Abstract—The inherent computational complexity of polygon decom-
tion problems is of theoretical interest to researchers in the field of
putational geometry and of practical interest to those working in
tactic pattern recognition. Three polygon decomposition problems are
wn to be NP-hard and thus unlikely to admit efficient algorithms. The
ems are to find minimum decompositions of a polygonal region into
aps overlapping) convex, star-shaped, or spiral subsets. We permit the
nal region to contain holes. The proofs are by transformation from
ean three-satisfiability, a known NP-complete problem Several open’
ms are dlscussed

I. INTRODUCTION

HE COMPUTATIONAL complexity of many poly-
gon decomposition problems is unknown [39]. Here
B investigate the problems of decomposing a polygon into
j her convex, star-shaped, or spiral subsets. Two im-
nt qualifications should be noted: we permit our
gons to contain holes, and we permit the pieces of the
mposition to overlap. We establish that all three de-

‘ nj intractable unless P = NP. (For background on the
ry of NP-completeness, see Garey and Johnson [13])
her of these two qualifications are removed, then our
fs no longer hold, and indeed the complexities of the

' Thls method is suggested “for example

position the problem of defining and computing
ity measures is currently being investigated by
iro and Haralick [36], [37), and Radig et al. [32]

these “component-directed” (as opposed to “pro-
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Some NP-Hard Polygon Decompos1t1on
Problems

Bmposition problems are NP-hard and so arg' fundamen-

ara [19], who have used the notions of

Bng others. Often the primitive parts of the decomposi-
e restricted to some particular shape-type; Toussaint

ected”) decomposmons Pavlidis has done the
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pioneering work on decompositions into convex pieces
[251-127), [28, pp. 236-241], [29]; see also [33], [22]. Re-
cently, Shapiro and Haralick [35] have relaxed the strict

convexity requirement for their primitives and obtained

very natural decompositions. Maruyama [21] and later Avis
and Toussaint [2] have investigated decomposition into
star-shaped polygons, and Feng and Pavlidis [9], [30] have

‘studied spiral decompositions. Other specially shaped

primitives, such as “monotonic” polygons [39], [31], have
also been explored.

A second motivation for polygon decomposition is that
certain calculations are difficult for general polygons but
easy for certain simple shapes; in such cases, it may be
advantageous to decompose a general polygon into simple
shapes, perform the computation on each, and combine the
results. This is the approach taken by Ahuja et al. [1], who
decompose nonconvex polygons into convex pieces for
their interference/collision detection algorithms.

The final motivation we will discuss comes from the
discipline of computational geometry [34], which is con-
cerned with algorithm design and computational complex-
ity for geometric problems. Following Toussaint [39], we
will distinguish decompositions according to whether or
not they use Steiner points (points that are not vertices of
the original polygon), and whether they permit overlapping
. pieces (a cover) or require a partition into nonoverlapping
pieces. Additionally, we will d1st1ngu1sh between input
polygons with and without holes. These distinctions to-

i gether with the variety of shape types that might be used as

primitive elements result in a plethora of polygon decom-
position problems. We are interested here in investigating
the computational complexity of minimum decompositions,
i.e, decompositions into the fewest possible number of

'pleces subject to the various Sonstraints mentioned above.

-There are two major results along these lines. The first is
Chazelle and. Dobkin’s 0(n3) algori

p
major result is Masek’s proof [20]. that the problem of

finding a minimum decomposition of a “ rectilinear” poly-
~-gon (one whose edges are aligned with orthogOnal coordi-

nate axes) that may contain holes, using ‘Steiner. pomts,
into aligned rectangles, is NP-complete. (This problem is

pti
polyh&ﬁial ‘tinfe. The second

called “rectxhnear plcture compresswn” in’ [13 p- 232]) :
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Masek’s result does not establish-the complemyuof unre- we

stricted convex coverings because the minimum ‘convex
cover of a rectilinear polygon may require the use of
nonrectangular pieces [23]. Other interesting results are
available, but their relevance is less clear. For example,
Chvatal’s “watchman” theorem [8), [10] establishes that at
"most |n/3] star-shaped pieces are required to cover a
simply connected polygon. This provides an upper bound
on the size of a minimum decomposition, but seems to be.
little help in actually constructing a minimum decomposi-
tion.

Although several algorithms have been designed for some
~ of the. other polygon decomposition problems, none
‘guarantee minimum decompositions and so do not bear
directly on the issue of their worst-case computational
complexity. In the sections to follow, we will establish the
complexity of three problems: minimum deoomposmon of

polygons that may contain holes, using Steiner points, into

overlapping convex, star-shaped, or,spiral subsets. < -

II. PrOBLEM DEFINITION

In this section notation will be established and the
problems precisely defined. A simply connected polygonal
region is a closed subset of the plane whose boundary is a
simple polygon.! A multiply connected polygonal region is a
finite connected union of simply connected polygonal re-
gions. It may contain polygonal holes, but because it is
always a closed region, it can have no “pomt holes.”
Multiple connection will be assumed unless othermse
noted.

A polygonal region may be spec1fied by a set of circular
lists of its vertices, one for each boundary chain of seg-
ments in its boundary, with the usual orientation conven-
tion: ‘during counterclockwise traversal of ‘an ' outer
boundary chain or clockwise traversal of an infier boundary
chain (bounding a hole), the region is towards the left. In
order to obtain definite measures for the “size” of a
particular input, all vertex coordinates will be restricted to
be integers. An example of a polygonal region is shown in
Fig. 1.

Decompositions into three particular shape types will be
considered: convex, star-shaped, and spiral. A convex po-
lygonal region is a polygonal region that is convex in the
usual sense: any two internal points may be connectéd by a
straight line segment that is a subset of the region. A
star-shaped polygonal region is one whose kernel is non-
empty. The kernel of a region is the set of pomts w1th1n the
region from which the entire boundary is ‘visible; thus-a
region is star-shaped if there is at least one pomt that can
“see” every point on the boundary (see Fig. 2(a)). ‘A spzral
polygonal region is a simply connected polygonal region

whose single boundary chain has at -most one: coicave -

subchain (see Fig. 2(b)). Note that a convex ‘polygonal
- region is always both star-shaped (1ts kemel is equal 1o

. Multiply connected polygonal region with two holes

STAR POLYGON

@

SPIRAL POLYGON

Fig. 2. (a) Star-shaped polygonal region. Every pomt in nonempty’
can “see” entire boundary. (b) Spiral region with' single -chAllg
contiguous reflex vertices.

itself) and spiral (it has no concave subchains).

decompositions of Fig. 1 into the three shape t
shown in Fig. 3(a)-(c). :

Letting o vary over shape propertxes, and u
represent the set of three shapes, .

= {convex, star - shaped splral), ‘
we will speak of “o-subsets” and “o-éo T
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h decompositions of polygonal reglon of Fig. 1. (a) Cover
:- . (b) Cover by star-shaped pieces. (c) Cover by spiral

problem or MoCMP, and can be specified as
{after the style of Garey and Johnson [13]).

“set of lists of integer-coordinate veiftices
gonal region P, and a positive integer

» do o-subsets S, S, - -, S, withk < K

,kkszu USk~P?
oblem will be shown to be NP

problem [16], [13, pp. 48-50}:

Boolean Three-Satisfiability (3SAT)

Instance: A set U = (uy, u,,- -, u,) of Boolean vari-
ables and a collection C = {¢,, ¢,,* - -, ¢,,} Of clauses over
U such that each c; € C is a disjunction of precisely three
literals.

Question: Is there a satisfying truth assignment for C,
i.e., is there a truth assignment to the » variables in U such
that the conjunctive normal form ¢, - ¢, - - ¢, is true?

The proof proceeds along lines similar to proofs of
NP-completeness published recently by Fowler et al. on the
“box-cover” problem [11], [12] and by Supowit on point

" and disk coverage problems [38].

ITI. TRANSFORMATION FROM 3SAT

The usual first step in a proof of NP-completeness is to
show that the problem is a member of the class of NP
problems, that is, solvable via a nondeterministic algorithm
in polynomial time [13, pp. 27-32]. Often this is easy,
merely requiring a demonstration that a solution “guessed”

" by a nondeterministic program can be checked in poly-

nomial time. With the integer-lattice geometric objects used -
in our constructions, however, it is unclear how to establish
this. In the absence of proofs that the three problems under
consideration are members of NP, the arguments presented
will establish that the problems are NP-hard rather than
NP-complete.

.We will now show that 3SAT is polynomially trans-
formable to Mo CMP for each ¢ € Z. The three proofs will
proceed in parallel, as their overall structure is the same.
The goal is to accept an instance of 3SAT as input dnd
construct, in polynomial time, a polygonal region that has
a o-decomposition into a certain number K or fewer o-sub- .
sets iff the given set of clauses is satisfiable. As with other

/3SAT transformations [11]-[13], [16], [38], the construction - -

forces ‘a truth assignment with n “truth-setting compo-
nents” that simulate the Boolean variables, and ensures
satisfaction with m “clause components” that correspond,
to the disjunctive clauses.

A. Truth-Setting Components

associated with the truth assignment TRUE and the other
with FALSE. The basic patterns for ¢ € 2 are shown in Fig.

-4, Fig, 4a) can be minimally covered either with vertical

(convex) rectangles or horizontal rectangles. (The basic

idea here is.also used by Masek [20].) Fig. 4(b) serves as the

basxc pattem for both star-shaped and spiral decomposi-

tions; in both cases, there are exactly two, minimum covers.

There are certain distinguished points associated with each -

pattem_, labeled with integers in the figures. These; p I
ot art of the construction; they are used in

S, 'D -thai th polygon constructbd has the appropnatem erif;
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TRUE FALSE

Fig. 4. Basic truth-setting patterns. (a) Convex truth-setting pattern can

- be minimally covered cither by vertically oriented rectangles or by
horizontally oriented ones. (b) Star-shaped and spiral truth-setting
pattern can be minimally covered either by pieces centered at inner
corners or by pieces centered at outer corners.

the clause is satisfiable. Note that two of the distinguished
points can be covered by one o-polygon iff the two points
are consecutive in the numerical sequence.

The truth-setting patterns are bent (see Proposition 2 in
the following) to form closed loops, called variable loops.

There will be one such loop per Boolean variable u; in the .

final construction. :
By these remarks, each minimum o-decomposition for a
variable loop contains exactly r,/2 elements, where r, is

the number of distinguished points, in the variable loop

Fig. 5. Variable loop bends. (a) Arm of convex variable loop bending 45

deg and two minimum covers. (b) Arm of star-shaped or spiral variable§
loop bending 45 deg. E

corresponding to u,. We call such a decomposition TRUE if}

it contains distinguished points i and i + 1 for all even {3

(taken modulo r;), and we call it FALSE if it contains]
distinguished points j andj + 1 for all odd j. Define the]
bound K used in the definition of the Mo CMP problem asj
equal to 1/232_r,. " i

The main properties of variable loops are stated som
what informally as follows (the proofs, being straightf
ward, are either omitted or sketched).

Proposition 1: Each minimum ¢-decomposition is eith
a TRUE decomposition or a FALSE decomposition.

In constructing the polygonal region P, it will be neces3
sary to cross variable loops over one another and “bend 4
them' 45 deg, without these modifications affecting thd
truth of Proposition 1 for any variable loop. The ability tg]

bend a variable loop effectively gives us what is sometime3

called ‘an “inverter” in other NP-completeness const
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Fig. 6. Variable loop crossovers. Arms of two different variable loops can cross without. interfering with their coverage ) i
properties. (a) Convex variable loop crossover. None of distinguished points for_variable loop u; (unprimed) can see points
for u; (primed). (b) Star-shaped variable loop crossover. Crossover is arranged so only odd distinguished points (4 and ;) can o

. be covered by “cross star” such as Q. (c) Spiral variable loop crossover. Twenty-four uninterrupted straight segments in
crossover region are numbered for reference. ' : )

g if it containsj
dd j. Define th
“MP problem
e s c!some—: Proposition 2: The variable loops may bend 45 deg erties. More precisely, if two unconnected variable loops
eing straightfor-§ without affecting their properties. . require k; and k, o-pieces in a minimum decomposition,
o then one can cross over the other in'such a manner that the

vosition is eithe resulting (connected) polygonal region requires k, + k,

» Proof: Fig. 5(a) shows the construction for convex
»sition.

fariable loops. Note that it is not difficult to make all -

eI é ! ] ~ o-pieces in a minimum decomposition, and without alter- .-~
it will b?. e ces have integer coordinates. Fig. 5(b) shows the sim- ing the type of coverage (TRUE/FALSE) within either vari-

her and “bend"} construction used for star-shaped and spiral, variable -pp]e loop ’ '

nsaffectmg ,‘v Ops. : ’ o ) . -

p. The ability to] , ‘ ‘ - . Proof: The constructions are:shown in Fig. 6. In the

1at is sometimes} oposition 3: Two variable loops may cross over one convex case, Fig. 6(a), none of the -distinguished points in
teness ‘Construc

fhother without affecting their independent coverage prop-  the u, variable loop is visible to any of the u; distinguished-

N\, \
oo ) ) \ “




186

points. Since any convex piece in a minimum covering
must cover at least two distinguished points, and two
mutually invisible points cannot be covered by one convex
piece, no possibility of interference exists between the two
loops. o

The star-shaped crossover (Fig. 6(b)), while simple in
form, requires a more complicated argument than does the
convex case to show that it preserves the desired properties.
The star-shaped case would not be difficult were it not for
the possibility that distinguished points i and j may be
covered by a single star-shaped polygon Q (shown in
hatched lines). We can, however, arrange the crossovers to
ensure that at each crossover in the complete construction,

i and j are both odd. We will argue that this arrangement .

ensures that each covering that contains < K pieces (if

there are any) is a TRUE / FALSE ‘covering. '

Define a cross star to be a star-shaped polygon contain-
ing at least one distinguished point of each of two variable
loops, e.g., the polygon Q in Fig. 6(b). Since the points /

~and j are both odd at every crossover, each cross star
contains exactlytwo distinguished points, both of which
are odd. Since no star-shaped polygon can contain more
than one even distinguished point, and since there are X
even distinguished points, every cover must contain X stars
to cover the even distinguished points. Therefore, if a cover
also includes one or more cross stars, then it must have
more than K elements. A similar argument was used in [38,
pp- 89-93]. ‘

The spiral crossover (Fig. 6(c)) is a more complicated
form. Our claim that it preserves the desired properties is
based on an exhaustive computer search; we have been
unable to construct a deductive proof.

There are 24 uninterrupted segments in the critical re-
gion of Fig. 6(c), 22 of which are covered by four spirals
from the standard TRUE and FALSE coverings of the par-
ticipating variable loops. The four TRUE / FALSE combina-
‘tions are shown in Fig. 7(a)-(d). To establish that these
coverings are minimum, a list of all maximal spirals (those
that canhot be extended by a segment on either end) was
compiled. No spirals including more than seven segments
exist, and the number of distinct 7-, 6-, 5-, 4-, and 3-seg-
ment spirals is 8, 12, 4, 26, and 8, respectively. No two- or
one-segment spirals can play a role in a minimum covering
because that would require the other three spirals to cover
> 20 segments, and no three seven-segment spirals exist
that overlap on as few as a single segment, nor any two
seven-segment and a six-segment spiral that share no seg-
ments. Thus there are just 58 spirals from which to choose
four to cover > 22 segments.

A computer search found six minimum coverings: the
four already discussed (Fig. 7(a)~(d), and two others, shown
in-Fig. 7(e) and (f). Fig. 7(e) is just a minor variant of Fig.
7(a), and similarly Fig. 7(f) is a variant of Fig. 7(d); neither
affects the propagation of TRUE and FALSE “ values” through
the participating variable loops. Therefore, the spiral cross-
over preserves the independent coverage properties of each

loop. o
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“areas near the ends of the vertical pieces exist that could be!

‘arranged so that a setting of TRUE will permit the triangle ]
“fesult is that the triangle at the clause junction will be;

. nents.

| |

......

soseonemesy
S,

(D

Fig. 7. Minimum covers of spiral crossover region. Four TRUE / FALSE]
covers (a)-(d) cover 22 of 24 segments; boxed segments remain un-
covered. Covers (a) and (d) have two equivalent variants, (¢) and (f);:*
respectively. '

B. Clause Junctions

~ If a particular convex variable loop is covered in aj
convex minimum cover by, say, vertical pieces, then small

covered “free” (without increasing the number of pieces)
by extending the vertical pieces towards it, but that cannoti
be covered free if horizontal pieces were used (see Fig. }
8(a)).. Similar statements may be made about star-shaped}
and spiral minimum covers (see Fig 8(b) and (c)). This is’
the key idea in the formation of the clause junctions.

‘The heart of_a clause junction is an isosceles triangle’
whose equal sides both slope at 45 deg. (The shape of this §
triangle is not critical, but it is easier to keep to integer §
coordinates if its sides slope at 45 deg.) Arms of three]
different variable loops are brought to the junction, one for
each side of the triangle. Suppose the clause represented by §
the junction is .c = & + u, + #. Then variable loop j is!

to be covered free, and variable loops i and k are placed sog
that a setting of FALSE will result in free coverage. Thé?

covered free if and only if the clause is satisfied by the
truth assignment established by the truth-setting compo-}

N A
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1g. 8. Triangular regions covered “free.” In each of (a)-(c), if loop

i Tepresents an uncomplemented variable and i is even, then triangular

., Tegion is covered free by TRUE covering, (a) Convex case. (b) Star-shaped
¢tase. (c) Spiral case.

g/ The details of clause junction construction are shown in"

9(a) and (b). The three important claims concerning
clause junctions are contained in the following proposi-

187
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Fig. 9. Clause junctions. Central isosceles triangle can be covered free if
and only if the corresponding clause is satisfied. Note that no two
distinguished points belonging to distinct chains can be covered by .
o-polygon. (a) Convex clause junction. (b) Star-shaped and spiral clause
junction. ' g )
Proposition 4: The o clause junctions as illustrated in -

Fig. 9 possess the following properties:

1) all vertex coordinates are integers;

2) the central triangle is covered free iff the clause is-
satisfied;

3)  the junction does not affect the independent coverage
properties of the participating variable loops.

Proof: That all vertex coordinates are integers follows

from the method of constructing the bends and the use of .

45 deg angles in the clause triangles. Fig, 8(a)—(c) establish
that the central triangle can be covered free if the clause is
satisfied. On the other hand, if the clause is not satisfied,
then the construction of the clause junction prevents any

piece cqvering a distinguished point of one of the variable

y

4
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Clause Junclion

Fig. 10. General arrangement of varrable loops and sample clause
Jjunction.

loops to also cover the central triangle. Finally, no two
distinguished points belonging to different variable loops
can be covered by a single piece. Since every piece in a
minimum cover must include two distinguished points,
there is no interference in their independent coverage prop-
erties. ) , O

C. Complete Construction of Poblgonal Region

The overall structure of the polygonal region constructed
for a given instance of 3SAT consists of # variable loops
arranged in parallel slanting columns, one for each Boolean
variable in U, with m clause junctions placed to the right,.
one for each clause in C. Arms of the three variable loops
corresponding to the three literals. that participate in a
‘clause are brought across the other loops to the right, bent
in 45 deg increments until they are oriented properly for
the chosen triangle side and accordmg to their comple-

* mented /uncomplemented status in the clause, brought to
the clause triangle as illustrated previously, and finally
returned to their proper slanting columns. A schematic
example is shown in Fig. 10.

Although the details are complicated, the entlre con-
struction can clearly be performed mechanically using the
bend, crossover, and clause junction patterns shown previ-
ously. The construction requires no more than O(m) bends,

+O(mn) crossovers, and O(m) clause junctions, so the ex-
ecution time of the entire procedure is polynomial bounded
by .O(mn). Note again that since all of the patterns usé
mteger coordinates, the vertices of the final polygonal
region will all have integer coordinates. These observations
imply the following proposition.

" Proposition 5: The construction of the polygonal région
requires only polynomial time.

Recall that the bound K was defmed to be half the total
number of dlstmgurshed points, Our argument to this point
has shown the following,

IEEE TRANSACTIONS ON INFORMATION THEORY;. VOL. 1T-29, NO. 2, MARCH

Proposition 6: A given set..of .clauses is satisfiable jf
there is a o-decomposmon of the constructed polygon"
region into K pieces.

-We may finally state our main result.

Theorem: The problem MoCMP, for each s € 3 .
{convex, star-shaped, spiral}, is NP-hard.

Proof: Propositions 5 and 6 establish that 3SAT i
polynomial transformable to MoCMP. Since 3SAT i
known to be NP-complete, Mo CMP is NP-hard for each
ol 0

Corollary : Mo CMP without Steiner points is NP-hard
for each o € 3.

Proof: No Steiner points are needed in any of our“
constructions.

v, DiscussioN

‘on.
example, because the construction of the p ]
results in a multiply connected polygonal region, our proofs
say nqthing about decomposmons of simply connected;
régions In addition, aside from the many variants dls-
cussed in the Introduction, there is an entire class of!
problems involving sum / difference decompositions. In3
these decompositions, primitive components may be sub-
tracted (set difference) as well as added (set union). Fot
example, if each C; is a convex polygon, the expression
P=C +C —C+ C,— C;— C represents a convex}
sum/difference decomposition. Very often, minimu E
sum/drfference decompositions result in both fewer and
more “meaningful” pieces; see [3], [39, p. 1341], [6, p. 97]]

Table I summarizes the current state of knowledge con-4
cerning minimum polygons decompositions. As one woul
expect, the more restrictive the class of polygons, and the]
more specialized the shape of the pleces, the more likely 1t
is that the problem can be solved in polynomial timej
Several outstanding open problems are indicated in the?
table, but the boundary between P and NP for polygon?
decomposition problems is gradually being clarified. Wha
is sorely needed, however, is a collection of fast near-opti
mal algorithms for those problems that have been shown t
be NP-hard.

Finally, some observations on three-dunensmnal poly-
hedron decompositions will be mentioned. In analogy 10
the two-dimensional case, define a multiply connected poly-]
hedral region to be a finite union of simple polyhedra.- Ing
topological terms, such an object is a three-dimensional}
connected simplicial complex whose surface may have genus,
greater than zero {14, pp. 95—96]. Trivially, the results
this paper.imply that the minimum decomposmon of th
regions into convex or star-shaped regions is NP-hard: thej
reduction is the same as for the two-dimensional casesg
except that the region constructed in the reduction has
constant (say zero) for each point in the third dlmensw

(There is no obv10us counterpart to a spiral polygon ”
\ ‘

1

N
\
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TABLE 1

i samflable lf y COMPLEXITY OF POLYGON DEcomosmon Pnonums -

tructed polygon

ecomposition Class of Shape of

Type Polygons Components Complexity
partition multiply connected convex NP-complete [18]
r each 03 < all others ?
+ partition simply connected convex o(n?) [6]
‘ ) all others ?
sh that 3SAT i partition re;t(i)?;e}z:g lv!;th rectangular  NP-complete {18]
Since 3SAT i partition simply connected  rectangular o(n®) [24]
P-hard for each rectilinear )
: cover multiply connected convex NP-hard
. 3 star-shaped NP-hard
oints is NP-hard 3% spiral NP-hard
- . all others ?
- cover simply connected all ?
i .8 .  cover ‘multiply connected  rectangular NP-complete [20]
d in any of oun; rectilinear
! “convex” rectilinear rectangular polynomial [4]
sum /difference all all []

1 of the complex
smpositions. Fog
previous section
‘egion, our proofs
imply connected]

:ompuwsitions. In
nts may be sub-
. (set union). For}
1, the expression]
sents a convexH
>ften, minimumy
both fewer and}
1341}, [6, p. 97)4
“ knowledge con-{
15. As one would}
olygons, and th
he more likely
rolynomial  time.;
indicated in the}
NP for polygon}
g clarified. What

Fig. 11.. Avoiding crossover in three dimensions in convex case.

olygonal region as a decomposition in which.the ¢om-
sing pieces are pairwise nonoverlapping, that is, the
fintersection of any pair has measure zero. As discussed in
ithe Introduction, Chazelle and Dobkin have shown that in
>f fast near-op he two-dimensional case, minimum convex partitions of
/e been shown to} ly- connected polygons can be found in polynomial
E fime [7], [6]. We conjecture, however, that minimum convex
i artition of three-dimensional multiply connected 'poly-
ral regions is NP-hard. To support this conjecture, note
at in our proof for two-dimensional convex -decomposi-
fion, the only place where we needed overlap between the

imensional pol
L In -alogy to
v coi.. ted poly-3
le polyhedra. In}

rree-dimensional mposing polygons was at crossovers. In three dimen-
: may have gen us"’y however, it seems that crossovers can be avoided by
y, the results of: pbe variable loop going up and over another variable.loop,
position of thesd] still preserving the desired properties, as suggested by
is NP-hard: 1. We must consider this a conjecture, rather than a..
nensional’ cases ult, since a considerable amount of computation is still
reduction has al essary in order to verify that the distinguished points as

third dimension ; ted in the figure satisfy the desired property: that two
sial polygon : em ‘are mutually visible 1f and only if> theyJ a.re con-

ree-dimensions.) Now define a partition of a polyhedral
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secutive. If the conjecture turns out indeed to be true, then
it would raise the following intriguing open question: is
this problem, as opposed to Chazelle and Dobkin’s hard
because of the added dimension, or because the regions are
multiply connected rather than simply connected? Perhaps
neither is the case: both of these added features may' be
necessary to make it hard. If the hardness is due to the
added dimension, then the multiply connected convex par-
tition problem would be the first problem of which we are
aware that is polynomial in two dimensions but NP-hard
in three. ‘

Final Note: During final revisions we learned that
Lingas [18]} has proven that two- and three-dimensional
convex partition is NP-hard, using a result of Lichtenstein
[17]. Related results are discussed in [15].
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Error Probabilities for Simple ‘
‘Substitution Ciphers |

Abstract—Unlike recent works by Blom and Dunham on simple substitu-
tion ciphers, papers, we do not consider equivocations (conditional entro-
pies given the cryptogram) but rather the probability that the enemy makes
an error when he tries to decipher the cryptogram or to identify the key by
means of optimal identification procedures. This approach is suggested by -
the usual approach to coding problems taken in Shannon theory, where one

. evaluates error probabilities with respect to optimal encoding-decoding
procedures. The main results are asymptotic; the same relevant parameters
are obtained as in Blom or Dunham. :

I. INTRODUCTION
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taken from a finite alphabet & = {a,, a,,---, a,), s >
according to a probability distribution P = { p,, p,, - -, p; 3
The resulting flow of information is enciphered to prote
it from successful wire tapping: a permuitation (one-to-on
transformation) of @, called the key, is chosen by th
transmitter and . communicated to the legitimate user via

over the insecure normal thannel, each source letter i
changed using the key; the enemy intercepts the enciphere i
string and tries to recover the original information withou}j
knowledge of the key.

This rough sketch of simple substitution ciphers is mad
mathematically more tractable by some additional spe

message) and to the corresponding enciphered string (th
cryptogram). The key is chosen randomly ‘with uniforifj
distribution out of the s! keys which are a priori possible}
the random 'message and the random key are assumed- t§
be independent. Rather. pessimistically, the enemy -is-
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