighborly. If this is the case, then f;(A) = (H’fl) for
1t =0,...,k. It follows from the Dehn-Sommerville relations (see (1)) that for



a 2k-dimensional homology manifold A all face numbers of A are completely
determined by fo(A), f1(A),..., fx(A) as certain linear combinations. Substi-
tuting in these linear combinations f; = (,7';) for 4 = 0,...,k we obtain an
expression for the number of i-faces of any (k + 1)-neighborly 2k-dimensional
homology manifold with n vertices (for any 1 < ¢ < 2k). Denote this number by
M;1(n,2k + 1). (For an explicit formula for M;(n,2k + 1) see section 6. Note
that the numbers M;(n, 2k+1) are determined formally from the linear relations;
we define them even if (k-+1)-neighborly 2k-dimensional homology manifold with
n vertices does not exist. Moreover, note that the numbers M;(n, 2k + 1) are
rationals, and in general are not integers, so for some n and k (k + 1)-neighborly
2k-dimensional homology manifold cannot exist).

Theorem 1.9 (UBC' ) Let A be a 2k-dimensional homology manifold on n
vertices. Then

fisl(A) < My(n,2k+1) fori=2,...,2k + 1.

If equalities are attained in all these inequalities, then A is (k + 1)-neighborly,
B:(AYy=0 unlessi =k ort=d, and By = (";i;z)/(%:l)
Kuhnel conjectured ([9]) that for any 2k-dimensional combinatorial manifold
A with n vertices
(n—k—2)
k+1

(-D*(x(A) = 2) < ~5
%)

and equality holds iff A is (k + 1)-neighborly. This conjecture was known to be
true for k < 2 and also for n < 3k+3 and n > k? + 4k + 3 (see {10]). In section
5 we give a proof of the Kuhnel conjecture for all 2k-dimensional homology
manifolds with n vertices, where n < 3k 4- 3 or n > 4k + 3. We prove, in fact,
that for such n Kuhnel’s upper bound applies even for 8 +2(Bk—2+ Be—s +- - -+
B1 + Bo). We also prove that for n < 3(k + 1) or n > 7k + 4 Kuhnel’s upper
bound applies even for Zfi;l B3;. In addition, we find a similar upper bound
on the sum of the Betti numbers for odd-dimensional homology manifolds.

Equality in Theorem 1.9 and the Kuhnel conjecture holds if A is a (k +
1)-neighborly 2k-dimensional homology manifold. The existence of a (k + 1)-
neighborly triangulation of a 2k-dimensional (topological) manifold for k£ =1
and infinitely many n is the famous Heawood conjecture settled by Ringel and
Youngs [14]. There are only five known examples for higher values of k (see
[10]), but it is plausible that for every k there are infinitely many examples.

The structure of the paper is as follows. Section 2 contains background
material on Buchsbaum complexes. The proofs of our main results are given in
Sections 3-6. In Section 7 we discuss several further conjectures. The proofs are
based on studying the combinatorics of the ”shifted model” [2] (i.e. the generic
initial ideal [4]) of the Stanley-Reisner ring of Buchsbaum complexes.



2 Buchsbaum complexes.

In this section we review some facts from commutative algebra and topology
that produce an inequality for the h-vector of a Buchsbaum complex.

Definition 2.1 Suppose that R is a finitely generated standard graded algebra
over a field k. That is, R = @;’io R; , where Ry =2 k and R; is a finite-
dimensional vector space over kK, such that R;R; = R,y; for alli,j € N. (Ele-
ments of R; are called i-homogeneous elements of R.) Then

e H(R,i) = dimk R; is called the Hilbert function of R;
e F(R,z) =5, H(R,i)z" is called the Poincare series of R.

Definition 2.2 Let R be a finitely generated graded algebra over k. The Krull
dimension of R (dim R) is the mazimum number of algebraically independent
(over k) elements 01, ...,04 in @, Ri.

Let R be a standard graded finitely generated algebra over field k. It is well-
known (see, for example, [1]) that

e P(R,x) = 25 where d = dim R, Pp(x) € Z[x], Pr(0) = 1, Pr(1) # 0.
o For sufficiently large m,

H(R,m) € Q|m], where deg(H(R,m))=d — 1.

Definition 2.3 Let A be a simplicial complex on the set of vertices

V = {z1,%a,...,2n}. The Stanley-Reisner ring of A is Ra = k[z1,...,2.])/1A,
where Ia is the ideal in K[z1,...,2,], generated by all square-free monomials
Ty Tiy - Xy, such that {x,, T4y, ..., 24, } ¢ A.

Define degx; =1 for i = 1,2,...,n. This makes Ra into a graded ring.
Claim 2.4 (Stanley [18], [19]) For a simplicial complez A

dim A
HRam =08 ey (") im0
1=0

In particular,
dim Ra =1+ dim A.

Corollary 2.5 If A is a simplicial complex of dimension &, then

641
(1-2)" " F(Ra,2) =) hua! (2)
=0



Definition 2.6 A finite connected simplicial complex A is called a Buchsbaum
complez (over k) if for any p € X = |A] and any 1 < dim A H(X, X —p; k) = 0,
where H;(X, X — p; k) is an i-th relative singular homology over k.

For example, all connected homology manifolds are Buchsbaum complexes over
any field (this follows immediately from the definition of a homology manifold.)

Theorem 2.7 (Schenzel [16]) Let A be a (d — 1)-dimensional Buchsbaum
complex and let 8_1, Bo, - .., B4_1 be its reduced Betti-numbers. Let 0y, ...,04 be
1-homogeneous algebraically independent elements of Ra. Then

(1-x)*F(Ra,x) = F(Ra/(61, ... ,Gd),x)+z (‘j) (Z(—nj“‘ﬂi"l) z? (3)

=0
Define (hg, hy,..., hl) by

d
Zh;.xj = F(Ra/(6y1,...,04),2)

=0

Then, by Corollary 2.5, we can rewrite (3) as

j—1
h; = hl — <d> S (=178 for j=0,1,...,d. (4)

J 1=0

Now, we fix an infinite field k. Suppose, that A is a (d — 1)-dimensional com-
plex on n vertices. In particular, dim R = d. Since k is infinite and Ra
is generated by 1-homogeneous elements, we can choose d 1-homogeneous ele-
ments 61, ...,604, which are algebraically independent over k. (This is Noether
Normalization Lemma.) Denote by S; the i-th homogeneous component of
S = Ra/(01,...,84). Now, observe that

R} = dimy S7 = dimg(Ra ), — dimy(Span {0y,...,04}) =n —d (5)

and S = Ra/(61,...,84) is generated by Si. Therefore, we obtain that dimen-
sion of S; (over k) is not bigger than the total number of monomials of degree
1 in n — d variables. Therefore,

h;=dimksis("“df"1>. (6)
i
Combining (4) and (6), we observe that for a (d — 1)-dimensional Buchsbaum

complex A on n vertices

—

hy(A) < (”'dj_j - 1) - (j) j_o(-1)j—f—15i_1(A) for j = 0,1,....d. (7)

1=



Remark In Section 4 we will obtain much stronger inequalities than (6) (see
Theorem 1.7). In particular, from that theorem it follows that if 5;(A) > 0 for
some 0 < i < d— 1 then h} < (”_d?_l) for all + + 2 < 5. More precisely, it
follows that h} = (”'djj"l) for some j implies that A, = ("~%F*"!) for all i < j
and B; = 0 for all i < j — 1; then by (4) h; = ht = ("7%F*1) for all 4 < j, and
so A is j-neighborly.

3 The proof of the UBC for
odd-dimensional homology manifolds.

In this section we prove the UBC for odd-dimensional homology manifolds. The
proof is very simple, it follows at once from the Schenzel theorem and Dehn-
Sommerville relations.

Lemma 3.1 For natural d,i,m

S 1) = () e ()

Proof Follows immediately from the fact that for any j
(5) =G5
=1 + ..
J J—1 J

Now we are ready to prove Theorem 1.4. Let A be a (2k — 1)-dimensional
homology manifold with n vertices. From Poincare’s duality theorem, it follows
that x(A) =0, and so by Dehn-Sommerville relations (1)

hz(A) = th_i(A) for ¢ = O, 1, ceey 2k.

O

Using this and the definition of hA-numbers, we obtain that

k . .
2k — 3 i
_ = * (A
i)=Y (o)) + (o)) @ ®
for { =1,...,2k, where we used the following notation:
k-1 1
> "el) =Y @) + 5¢(k) for any ¢ and m < k.
j=m j=m

Thus, for i =1,...,2k

o 5 (2) (o™



S () ) [ -G e

g* ((3@:?) (zkj_ l)) hi(Cax(n))—
}S [_Ek: *(—1)j—i—1<2],k> ((2’;:;) + (2k3'_ z))} 5, DV®)

=0 | j=it1
B[ 0 () (G2 () -
fi—1(Car(n)) —]:Z;é r:;:l(_l)j—i—l (ik> (ij_ l)jl B, (2L)(2kj—l)z(zlk)(2).:l—j)

fie1(Cax(n kil <2k> rki 1( 177 1(2kl >} Bi-1 < fiea(Car(n)),

= Jj=i+1

since by Lemma 3.1

2k—i—1
! -1 -1
E: Yt >0fori=0,1,...,k—1.
(=1) <2k——j) (i)+<2k—i—1>_ oré=0.1,....k

J=i+1

0
Remark The proof of Theorem 1.4 gives upper bounds on f;(A) in terms of
f1(Cax(n)) and Betti numbers of A. Namely, we obtained that

fi(A) < fi(Cox(n)) *g <l i—kl) [(i) + <2k _li _ 1)] Bi-1- (9)

However, since the upper bounds on h-numbers that we used (7) are not sharp
(see remark in the end of Section 2), these upper bounds are not sharp as well
in the following sense: if 3;(A) # 0 for some ¢ < k — 1 then these inequalities
are strict for all [ > i + 2.

The other consequence of (9) is that a (2k — 1)-dimensional homology man-
ifold can be k-neighborly only if all 3;(A) = 0 except B2x—1 and, possibly,
Bi_1 = Bx (compare Theorem 1.9). (It is known that for any (topological)
3-manifold there is a 2-neighborly triangulation if the number of vertices is
chosen to be sufficiently large, see [21], [15], however, it is not known whether
all (k — 2)-connected (2k — 1)-manifolds admit a k-neighborly triangulation for
k>2.)



4 New inequalities.

In this section, using facts from commutative algebra for local cohomology of
Buchsbaum modules and the shifting argument applied to the Stanley-Reisner
ring, we provide new relations between sequences {h'(A);} and

{ry(A) - (djl)ﬂj_l(A)}, where A is a (d — 1)-dimensional Buchsbaum com-
plex. These relations together with Macaulay’s theorem give new inequalities
(see theorem 1.7), much stronger than (6). These inequalities were conjectured
by G.Kalai. He also suggested a way for their proof.

Let A be a (d — 1)-dimensional Buchsbaum complex on n vertices. Let Ra =
k[z1,...,2,]/Ia be the Stanley-Reisner ring of A. Let y; = E;zl Az, for i =
1,2,...,n be generic combinations of z1, ..., xz, (see [2]). Forr =0,1,... denote
by M, the set of all monomials in y1,...,y, of degree r.

Now, we choose a basis of Ra over k in the following way:

1. for r = 1,2,... we order the elements of M, in the lexicographic order
(<iex ). Lexicographic order is a linear order, so we can write

r
MT = {m;‘ <lex mg <lex ms <lex - - }

2. we define S(A) = ;2 Sr(A), where
S5.(A) = {m] € M, : m] is linearly independent of mJ,...,m7_; in Ra}

It follows immediately from this construction that S(A) is a basis of Ra over
k, and that S(A) is an order ideal of monomials. (That is, if m € S(A) and
m' is a divider of m, then m' is also in S(A).) Moreover, S(A) is shifted (see
[2]). (That is, if m = @ 1%iy -+ T, s in S(A), where iy < 45 < --- < 4., and
there are some numbers 1 < jy,ja, -, Jr 8.t. g1 <i1,759 <dg,...,7, <1, , then
T T4, x; is also in S(A).)

Let MON(3) := {m : m is a monomial in ¥;, ¥it1,.-,Yn}-
Fori=0,1,...,d — 1 define
Ay ={m € S(A)NMON(i+1) : m ¢ U'_yA; and 3k € N s.t. y5,-m ¢ S(A)}.

In other words, (since S(A) is shifted) m € A; iff m satisfies the following
conditions:

e m ia a monomial in the variables y;y1,...,yxs;

o m belongs to S(A) and, moreover, all monomials obtained from m by
multiplying it by any monomial in the variables 41,...,y; are in S(A), but
there is a monomial n in the variables y1,...,y:41 such that nm ¢ S(A).

Define
Ay =(S(A)NMON(d+1)) —UZLA; =

10



{me MON(d+1):Vk€ N y%-me S(A)}.

In other words, (since S(A) is shifted) A4 is the set of all monomials m in
the variables y4y1,...,yn such that m € S(A) and the product of m by any
monomial in the variables y1, ..., yq belongs to S(A). _

Let Pi(z) be the generating function of A; (that is, Pi(z) = ) 5o a7,
where ! is the number of monomials in A; of degree j). It follows easily from
the definition of Ag, A;,...,Aq (and the fact that S(A) is shifted) that any
monomial m € S(A) can be written uniquely as m = n'm/, where m’ € A; for
some 0 < ¢ < d and »' is a monomial in yy,...,¥;. Since S(A) is a basis of Ra
over k this implies that

d
RA=® @’I]k[yl,,yl]
=0 neA;
Thus,
S0 (D) Cor.2.5 : N
(1—.1‘)d = F(RA,:U)IZ Zl‘ gnF(k[ylv"'vyi]’x) =
i=0 \n€A;
>3 -
1=0 n€A; (1 - :L‘)l =0 (1 - l‘)l
In other words,
d—1 '
Py(a) = h(z) = ) P(x)(1 - 2)*", (10)
i=0

where h(z) = ¢ hiat.
Using facts for local cohomology of Buchsbaum modules, we will prove

Lemma 4.1

Py =0, and, therefore Ag = .

We postpone the proof of this lemma until the end of the section.
From (10) and lemma 4.1 we obtain

d—1 [m-—1
Pula) = hiz) - [Z ("7 l)m“l} (-2t

=0

11



Let Py(z) = Zj 5 . Then

I —r—

m=1 =0 (11)

Tl B (7))

Ifi=j—1, then
d—1 d—1 d—2
N [NV I VI B VR B R (P R
B} t J—1 o J S J J
Ifi<j—1, then
CS m—1 d—m _dﬁffﬂ m—1 d—m \ [d (13)
= i j—i-1 —m:i-{-l i j—i—1) \y)’
From (11)-(13) it follows that

j—1

kj =h; — (d; 1) Bi-1+ <j) JZ(—1)J'—1'—151._1 by (4)

1==0

o= (5 )

Thus, we obtain
Lemma 4.2
d
-1 .
=3 (- (1 )pm)»
=0
]

Lemma 4.3 Z:'i:o Pi(z)=%%  hal.

7=0""7

Proof By lemmas 4.1 and 4.2



Let S(A) = S(A) N MON(d + 1) and §,(A) := {m € S(A) : degm = r}.
So, S(A) is a basis of Ra/(y1,...,yq4) over k. Now, note that y;,...,yq are
algebraically independent over k. Therefore, by the definition of h’ (see Section
2), M (z) = Zj‘:o %z is a generating function of S(A). Since P; is a generating
function of 4; fori =0,...,d and UL, 4; D S’(A), we obtain from lemma 4.3

Corollary 4.4 U%_ A, =

(A). In particular, fori =1,...,d, A; C S(A),
and so A, C MON(d+1). O

This corollary implies
Corollary 4.5 Foranyi=1,...,d—=1 and any m € A; yi+1-m & S(A).

Proof Suppose that there is m € MON(d+ 1) such that y;11-m € S(A). Note
that y;+1-m ¢ MON(d+1). So by Corollary 4.4 y;y1-m ¢ Ui, A;. Therefore,
by the definition of A;, for all k € Ny, - yipim = yil - m € S(A). Thus,
m¢A;. O

Corollary 4.6 The shadow of the set STH(A), 6T+1,5~”T+1(A), s contained in
Aq. (Where, for @ monomial m of degree I, we define the shadow of m, & {m},
by O {m} = {m' :degm’ =1 —1, and m'|m}, and for a set B of monomials of
degree 1, we define the shadow of B, OB, by 0,B = J,,,cg O{m}.)

Proof S(A) is an order ideal, so by definition of S(A), S(A) is also an or-
der ideal. Thus, 8,115,41(A) C S.(A). By definition of Agq, S.(A) — Ay =
(AL UA3U...UAq_1)NS.(A), so, by Corollary 4.5, for each m € S,(A) — Aq
there is an ¢ = i(m) < d, s.t. y; - m ¢ S(A). Therefore, yar1 - M, Yato2 -
m, ... Yn-m ¢ S(A), since S(A) is shifted. Thus, m ¢ 8r41Sr41(A). There-
fore, 0,415,411 N (S'T - Ad) =, and so 6T+1§r+1 C gr NAg O

Since Py(z) = Y () - (d;I),Bj_l)xj is a generating function of 44 and h'(z) =

Zj:o h;:vj is a generating function of §, Corollary 4.6, (4) and the Macaulay the-

orem (see [5]) imply Theorem 1.7, which asserts that for a (d — 1)-dimensional
Buchsbaum complex A on n vertices holds: hy =1, b =n —d and

d—l <r>
h’T+1§<h'T—< )[%-1) forr=1,2,...,d-1.
r

In fact, nowhere in this paper do we need an exact expression for
<r>
(h’r — (d;—l)/ﬁr—l) , which Macaulay’s theorem provides. Rather, it will be

<r>
sufficient for our purposes to use some upper bounds for (h'T - (dzl)ﬂT_l) .

Now we are going to prove lemma 4.1. First, we review some relevant commu-
tative algebra. Let M = @,.4 M; be a finitely generated module of dimension

13



d over a finitely generated graded ring R = @72, R;. (That is, R; - M; C M,
for all 7 and j. The (Krull) dimension of M, dim M, is defined as a dimension
of ring R/AnnM). Let m = @2, R; be the irrelevant ideal of R.

Definition 4.7 A system of elements z1,...,x, € m is called a weak M-
sequence if for each i =1,...,7

(1, ..z )M cay = (21, i1 )M :m,

where for an ideal o of R and a submodule N of M N:a={ue M :a-uC N}.
In particular, for i =1 we have 0: 2z, =0: m.

Definition 4.8 A family (z1,...,24) of elements z1,...,24 of m is said to be
a system of parameters of M if dim M/(z1,...,24)M = 0.

(By Noether Normalization Lemma a system of parameters always exists.)

Definition 4.9 M is called a Buchsbaum module if every system of parameters
of M is a weak M -sequence. R is called a Buchsbaum ring if it is a Buchsbaum
module as a module over itself.

It is known (see [16]), that for a finite simplicial complex A, A is a Buchsbaum
complex in the sense of Section 2 iff Ra is a Buchsbaum ring.

Denote by H*(M ) the local cohomology module of M. We recall, that H*(M)
is a graded module and that

HO(M)={ue M:m* u=0for some k}.

Now, suppose that M is a Buchsbaum module. Denote by F;(x) == F(H*(M),z)
the Poincare series of H'(M). Fori =0,1,...,2(d— 1) we define modules M, as
follows: Mo = M, My = Mo/H°(Mp,). Suppose that My;_; is already defined.
Let z; € m be a non-zero-divisor on My;_1. Define My; = My;_1/2x;Ma;_1
and Maj1 = Ms; /H%(My;). 1t is a known fact from the commutative algebra
(as proved by D. Eisenbud and R. Stanley, see Appendix) that for a Buchsbaum
complex M

k—1
k—1 .
F(H®(Msy),z) = Z ( ‘ )Fj+1xj+1 fork=1,2,...,d—1, (14)
; J
7=0
where F(HY(May),z) is a Poincare series of HO(May).
Proof of Lemma 4.1 Let R = M = Ra and My, = Ma,_1/y; Mo,y (More
precisely: Mo, = Ma;_1/5:Ma,—1, where 7; is the image of v; in Mo;_; under
the natural homomorphism.) Then by (14)

k—1
F(H (M), z) = Z (k; 1>Fj+1xj+1 for k=1,2,...,d-1,

=0

14



Since A is a Buchsbaum complex, H(M) = H(Ra) = H;_1(A) fori < d —1
(see Corollary 4.13 on page 144 of [20]) and all elements of the module H*(M) =
H*(Ra) have degree 0 (see Lemma 2.5 on page 117 of [20]). So, actually, F; is
a number, rather than a formal series, and for 5 < d — 2

Fy1 = F(HY (M), ) = dimi(H7 (M) = dimie(;(A) = 5;(A).

Thus,

— (k—1\, ;

F(H(Ma),z) = ( ; )ijl fork=1,...,d—1.

5=0
Also, since My = Ra, H°(My) = 0. Therefore, to complete the proof of the
Lemma, it is sufficient to show that the generating functions of H°(Ma) and
and those of A; coincide for any k = 0,1,...,d — 1. We will prove a slightly
stronger result:
Let By = MON(k +1)n S(A) - U;?:OAj for k=10,1,...,d — 1, so By is the
set of all monomials v in MON(k + 1) N S(A), such that for any [ € N and
j<k+1zl ue S(A). We prove by induction that

1. Br U A (more precisely, the image of By U Ay in My ) is a basis of Mz
over k;

2. the generating functions of HO(Mgk) and Ay are equal,
3. By is a basis of Ms;41 over k.

Suppose that the assertion is true for k — 1, so By_1 is a basis of Ma,_1. Since
My = Mgkﬁl/ykMgk_l, this implies that By, N MON(IC + 1) = Bp U Ay is
a basis of Msi. Let Ny be the submodule of Ms, generated by By. From the
definition of By it follows that for any I, ny_l - By, C By. Since By is a basis
of Nog, yxs1 € m and HO(Myy) = {u € My, : m! - w = 0 for some [}, it follows
that Nojp N HO(Maz) = {0}.

Since M is a Buchsbaum module and (y1,...,¥q) is a system of parameters of
M, we have that (y1,...,yq) is a weak M-sequence of M, so

{ue Mo :m-u=0}={u€ Moy : Y41 -u =0}

Therefore,
HO(M%) = {u € My : m! - u = 0 for some 1} =

{u € My : yfc_H -u = 0 for some [} = U Ker(ych),
leEN

where yl | cu— yh
Since By U Ay, is a basis of Ms, and since it is shifted, we obtain from (15) and

15



the definitions of Ay and By that the generating functions of H°( M) and Ay,
are equal. Therefore, for each [ € N [Nyy]; and [H°(M2;)]; have complementary
dimensions in [Ma]; (here [ ]; is an {-homogeneous part of the module.) Since
Ngk n HO(]\/fzk) = {0}, we obtain that Mgk = NQ}C@HO(MQIC) Recalling
that By is a basis of Ny, we see that the image of By is a basis of Mog,1 =
Moy /H%(Msy). This completes the induction argument. It remains to note that
for k =0 By U Ap = S(A) is, indeed, a basis of My = Ra. O

5 Upper bounds on Betti numbers; Kuhnel’s
conjecture.

In this section, after proving some auxiliary results about h'-numbers and Betti-
numbers, we obtain upper bounds on (weighted) sum of the Betti numbers of
homology manifolds (in both odd-dimensional and even-dimensional cases). In
particular, we prove the Kuhnel conjecture for arbitrary 2k-dimensional homol-
ogy manifold on n vertices where n > 4k 4+ 3 or n < 3k + 3, and, in fact, some
stronger results.

From now on, let A be a (d—1)-dimensional homology manifold on n vertices.
We begin by obtaining another version of Dehn-Sommerville relations (1) for
homology manifolds.

Lemma 5.1
) d ‘
(8 = 1580+ (D) (B(0) = Ba(B) for i =01,cvd =1
Proof By Dehn-Sommerville relations

d

ha—j = hj = (=1) ( ) (x(8) = 1+ (=1)*) = (-1) (d> 2;:(—1)% (16)

J

forj=0,1,...,d.
Then, by the Schenzel theorem (see(4)),

:1—1 - h;‘ = (hd—j + (;l) (ﬁd—j—z - Bd—j~3 + ﬂd_]’_4 - .. )> —

d by Poi dualit
(hj + (]) (5]42 - 6343 + ﬁjg4 - .. )) y Olnca:re uality

by (16
(hd—j—hy‘)Jr(?) ((Bj+1 = Bjr2 + Bjra — ) = (Bj—2 — Bj=3 + Bi—a — ...)) v (16)

17 (5) Cg(—l)fﬁi +(9) (df(—l)“j-lm (8, - ﬁj_n) =

=0
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(5) (85 — Bi-1)

Our second step is to obtain a weaker version of Theorem 1.7, which will be
more suitable for the proofs.

d

Lemma 5.2 Let N; = ("_d:“i_l). Forj=0,1,...,d—1

J
N1
Wiy SNjpi— Y JJ\, Bi—1

=1

If equality is attained then o = p1 = ... = 3;-1 = 0.

To prove Lemma 5.2 we will use a weaker version of Macaulay’s theorem. It

asserts that if a = (%) (here a € N, 2 € R) then a<"> < (fj:) In particular,

a<~">[a < (fi;)/(f) = (2 + 1)/(r +1). Since the function (z + 1)/(r +1) is

increasing as function of z, we obtain that if a < N, = (n_djr_l) then

o< < n—d+7"a: NT+1a
r+1 N,

(17)
and equality is attained iff a = N,..

proof of Lemma 5.2 For j = 0 the lemma follows from (5). For j > 1 we
obtain from Theorem 1.7, that

_ <>
i1 < (h;— (d .1>ﬂj—1> <
J
, d—1 A g
(- (2)0) (4o

)T )

applying (17) j times, we obtain

; .
N; N, N; d-—1

< N, _ 741 J . i+1 -

=t “ N; Ny N, i )P

J
Ny (d—1
Nji -Z]]V—-:< i )5i~1

=1

<j>

IA
IN

IA

i
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and if equality is attained then 8o = 8, = ... = §,_;. O

In the rest of this section we will obtain various bounds on the Betti numbers
of homology manifolds. Since the proofs in the odd-dimensional and even-
dimensional cases are very similar, we will consider only the even-dimensional
case, leaving the details of proofs in the odd-dimensional case to the reader.

Lemma 5.3 Let A be a (d — 1)-dimensional homology manifold on n vertices.

1. ifd =2k +1 then

n—3k—2 ”i n—2k-2, _ (")
Ot 5531 B“+Z n2 2k+1 TTH T R

n—k—2
If equality is attained then 8; =0 for1=0,1,...,k—1 and B; = %ﬁﬂ—))
k

2. if d = 2k then

n?—(2nk+k*+n+k) anll n(n —2k—1)
Kkt 25n) ,Bk 2+Z Tkt 2k Bi1 <

Br—1+

(4

(Qkk—l) n+k+2

If equality is attained then 3; =0 fori=0,1,...,k — 2.
Proof (for d = 2k + 1) Let 2 = Ny — h}. By Lemma 5.2

k—1
z2 ; % <2Zk> Bi-1 (18)
(and equality implies that 8o = 81 = ... = SBx—2). Therefore,
by Th 1.7 ok <k>
02 (e () -
e (@) o

N N
Nk+1 — k+1Z htl < >5k 1

Ny Ny
(and equality implies that 39 = 81 = ... = Bk_1). And, thus,

2% + 1 by Lemma 5.1 by (19)
( >(5k—,31c e b1 — R <

18



Neya Nit1 2k
SNy - (R ) oo _
(Nk41 k) ( N, )Z N, (k Br—1 ,

or, equivalently,

Bk+ (Nk+1 (Zkk)

NP T

= . (20)

Nk(2k+1) £= (2k+1) = (2k+1)

n—k—2
1) ﬂk—1+Nk+1 —Ne o Niwr — N ("pi1 )
k

k k

Substituting the lower bound (18) for z in (20) and simplifying the coeflicients
of Betti numbers, we obtain the required inequality. O
Lemma 5.4 Ifn < [3d/2] + 2, then B|(a—1)/2) > Bl(a-1)/2)-1 =~ 2 Bo
Proof By Lemma 5.1, for any j = 1,2,...,[(d — 1)/2]

_ (n—d4j-1
Wy =R, 1=k 1= .o

>
6 v B O

sincen—d+j—1<dforn < |3d/2] +2,j < |(d—1)/2]. Thus, 8; —
Bj—1 > —1. Since Betti numbers are integers, we obtain that 3; > B;—1 for
j=12,...,(d=1)/2]. O

By —Bi—1 =

Lemma 5.5 1. Ifn < |3d/2] +2, then o = B1 = ... = Bla-1)/2)-1 =0,
and if n < [3d/2] + 2, then also B|(4—1)/2) is equal to zero.
2. If l_3d/2_| +3 <n< 2d—2, then ﬁo :,61 = ~~':/B2d—1—n =0.

Remark In the case where A is a combinatorial manifold, a similar and some-
what stronger result was proved by Brehm and Kuhnel {3].
Proof (for d = 2k + 1) First, note that n > d + 1 = 2k 4 2, since A is a
(d — 1)-dimensional homology manifold.
e 2k+2=d+1<n<|3d/2]+1=3k+2. Then
n—3k—-2 k 1
> > —=.
2k+1 = 2k+1 2
By Lemma 5.4 8 > Br_1, so we have from Lemma 5.3 that

L U mspee ()1
2 - (21:}-1) — (2k;—1) 2

Therefore, 8 < 1, and so 8¢ = 0. By Lemma 5.4 we are done.

e n={3d/2] + 2 =3k + 3. It follows from Lemma 5.3 that
n—k—2 2k+1
3 1 ("o ) (o)

B < —
ST 1ﬂk 1= (250 &)

=1

Thus, either 3; = 0 and then by Lemma 5.4 we are done, or 3y = 1,
Bx—1 = 0 and then by Lemma 5.4 81 = Bt—2=...= 5 =0.
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e 3k+4=13d/2] +3 <n<2d-2=4k. From Lemma 5.3 it follows that

fori<k-1
Bioy < ("i1”) (%) 2k+1 _ (nm2k+i=2)
(Zk’:rl) (an—_zi) n—2k—2 (21k)

Note, that if i < 2d —n = 4k —n + 2, then n — 2k +i — 2 < 2k, and
therefore 8,1 < 1. So for such ¢, §;; = 0. O

Now we are ready to prove the Kuhnel conjecture for 2k-dimensional homol-
ogy manifolds with at least 4k + 3 or at most 3k + 3 vertices:

Theorem 5.6 Let A be a 2k-dimensional homology manifold with n vertices,
wheren >4k + 3 orn <3k + 3. Then
(n—k—Z)
(~1)*(x(4) - 2) < (2’“;11)
k

(Note, that (=1)*(x = 2) = Br — (Brg1 + Br—1) + Braz + Be—2) — - = B +
25°% (=1)"8x_; by Poincare duality.)
We prove, in fact, a stronger result:

Theorem 5.7 Let A be a (d — 1)-dimensional homology manifold with n ver-
tices.

1. Ifd=2k+1 andn > 4k + 3 orn < 3k + 3, then
k—2 (n—k—2)

B2 < o
i=0 ( k )

2. Ifd=2k+1andn<3k+3 orn>7k+4, then

2k—1 k—1 (n—k—2)
=1 =1 k

3. Ifd=2k andn <3k +2 orn >4k + 1 then

2k—2 k2
") 2n

k-1
_ (
;ﬁi~—2;ﬂiﬁ ) Ikt

Proof Again we will prove the theorem only in the case of d = 2k + 1, leaving
the case d = 2k to the reader. In this case

o If n < 3(k+ 1), the theorem follows from Lemma 5.3 and Lemma 5.5.
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o If n > 4k + 3 then 25272 > 1. Also, for 0 <i <k —1,2k—i>k+1
and (2k—i)+(k+1)<3k+1<n—2,s0

()= (ad)-

Therefore,
n—2 n—2
(k) 2k +1 (k) kE+1 k+1
and
n—3—-2>0. (22)
By Lemma 5.3, (21) and (22) we obtain

k—2 (n—k—?)
ﬁk + 2 Z /Bl S (2]::_11)
1=0

k

o If n > 7k + 4 then
n-3k—2_ 4k+2 _

2k+1 T 2k+1
And the result follows from Lemma 5.3, (21) and (23).

2. (23)

]

Remark Let A be a 2k-dimensional homology manifold with n vertices. The

n—h—2
second assertion of Kuhnel’s conjecture is that if (—1)*¥(x(A) — 2) = ( 2’”'.+11))
k

then A is (k + 1)-neighborly. Here is the proof of this fact for n < 3k + 3
or n > 4k + 3. From Lemma 5.3, (21) and (22), it follows that for such n

n—hk—2
(-D*(x(A) = 2) = (—(5ﬁ}+)) implies that 8o = 6y = ... = Bek—1 = 0 and
w—k—2 :
Br = ((2‘;, +11)). Then by Dehn-Sommerville relations for homology manifolds
A
(see Lemma 5.1)
2k+1 n—k—2
e G L (P R SR R

On the other hand, since A}, < (h},)<*> and since hj; < Nii1, we obtain
from (17)

PJ 7
’ K < R k 41 _ Ykl
k41 7 Mt = M1 T Nk;+1 k+1 — Nk+1

(Negr = Ni) = N1 — N (25)
and equality is attained only if A} ;| = Ni1.

Comparing (24) and (25), we obtain that h},; = Niy1. Therefore, h; =
hi = N;fori=0,1,...,k+1, and so A is (k + 1)-neighborly. 0.
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Remark To prove the Kuhnel conjecture for 2k-dimensional homology man-
ifolds with n vertices, where n < 3k + 3 or n > 4k + 3, we used the following
facts: Theorem 1.7, which asserts that if A is a (d — 1)-dimensional Buchsbaum
complex on n vertices then Ay(A) =1, h{(A) =n — d and

B (A) < (h;(A) - <d; 1>ﬁT_1(A)> T err=Lo.del (26)

Poincare’s duality theorem and the following version of Dehn-Sommerville rela-
tions:

2

Unfortunately, these facts do not imply the Kuhnel conjecture for 2k-dimensional
homology manifolds with n vertices, where 3k + 3 < n < 4k + 3. Indeed, there
exist numbers & and n such that 3k + 3 < n < 4k + 3, and sequences of non-
negative numbers (hg, by, ..., hy 1) and (B, ..., Bax—1), where 3; = Ba;_; for
1=1,2,...,2k — 1 and fy = 0, which satisfy (26) and (27), but such that

hZi—j_h;': <;l)(ﬁj_6j—l) fori:O,l,...,[gj. (27)

2k—1 (n—k’2)
k i k41
(-1) Z (=18 > PR Te
=0 ( k )
For example, let us take k = 18 (so, d = 2k +1=37), n = 62,
3 1=16,20
B = 20 1=18

0 otherwise

and define A/ as following:

[ () =) r<k-1=17
, 2k <k—1>
(hk—l - (k_l)ﬁk_z) = 288985623780 r =k = 18
ho={ b+ (3) B = 642438261780 r=k+1=19
by — (%)) Br—2 = 103868374320 r=k+2=20
Ri_o + (,25,) Br-2 = 101479425660 r=k+3=21
hil~'r = hl37—r r>k+4=22

In particular, {h;}, {8} satisfy (27). Computer check shows that these se-
quences also satisfy (26), but

whereas




6 Proof of the UBC and UBC' for
even-dimensional homology manifolds.

In this section we prove the UBC for 2k-dimensional Eulerian homology man-
ifolds and the UBC’ for arbitrary homology manifolds. In fact, we prove that
the UBC holds for a more general class of homology manifolds.

Let d=2k+1 and let A be a 2k-dimensional homology manifold on n vertices.

Lemma 6.1 Forl=0,1,...,2k+1

k+1

fll Zah

where ag- are non-negative (rational) coefficients independent of A.

d
froa(a) Y 4t 16 5= (‘;_ l)h _

7=0

Proof

e (e
“"25 () (L)
-

(-1)* <h(; m)(e}l)kf( (,L ).

7=0
Thus, for y <k -1
a-j j
= >
(d_l +<d_l>_0, (28)

23

a



7=0 (29)

(30)

Remark
1. Note, that the coefficients aé— are rationals, not integers in general.

2. Notice that the proof of the Lemma follows from the Dehn-Sommerville
relations only! Therefore, this result holds for a larger class of simplicial
complexes, namely, all simplicial complexes A satisfying y(lkF) = 1 +

(-=1)d4imIKF o1 any non-empty face F of A. Since the span of f-vectors
of all such 2k-dimensional simplicial complexes has dimension & + 1 (see
[7]) this kind of representation of f-vector in terms of h-vector is unique.

Definition 6.2 For d = 2k + 1 define

&= & n—d+j-1
Ml(n,d):Za;Nj=Zaé»< p >
=0 =0

Remark 6.3 If A is o Eulerian homology 2k-manifold, then (by Dehn-Sommerville
relations (1)) h; = hogy1- fori=0,1,...,2k+1, and we obtain from (28)-(30)
(or, directly from the definition of h-vector) that

-5 (D) ()

J

We recall that h;(Cory1(n)) = N; for j <k, so

fie1(Cara (n)) = zk: ((32:1:5) + <2k +j1 B l)) N;.

J=0

Let A be a 2k-dimensional homology manifold on n vertices.
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Lemma 6.4 hj < Nj for j=0,1,...,4k+2—n.

Proof If n > 4k there is nothing to prove, and if n < 4k then the proof follows
from Lemma 5.5 and (7).

Lemma 6.5
hit1 < Njy1 for max{0,4k +2 —n} <j < 2k.

Proof Let ig = max{0,4k + 2 — n}. By Lemma 5.2 we have

J
N 2k
i1 S Njjp1 — Z ]J\,H ( ; >,Bi—1~ (31)

i=1

Now, observe that for j > ip and 0 <1 < j

it € I i | €0 B R et Vel O C000) B
— m—2k—241 - n—2y = 7
(2]1:6—11) ( 2191_ 2+ )(2;::1) ok + 1 (2k—j)

[The last inequality follows from
en—(2k+1)+7>2k+1,since (4k+2) -y <4k +2—10 <n.

. (271[_21,) > (;;2]), since 0 <4 < 7, and so, 2k —i > 2k — 7 and

(2k —3) + (2k — j) < 4k — j <4k —ig <n —2]
Thus,

Njp1 (2K 2k + 1 , o
—_ > > - < 7. 2
N, <i)_(j+1)for]_max{0,4k+2 n}and 1 < j (32)

Combining (31) and (32), we obtain that

, 2% + 1Y . A
hiy1 < Njy — i Z,Bpl for j > max{0,4k + 2 — n}. (33)
=1

Therefore, for § > max{0,4k + 2 — n}

by (4) U+ 1\ o=, g, DV 33
hjt1 44 hiv1 — (j ) (=18 <
1=0
2k+1

Njt1 —2(j+1>(5j—1+5j—3+5j—5+'“) < Njjr.

O
Now we are ready to prove the UBC and the UBC’
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Theorem 6.6 If A is a 2k-dimensional homology manifold then
hi(A) < Nj for j=0,1,...,2k+ 1.
In particular, if A is Eulerian, then
fi-1(A) < fi_1(Cy(n)) forl=0,1,...,2k+1

(if equalities are attained in all these inequalities then A is k-neighborly and
B: =0 foralli <k—2);
and if A is non-Eulerian, then

fl—l(A) S Ml(TL,d) fO’f‘l = 0,1,...,2k+ 1

(if equalities are attained in all these inequalities then A is (k + 1)-neighborly,

n—k—Z)

Bi=0foralli<k—-1 andﬁk:%}lT)‘)-

Proof The first assertion follows from Lemmas 6.4 and 6.5. The second assertion
follows from the first one by the definition of M;(n,d), Lemma 6.1 and Remark
6.3. Now, suppose that equalities are attained in all the inequalities. Then, it
follows from the first assertion that h; = N; for i = 0,1,...,k in the Eulerian
case and h; = N; for ¢ = 0,1,...,k + 1 in non-Eulerian case. And so, A is
k-neighborly in the first case and (k + 1)-neighborly in the second case. Now,
let 79 be the smallest index such that 8;, # 0. Then by (7) h;4+2 < N;, and
50 29 2> k — 1 in the first case and ip > k in the second case. In addition, we
obtain in the second case, that 8r = (—1)¥(x — 2) = (het1 — hi)/(*5F) =

n—k—2
k41

(Ngt1 — Nk)/(%,jl) = w, which completes the proof. O
[

Remark Lemmas 6.4 and 6.5 with suitable notational changes and the same
proofs hold for odd-dimensional manifolds as well, thus, giving the second proof
of the UBC for odd-dimensional homology manifolds.

In fact, the ordinary UBC holds for a more general class of homology mani-
folds:

Theorem 6.7 Let A be o 2k-dimensional homology manifold, such that B, <
DABi i £k -2,k k+2 and 1 <1< 2k— 1}, or, equivalently,

k—3

Be <2Be1+2) B (34)

=0

Then
fl—l(A) < fl_1(02k+1 (n)) fOT = 0,1,... R 2k + 1.

If equalities are attained in all these inequalities then 8; =0 fori < k —2
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Proof

If n < 3k + 3, then by Lemma 5.5 g = 2 =1 =--- = Br—1 = 0, so we have
from (34) that 8y = 0. Therefore, A is Eulerian and we are done by Theorem
6.6. Thus, suppose n > 3k + 4.

From Lemma 6.1 and Remark 6.3 it follows that it is sufficient to prove
that h,;(A) < N, for j = 0,1,...,k and hiy1(A) € Ni. By Theorem 6.6 for
arbitrary 2k-dimensional homology manifold A, h;(A) < N for j =0,1,... k.
So, it suffices to prove that if A satisfies (34), than hx41(A) < Ng.

l.n=3k+4orn=3k+5
Then 4k —n+1 > k — 4, so by Lemma 5.5

Br—a =Prs=-=p =0 (35)

Since, in addition, k — 1 > max{4k + 2 — n,0}, we obtain from (33) that

2k+1
hi, < Ny — ( k >(5k-2 + Bu3) (36)
Therefore,
by (4) and (35 2k +1 by Lemma 5.1
hit1 v )= (35) ;c+1—<k+1>(ﬂk—l_ﬂk—2+ﬂk—3) YOS
, (2k+1 by (36)
hy, — ( 1 )(_Bk +20k-1 — Br—2+ Pr-3) <

by (34) and (35)
<

Ni — <2k y 1> (=B + 2Bk—1 + 2Bk—s) Ny

k

Thus, in this case the theorem is proved.

2. n >3k +6.
Then for 0 < i < k — 3 (so, we assume that k > 3)
Ny (2k n—2 n—2
'ﬁL(z) n‘k'—2.(2k—i) 2k+4.(k+3)

(RF)  2%k+1 0 () T 2%+1 ()

(2k+4)(n—k=3)(n—k=4) _ (2% +4)(2k +3)(2k +2)

(2k+1)(k+3)(k+2) — (k+2)(k+3)(2k+1)
2k +3
. >
2 k+3 23
Thus,
Ny (2k 2k +1 .
= > <k-3.
Ni<i>_3< i >forz_k 3 (37)
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Since k — 1 > max{0,4k + 2 — n}, we observe from (32) that

Ny (2k 2k +1 .
> =k—2k—1.
Ni<i)‘< v )forz k—2,k-1 (38)

From Lemma 5.2, (38) and (37) we obtain

k—4
, 2k +1 ,
hi < Ny — ( k (Br—2 + Br—3+3 gﬁi% (39)
Therefore,
by (4 2k+1 by Lemma 5.1
hit1 —_-() ;c+1_<k+1>(ﬁk~l_,Bk—2+ﬂk—3_"') v e

by (39)
<

hj, — <2k]: 1> (=Be+2Bk—1+(—Pr—2+Br—3—Pr—a+Br—s—--))

Ne— (2k + 1) (=Bu+28k—1+28k—3+(28k -4 +4Br—5+2B8k— +4 Bk 7+ - ) <

k
k=3 by (34)
Ni — <2k; 1)(“ﬂk +208k-1+ 2;@) < N

Discussion of equality is exactly the same as in the proof of Theorem 6.6. O

Corollary 6.8 The ordinary UBC holds for the following classes of homology
manifolds:

1. homology 2k-manifolds with vanishing middle homology;

2. homology 2k-manifolds with x < 2 when k is even or with x > 2 when k
18 odd.

Proof Such homology manifolds satisfy assumptions of Theorem 6.7. O

7 Further remarks and conjectures.

Here we consider some conjectures concerning the combinatorial structure of
the shifted basis of the Stanley-Reisner ring of a (triangulation of) topological
manifold and relations between the face numbers and the Betti numbers of
triangulated manifolds to which these conjectures lead.

First, a brief summary of what we have seen in section 4. Let A be a (d—1)-
dimensional simplicial Buchsbaum complex on n vertices. Let Ra be its Stanley-
Reisner ring. Consider generic linear forms w1, %2, ..., ¥n, order monomials in
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the y’s lexicographically and choose from these monomials a basis of Ra over
k, S(A), in the greedy way. For ¢ = 0,1,...,d — 1 define A; to be the set of
all monomials m in Yit1,Yit2, .- . Yn, such that m is in S(A), y;m is in S(A),
but y;,1m is not in S(A) and define A4 to be the set of all monomials m in
variables y411,- - ., Y, such that ygm is in S(A). Let MON(i) be the set of all
monomials in yi,...,¥,. Let S(A) = S(A)YNMON(d +1).

We proved that for i =0,1,...,d -1

7
T

such that m € S(A), ysm € S(A), but yipam ¢ S(A).

1. there are exactly ( :ll)ﬁr_l monomials m of degree r in ¥;-1, Yit+2,-- -, Yn

2. All these monomials are actually monomials in y441,...,¥n.
3. Iy, ,m ¢ S(A) then y;p1m ¢ S(A).

These facts allowed us to calculate the generating function of 4;. We ob-
tained (see Lemma 4.2) that the number of monomials in A4 of degree 7 is
.~ (*71)B,-1. Since 8r415,41(A) C Ag, this led to the proof of Theorem 1.7,
which asserts that

d—1 <r>
hi 1 (A) < (h'T(A)— < . >ﬁT71(A)> forr=1,2,...,d—1.

Gil Kalai conjectured that if A is a triangulation of a topological manifold
(briefly, triangulated manifold), then stronger results hold. To state his con-
jectures let us define Cq; = {m € Ag N MON(d + 2) : yasum ¢ S(A)}.
That is, Cy41 is the set of all monomials m in variables ya42,...,¥n, such that
yam € S(A), but ygp1m ¢ S(A). Let H, be the set of all monomials of degree
rin Ay — Cgyq1 Then BTHS’TH(A) C H,, rather than in Ag4, as proven.

Conjecture 7.1 Let A be a (d—1)-dimensional triangulated manifold (with or
without boundary, orientable or not orientable). Then the number of monomials
in Cyy1 of degree 1 is equal to (d—l)ﬂr_l.

r—1

Remark 7.2 Lemma 4.2 and Conjecture 7.1 imply that

\H.| = K, — (d - 1) Brs - (jf:bﬂr_l . (‘f) By

for1 <r <d.
Define

= n = (1) =t (1) 008

1=1

(the last equality is the Schenzel theorem)
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From now on, we will consider only triangulated manifolds without boundary
(and orientable over k).
The following lemma is another version of Dehn-Sommerville relations:

Lemma 7.3 For A as above h! =h!] . fori=0,1,...,d.
Proof

, . d . (d by Lemma 5.1
s = (e = ()i ) = (1= () P

(?) (Bi — Bi—1) — ((Zi) (Ba—io1 — Biz1) by POinca:,Ee duality 0
a

Remark 7.4 b can be regarded as the “correct” h-vector for triangulated man-
ifolds without boundary.

Conjecture 7.5 If A is o (d — 1)-dimensional triangulated manifold then

1 Ifr < ‘31 and m € H, then yj;f’m € Hy_,. (Conjecture 7.1 and Lemma
d—2r
d+1

2. Ifr < %, then |{m € H, N MON(d+2)}| > (,%,)Br-1.

7.8 imply that m — y m is a bijection).

Remark The first part of Conjecture 7.5 is the analog of the Hard-Lefschetz
theorem. Ifit is true, it implies that hy < AY <..- < h’L’d/2J and that b, ~h} <
(h! —h!_ )< fori=0,1,...,[d/2] — 1.

The second part of Conjecture 7.5 provides lower bounds on &;,; — A} for
i=0,1,...,]d/2] - 1.

It is interesting to clarify for what families of simplicial complexes the UBC
holds. For example, it is possible, that the UBC holds for all simplicial com-
plexes A, such that every link A’ (of face) of dimension 2r (r = 1,2,...) satisfies

ﬂTSZ{ﬁi:i¢r—2,r,r+2,1§i527—1},

and, in particular, if the Betti numbers of all links vanish in the middle dimen-
sion.

We proved that for even-dimensional homology manifolds h; <
for any ¢ < d, where d — 1 is the dimension of the manifold (see Theorem 6.6).
(And the proof works for odd-dimensional homology manifolds as well.) It is not
clear, whether these inequalities hold for all Buchsbaum complexes. Wistuba
and Ziegler obtained that these inequalities do not hold for some pure simplicial
complexes (see [22]).

It is interesting to note that from our proofs it follows that if n is sufficiently
large then every homology 2k-manifold with n vertices such that 3; # 0 for

(n—d;}—i—l
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some i #k—1,k, k41,0 <i < 2k satisfies the UBT. (In other words, for each
such homology manifold there are only finitely many triangulations that violate
the UBT).

Theorem 7.6 Let A be a 2k-dimensional triangulated manifold on n vertices.
Congjecture 7.1 implies that

k—2 (n;k—2)

Be(A) + Brr (8) +2 3 Bi(A) < @Jé)-

1=0 k

In particular, Conjecture 7.1 implies the Kuhnel conjecture for any n.

Proof Since 8,415,41(A) C H,, |Sr41(A)| = ., and by Remark 7.2 |H,| =
hl — (f)ﬁT_l, we obtain that

d <r>
< (= (Do) (40)

By Lemma 5.5 we can assume that n > 3k + 4. Repeating the calculations of
Lemmas 5.2, 5.3, but using (40) instead of Theorem 1.7 we obtain that

n— 2k -2 = (i) n-2k-2 ("er1)
L N =il < kil 41
/Bk+ k+1 ﬂk 1+Z(n_2) 2k+1—7418 1= (21(:-}—1) ( )
=1 k k
Now, note that forn >3k +4andi =%k -1
(;,;21-)_n—2k—2_(n—k—2)(n—2k—2)>(2k+2)(k+2)_2. 42)
(") 2%k+1-0 (k+1)(k +2) T ((k+1D(k+2) 7
forn>3k+4andi<k—2
(277’1;_—27;)‘”_2]“”2 (:;g) ”—Qk"Q_
(") 2%k+1-17 (") 2%k+1 (43)
(n—k—?)(n—k—S)(n—2k—2)>(2k+2)(2k+1)(k+2)_ .
(k+1)(k+2)(2k+1) = k+1){E+2)2k+1) 7
and ok — 9
n—2k —
—k:l:_]._>1. (44)

Substitution of (42)-(44) in (41) completes the proof of the theorem. O

Remark 7.7 Let A be a 2k-dimensional triangulated manifold on n vertices,
such that By (A) = 0. Then Conjecture 7.1 and the first part of Conjecture 7.5
imply that S(A) C S(Caky1(n)).
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Indeed, By = 0, therefore |§k+1| =hi =hi = |Hit1|- Since Hpyq C Skt1s
it follows that Hgq1 = §k+1. Thus, by the first part of Conjecture 7.5, all
monomials in Si41 are divisible by y441. In particular, yﬁié ¢ S(A). Therefore,
for any m € S(A), m is not divisible by ySI; Thus, S(A) C S(Cart1(n)) (see
[6] for the description of S(Cak41(n))). If so, then A satisfies the generalized
upper bound theorem (see [6]).

In general, if ?JSI% ¢ S(A) then the UBC and some far-reaching generaliza-
tions of the UBC hold for A (see [6]). In light of Conjecture 7.5, it seems that
not all (d — 1)-manifolds with x = 1 -+ (—1)?~! satisfy this condition. But it is
possible, that this condition holds for all simplicial complexes A, such that for
every link A’ (of a face) of dimension 2r (r = 1,2,...) dim H.(A',Z3) = 0.
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9 Appendix. (by Richard Stanley)

Let M be a graded Buchsbaum module of Krull dimension d > 0 over the graded
algebra R. Let m = R, be the irrelevant maximal ideal of R. Let G; = G(?)
be the Poincare series of the local cohomology module H*(M) (in the variable
t). Thus G, is a Laurent polynomial for 0 <¢ < d — 1. Write

G(M) = (Go, G, ..., Gar).
Recall that H°(M) is a submodule of M, viz.,
HO(M) = {ue M :m"u =0 for some k > 1}.
Lemma 9.1 We have

Hi(M/HO(M)):{ Hi(M), i>0.

Proof The short exact sequence
0— H(M) — M — M/H°(M) — 0
gives rise to the long exact local cohomology sequence

- == H'(H(M)) — H'(M) — H'(M/H*(M)) — H*'(H(M)) — -+
(45)
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Since H°(M) has Krull dimension 0, we have H*(H°(M)) = 0if i > 0, while
HO(H°(M)) = H°(M). The proof follows from (45). O

The next lemma appears at the top of page 76 of [20], but without the
grading.

Lemma 9.2 Let © € m be a homogeneous non-zero-divisor (NZD) of degree a
on M. Fori<d—1 we have

H'(M/zM) = H'(M) o H (M(-a)),
where M(—a) denotes M with the grading shifted by a.
Proof The short exact sequence
0— M(-a) M — M/xM — 0
yields
= HY(M(=a)) = H(M) — H'(M/zM) — HT (M(-a)) — ---.
Now since M is Buchsbaum, we have mH*(M) = 0 for i < d (see Corolgiri)/

2.4 on p. 75 of [20]). Hence the map H*(M(—a)) = H*(M) in (46) is 0 for
1 < d, and we get an exact sequence

0 — H' (M) — HY(M/zM) — H"'(M(—a)) — 0
for i < d — 1, and the proof follows. O
Corollary 9.3 With x as in Lemma 9.2, we have
G, (M/xzM)=G;(M)+t*G, 1 (M),
for0<e<d~-2.
Now consider a peeling of M. At first we have
G(M) = (Gp,G1,Gq,. . ).

Let My = M/H°(M). (Possibly H°(M) = 0, as for face rings, but this is
irrelevant.) By Lemma 9.1,

G(M,) =(0,G1,Gq,...).
Let z1 be an NZD on M; of degree one. Let Ms = M; /21 M;. By the Corollary

9.3, we get
G(M3) = (tG1,G1 +1tG2,Ga +1Gs3,...).
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Now let M3 = My/H°(M>). By Lemma 9.1, we get
G(M3) = (0,G1 +tG2,Gy +1G3,...).

Let 22 be an NZD on M; of degree one. Let My = M3/x2M;3. By the Corollary
9.3, we get

G(My) = (t(G1 +1tGy),G1 +tGa + (G2 +tG3), G2 + tG3 + t(G3 + tG4), . . .)
= (tG1 + t2G2,G1 + 2tGy + t2G3, Gy + 2tG3 + t2G4, .. )

Continuing in this way, we obtain the entire Poincare series for the peeling of
M. In particular, we obtain the expression for Go(May), which is the Poincare
series of HO(May).
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