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Abstract

A compendium of thirty-seven open problems is presented: on point visibility,
floodlight illumination, and visibility graphs.

In general, a point z can see, is visible to, or illuminates a point y if the line segment
zy is not obstructed. (The metaphors of “visibility” and “illumination” are used inter-
changeably.) Often this means that zy cannot contain any point of a set of obstacles,
but sometimes zy is permitted to contain boundary points of the obstacles (line-of-sight
grazing contact). Other nuances to the definition of visibility are appropriate for certain
problems, and will be detailed below.

Throughout y will be used to denote the constant of proportionality for quantities of
the form vn + ¢ for some constant c.

1 Point Visibility Problems

1.1 Art Gallery Theorems

All these problems concern simple polygons. Grazing contact is permitted, so a guard
g sees an interior point x if gz is nowhere exterior, and sees an exterior point y if gy is
nowhere interior. A vertez guard is a point located at a vertex of the polygon. An edge
guard is an edge e of the polygon, which sees a point z if there is a point y € e such that
zy is nowhere exterior. Edge guard problems can be viewed as illumination by fluorescent
lightbulbs.
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1. Orthogonal Prison Yard. How many vertex guards are needed to cover both the
interior and the exterior of a simple orthogonal polygon? An orthogonal polygon

is one whose edges meet at right angles. The best lower and upper bounds are
[(5n —10)/16] and |5n/12] + 2 [HK93]. (v € [0.31,0.42].)

2. Edge guard problem. How many edge guards are needed to cover the interior of
a simple polygon? The best lower and upper bounds (for n > 11) are |n/4] and
|3n/10] [She94]. (v € [0.25,0.30].)

3. How many edge guards are needed to cover the interior of a star-shaped polygon?
Toussaint showed that |n/5] are necessary [O’R87]. (v € [0.2,0.3].)

4. Prove or disprove that |n/4] edge guards suffice to cover a star-shaped polygon of
n vertices [O’R94a).

9. The problem of finding the minimum number of guards needed to cover a given sim-
ple polygon is NP-complete [O’R87]. Is there a polynomial approximation algorithm
with some guarantee of performance?

1.2 Exterior Illumination

These problems ask for the fewest exterior point light sources to illuminate the boundary
of a collection of objects. Rectangles are isothetic if their sides are parallel to coordinate
axes.

6. How many points are need to illuminate n disjoint isothetic rectangles in the plane?
Fejes Toth proved that 4n — 7 points suffice to illuminate n > 4 disjoint compact
convex sets in the plane [Fej77], but restricted cases often require fewer lights. For
rectangles, examples are known that require n — 1 lights, and |(4n + 4)/3] lights
suffice [CRCU93]. (v € [1.00,1.33].) Here visibility excludes grazing contact.

7. How many points are need to illuminate n disjoint triangles in the plane? The
bounds known here are exactly the same as for rectangles, for different reasons [CRCU93].

8. How many points are needed to illuminate n disjoint segments in the plane? Ex-
amples are known that require [4n/9] lights [Zak96], and for n > 11, it has been
proven that [2n/3] — 3 suffice [CRCUZ90]. (y € [0.44,0.67]; it has been conjectured
that % is the right value.)

9. Hadwiger-Levi Covering. What is the fewest number of exterior points sufficient
to illuminate any closed convex body in three dimensions? The conjecture is that
2¢ = 8 point suffice, but this is only proven for polytopes with some affine symme-
try [Bez93]. Illumination here requires the lines of sight to penetrate to the interior.
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Floodlights

A floodlight of angle « is a light that projects in a (contiguous) cone of angle at most a. A
floodlight placed in a simple polygon with its apex at a vertex is called a vertex floodlight,
if it has angle o, I will call it a vertez a-light.

10.

11.

12.
13.

14.

15.

16.

3

3.1

Stage Illumination. Given a line segment (the stage) and a set of floodlights of fixed
apexes and apertures, find an algorithm to decide if the floodlights can be rotated
to illuminate the stage [BGL*93].

Do four vertex 7/4-floodlights suffice to illuminate every convex polygon of n > 4
vertices? Only known to hold for n < 4 [0SS95).

Do five vertex w/5-floodlights suffice to illuminate every convex pentagon [0SS95]?

For what value of a is it the case that a set of vertex floodlights, whose total angle
sum is at least a, suffices to cover any convex polygon of n vertices? It is known
that a = 27 does suffice, as such floodlights can cover the entire plane [BGL*93],
and that a = 7 does not suffice [0SS95].

Find a subquadratic algorithm for finding an optimal pair of floodlights to illuminate
a convex polygon, i.e., floodlights whose angle sum is as small as possible. An O(n?)
algorithm is available [ECU95].

Are the apexes of an optimal set of k floodlights that illuminate a convex polygon
always at vertices of the polygon? Open for k > 3 [ECU93.

How many vertex 7-floodlights are sufficient to cover any polygon of n vertices? (It
is known that no angle @ < 7 suffices, even with one light per vertex [ECOUX95].)
Larman proved [(4n + 1)/9] suffice. Perhaps |n/3] suffice.

Visibility Graphs

Polygon Vertex Visibility Graphs

Here visibility permits boundary contact: z sees y if the segment zy is nowhere exterior
to the polygon. The polygon vertex visibility graph of a simple polygon P has a node for
each vertex of P, with an arc between two nodes if the corresponding vertices are visible
to one another. Note the definition of visibility implies that every edge of P is included
as an arc of the visibility graph (and therefore the graph is Hamiltonian).

17.

How many different vertex visibility graphs are there of polygons of n vertices? The
number is in Q(n(2=9") and O(n%") [HN9S].



18. What is the minimum possible sum of the number of (strictly) internal and the num-
ber of (strictly) external visibility edges of a simple polygon of n vertices. Perhaps
~ 3n/2 is right [Bag95].

19. Develop an algorithm to recognize whether a polygon vertex visibility graph is pla-
nar. Necessary and sufficient conditions are known [LC94], but they seem not to
lead to a polynomial algorithm.

20. Is the class of vertex visibility graphs realizable by polygons whose vertices are in
general position, a proper subset of the class realized by all polygons? In other words,
does some graph require collinearities? There are polygon vertex-edge visibility
graphs that do require collinearities [OS96b)].

3.2 Computational Complexity

21. Is recognition of polygon vertex visibility graphs in NP? It is only known to be in
PSPACE [Eve90].

22. Can any polygon vertex visibility graph be realized by a polygon drawn on an
exponential-size grid? If so, visibility graph recognition is in P [LS92].

23. Is recognition of polygon vertex pseudo-visibility graphs in P? It is only known to
be in NP [0S964].

24. What is the computational complexity of computing the chromatic number of a
polygon vertex visibility graph G? Finding a maximum independent set or a min-
imum vertex cover are both NP-complete problems when restricted to visibility
graphs [LS92]. Of course x(G) > 3 because G can be triangulated.

3.3 Segment Visibility Graphs

There are two varieties of segment visibility graphs. The most-studied I call the “endpoint
visibility graph.” An endpoint visibility graph G of a set S of closed, disjoint line segments
has a node for each segment endpoint, and an arc between two nodes x and y can see each
other in the sense that [z,3] N S = {z,y}, or [z,y]: the intersection is either just the two
endpoints, or the entire closed segment. Note that here visibility is blocked by grazing
contact with a segment, but that G contains an arc corresponding to each segment in S.
The second version, the “segment visibility graph,” will be defined in Problem 28.

25. Does the endpoint visibility graph for a set of disjoint non-collinear segments in the
plane always contain a Hamiltonian cycle [Mir92]?

26. Does the endpoint visibility graph for a set of shellable disjoint non-collinear seg-
ments in the plane always contain a Hamiltonian cycle [OR94b]|? A set of segments
is shellable when it is possible to order the segments s1, s, ... such that s; lies in
the exterior of the convex hull of {s;, s9,...,5i-1}.
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27.

28.

What is the complexity of recognizing whether a set of disjoint non-collinear seg-
ments in the plane admits a simple circuit? A simple circuit is a simple (non-
crossing) Hamiltonian circuit in the segment endpoint visibility graph that includes
every segment. This is known to be an NP-complete problem when the segments
are non necessarily disjoint, and therefore may form polygonal chains [Rap87].

Prove or disprove the conjecture that every segment visibility graph for an even
number of segments has a perfect matching [OR92]. A segment visibility graph has
an arc between two segment nodes if some point of one sees some point of the other.

3.4 Rectangle Visibility Graphs

There are several varieties of “rectangle visibility graphs,” sometimes known as RVG’s.
G is a rectangle visibility graph if it can be realized by closed isothetic rectangles in the
plane, with pairwise disjoint interiors, with nodes corresponding to rectangles, and arcs
corresponding to visibility, under the following definition of visibility: two rectangles see
one another iff there is either a horizontal or a vertical unobstructed “beam” of visibility
of finite width connecting them. The “beam”-visibility requirement is often called “e-
visibility” in the literature. Variations are obtained by permitting this beam to be a
segment, or demanding that the rectangles be entirely disjoint, or that they have no
collinear sides.

29.

30.

31.

Is every rectangle visibility graph a doubly-linear graph [HSV96]? A graph is doubly-
linear if it can be realized in the plane as the union of two plane graphs drawn with
straight lines. (All rectangle visibility graphs are the union of two planar graphs,
for the horizontal and for the vertical visibility edges.)

Is every graph with aboricity two a rectangle visibility graph [BDHS96]? The aboric-
ity of a graph G is the minimum & such that G can be decomposed into k forests.

Is every maximum-degree 4 graph a collinear rectangle visibility graph? [BDHS96]
A rectangle representation is called noncollinearif no line contains two distinct rect-
angle sides. It is collinear if collinearities are permitted. K44 is not a noncollinear
rectangle visibility graph, although it is a collinear one [DH935).

3.5 Visibility Graphs in Q%D and 3D

Here it is reasonable to extend the e-visibility definition to require a finite-volume beam
of visibility for an arc of the graph.

32.

What is the largest complete graph realizable by disjoint isothetic rectangles in Q%D
with vertical visibility (all rectangles are parallel to the zy-plane)? It is known that
K is realizable [BEF*94] and 55 is not [SPF96).



33.

34.

3.6

What is the largest complete graph that is a box visibility graph? Such a graph is
realized by disjoint isothetic boxes in three-dimensions with lines of sight parallel
to a coordinate axis. It is known that Ky is realizable and Kjgrs is not [BIMO94].

Is it true that in every collection of isothetic boxes in three dimensions, there is one
whose removal reduces the number of edges in the associated box visibility graph?
"This property holds for rectangles in the plane [JM094].

Point Visibility Graphs

A point visibility graph [She92] for a simple polygon P is a “continuous” graph with an
uncountable number of nodes, one for each point in P, with an arc between nodes z and
y iff the segment zy is nowhere exterior.

35.

36.

37.

Find an algorithm to decide whether or not two polygons have isomorphic point
visibility graphs. An O(n?) algorithm to detect such isomorphism between spiral
polygons is known [MS96].

Is it true that if two polygons have isomorphic point visibility graphs, then there
1s an isomorphism between the graphs that is also a homeomorphism? This is a
conjecture in [MS96].

Can a node corresponding to a reflex vertex be identified in a given polygon point
visibility graph [MS96)?
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