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Abstract

A geometric criterion 1s developed for establishing
shape-based non-rigid correspondence between plane
curves. Unlike previous efforts, the criterion does not
use rigid invarianis of shape. Instead, shapes are com-
pared non-rigidly from the vantage point of the corre-
spondence.

Geometric invariants are proposed for curves whose
shapes can be exactly matched by a non-rigid corre-
spondence. The invariants are based on angular devt-
ations of conver and concave segmenls of the curves.

Eramples of correspondences between curves ob-
tained from medical images are provided.

1 Introduction

Analysis of medical images often requires a corre-
spondence between a pair of closed curves. An opti-
mal correspondence is obtained by choosing a set of
admissible correspondences and a preference relation
amongst its elements.

Correspondences in medical applications are usu-
ally continuous and non-rigid, with the most desirable
correspondence optimally aligning the local shapes of
the two curves.

Previous algorithms model non-rigid correspon-
dence as differentiable functions from one curve to
another, and the preference between different corre-
spondences is based on similarity of numerical values
of curvature at corresponding points. This approach
has two drawbacks: sl) Curvature is a rigid invariant
of shape and its applicability to non-rigid correspon-
dence is problematic, (2) Since the set of differentiable
functions from a curve to another is not the same as
the set of differentiable functions in the reverse di-
rection, the optimal correspondence from curve C; to
curve C» is not guaranteed to be the same as the op-
timal correspondence from Cs to Cj.

The algorithm proposed in this paper overcomes
these problems. It uses a criterion for shape compari-
son that does not rely on rigid invariants, and it uses
a “symmetric” space of correspondences so that the
optimal correspondence from C; to C> is the same as
that from Cs to C,.

The space of correspondences is defined in section
2. The geometric criterion for non-rigid comparison
of shapes is proposed in section 3. The numerical al-
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gorithm for computing the optimal correspondence is
described in section 5. Experiments are included in
section 6.

The geometric criterion also gives equivalence
classes of curves. We pursue this in section 4.

Lack of space forces us to omit proofs of the theo-
retical results of the paper. They will be available in
a forthcoming report {Qf

1.1 Previous Work

Shape based non-rigid correspondence has been in-
vestigated in [1](3](7], where the correspondence is ob-
tained by minimizing differences in curvature at cor-
responding points. As mentioned before, the applica-
bility of curvature to non-rigid cases is problematic.

Correspondence between curves can also be viewed
as the restriction to the curves of a mapping from the
image containing the first curve to the image contain-
ing the second. Prior knowledge about the mapping
can impose constraints on the correspondence [5]&]

A different but related problem is that of non-rigid
registration [8]. Here, an image transformation is
sought which maps an embedded curve in one image
close to an embedded curve in another. Registration
differs from correspondence in that points of the first
curve need not fall on the second curve. They need
only be near the second curve in its image space. Reg-
istration need not give correspondence.

2 Correspondence and Topology

If C; and C, are two oriented plane curves, then
the product space C; x C- is the space of ordered pairs
u,v) of all u € C; and all v € (5. For any element
Eu,v; € C; x Cq, the projection operator p, : C; x
Ca — C), gives the first component of the ordered pair,
p1((u,v)) = u; and the projection operator ps : C) X

2 — C gives the second component, p2((u,v)) = v.

Correspondence is a set of ordered pairs of points
of two curves. It is naturally defined as a subset of the
product space of the curves.

A correspondence ® is a subset of Cy x Cy whose
projections on C); and C> are onto. We say that an
element u of ® pairs the point p;(u) in Cy with the
point pa(p) in Cy. The space of all correspondences
1s too big to be of use in medical applications. We
consider two smaller classes of correspondences.



A diffeomorphic correspondence is a one-to-one cor-
respondence which can be expressed as a diffeomor-
phism ga. one-to-one function with a differentiable in-
verse) from the arc-length of C; to the arc length of
Ca, l.e., if sy is the arc-length of C; and s, is the arc
length of Cy, then ® = {(Ci(s1), Ca(s2))} for some
diffeomorphism :

S = ¢(51), with ¢I(31) > 0. (1)

A diffeomorphic correspondence is useful when we
expect the correspondence to be one-to-one. On the
other hand, if there are substantial differences in
shapes of the two curves, there may be segments of
one curve whose shape cannot be found in the sec-
ond curve. Topologically speaking, to match the two
curves, we have to shrink these segments down to a
point so that they disappear, and then rubber-sheet
the result onto the second curve. This is illustrated in
figure 1. The segment AB in C) has no corresponding
segment in C,, and the best way to match it to C» is
to collapse it down to a point and map the collapsed
point into C». Similarly, the segment CD in C; has a
shape which cannot be found in C; and has to be col-
lapsed before it can match to the point d in C,. The
resulting correspondence is not one-to-one.

An intuitive model for such correspondences can
be constructed with the following procedure. We be-
gin with two circles (two copies of S!) and the iden-
tity correspondence between them. The identity cor-
respondence pairs every point on the first circle with
its copy on the second. Next, disconnected closed seg-
ments are marked on either circles (such as Ay, A, ---
in Cy and By, By - - in Cy, fig 2a.) and each shrunk to
a point (fig 2b) while continuously dragging the cor-
respondence along (segments Ay € C, are shrunk to
points a; and segments By € C» are shrunk to points
bx). Now we have a correspondence between the two
circles which models the creation and disappearance
of segments. Continuing to drag the correspondence,
one of the circles is distorted to give C; and the other
to give Co. The resulting correspondence models the
disappearance and creation of segments in C; and C,
(fig. 2c).

Next, we replace the intuitive acts of shrinking and
distorting by functions. In figure 2, we think of the
circles below Circle 1 and Circle 2 as entirely new
circles and replace shrinking by functions q; and gs.
The function ¢; maps every point u of Circle 1 to the
point on the circle below it where the original shrink-
ing would have taken it. The function g2 does the same
for Circle 2. Intuitively, it is clear that q; and g3 are
continuous and differentiable functions from S! to S!.
Similarly, the distortion of the circles into C; and C»
can be modeled with diffeomorphisms h; : S' — C;
and hy : St — C,.

If (u,v) is an element of the original identity cor-
respondence between Circle 1 and Circle 2, then the
process of squeezing and distortion converts it to the
element (hyqi(u), hega(v)) of the correspondence be-
tween C; and C,. Using this development, we can
clearly state the second model for correspondence.

Definition: Let S; and S; be two copies of S! and
C; and C be two curves diffeomorphic to S!'. A
bi-morphic correspondence (or simply a bi-morphism)
between C; and C; is the image of ®;4, the identity

correspondence between S; and S», under the map
B : 51 x S3 — Cy x Cs given by

B(u, v) = (h1q1(u), haga(v)),

for diffeomorphisms h; : S — C; and hy : S! — C;
and differentiable functions ¢; : §! — S! and ¢» :
St — St

We call these correspondences bi-morphisms to sug-
gest that they do not have a preferred direction (they
are bi-directional) and that they “morph” the curves
into each other. To additionally ensure that the bi-
morphism is orientation preserving we impose the con-
dition that ¢;, ¢2 and h;, ho be orientation preserving
functions.

The above definition gives bi-morphisms as sets. In
fact, bi-morphisms have additional structure [9]:

Proposition 1: A bi-morphism is a closed curve in
Cl X C'_r.

The proposition is illustrated in fig. 3. The figure
shows the curves C) and (3. Their product space is
a torus. Any element u of a correspondence between
the curves is a point on the torus. It pairs the point
p1{pt) on C; with the point pa(u) on C> (recall that p,
and p2 are projections). Proposition 1 states that a
bi-morphism is in fact a curve on the torus. Figure 3
shows a specific correspondence as the curve contain-
ing u.

gSince any bi-morphism is a closed curve, it can be
obtained as the image of a circle, i.e., any bi-morphism
® can be written as & = {(¢}(¢), #5(t))}, for functions
¢7: S = Cy x Ca, and ¢3 : S' — C; x C2. This is
also shown in figure 3.

If L; and L, are the net arc-lengths of C; and
C2, and x1 : [0,L;] — Cy and x2 : [0,Lo] — C2
are arc-length parametrization of C; and C,, then
the element (41(t), #3(¢)) of ® pairs the point at arc-

length x7'(¢3(t)) on C; with the point at arc length
Xz '(¢3(t)) on Cz .

If we define ¢:1(t) = x7'¢}(t) and ¢a(t) =
X2 '#5(t), then an arc length can be obtained for the
bi-morphism as s = [ds = fot o7 (8) + ¢5 (2) dt [9].

The constraints that the bi-morphism is orienta-

tion preserving and arc-length parametrizable can be
stated in terms of ¢; and ¢, as

$1(t) 20, 45(t) 20, and \/¢7'(t) +¢5(t) > 0. (2)

3 The Geometry of Non-rigid Shape
Matching

The topological structure of bi-morphisms dis-
cussed above leads straight to the geometry of non-
rigid curve matching. To proceed, we recall some def-
initions. Given a curve, if we choose a fixed unit circle



(the Gaussian Circle), then the outward normal at ev-
ery point on the original curve can be translated so its
base is at the center of the fixed circle. The Gauss Map
is defined to be the map which takes each point of the
curve to the tip of its translated vector on the Gaus-
sian circle. Below, we denote the Gauss map by ©(s),
where © is the angular orientation of the normal at
arc-length s. Its derivative with respect to arc-length

is the curvature at s, k(s) = _(‘ld(:),,’ .

If p(s) is an element of a bi-morphism @ at arc
length s along ®, and p1(u(s)) and pa(u(s)) are its
projections on C; and Ca, then the angular orienta-
tions of the normals at these points are ©,(p1(u(s)))
and Oa{p2(u(s))). . .

The geometric criteria we propose is the following
- since a bi-morphism is a curve, as g moves along it,
the derivatives of ©,(p1(u(s))) and ©2(pa(u(s))) with
respect to the arc-length of ¢ give the local shapes
of C, and C, as viewed from the bi-morphism. The
difference in the derivatives measures how closely the
bi-morphism aligns the shapes of the curves.

The difference in the derivatives is

dO1(p1(p(s)))  dOa(p2(n(s)))
ds ds

Pi(u(s))r1(pr(p(s))) — Pa(p(s))ra(p2(k(s))),

where, s is the arc-length along the bi-morphism.

Integrating the deviation of the above quantity
from zero gives an index of dissimilarity of shapes of
Cy and C» as viewed from ®. Denoting the index by
J(Ci, Ca; @), we have

J(Cl, Cz; ‘I’) =

4 Exact Non-rigid Match

To gain further insight into comparison of shapes
via non-rigid correspondence we explore conditions
under which the two curves appear to be exactly
matched, i.e. we seek conditions which make
J(Ci,C2; ¢1,¢2) = 0. From equation (3) it follows
that this is possible if and only if there is a bi-
morphism & for which

$1(t)k1(81(2)) = 5 (t)k2(#2(2)). (4)

The existence of such a bi-morphism is hard to estab-
lish in the general case. The investigation is much sim-
pler if we impose the following technical constraints on
the two curves:
(1) Their zeros of curvature occur only at a finite num-
ber of points,
(2) Their curvature is not a flat function at any of its
zeros, i.e., if k(sg) = 0, then x¥+1(s0) # 0 for some
k.

To analyze equation (4), we integrate it to get

01(1(2)) — ©1(41(0)) = O2(d2(t)) — O2(42(0)), (5)

which says that C, and C» can be exactly matched iff
the Gauss map of C; viewed through ¢; is a rotated
copy of the Gauss map of C; viewed through ¢..

To explore this further, recall that as a point moves
clockwise over a convex segment of a curve (e.g., from
uj to ug in the upper curve in figure 4) its image moves
continuously and monotonically in a clockwise man-
ner on the Gaussian circle (fig. 4). If the point moves
clockwise over a concave segment (such as between u»
and u3 in figure 4) then its image through the Gauss
map moves monotonically counter clockwise on the

L Ti( pL(s(s))k1(p1(p(s))) — Pa(p(s))x2(p2(1(5))) ) Gaussian circle. Hence, as the point traverses a con-

ds,

where, I’} is a non-negative function which measures
the deviation of its argument from zero, I'y() > 0, and
T'y(z) = 0 if and only if z = 0 (e.g. ['1(z) = z?).

Using the definition of the arc-length of the bi-
morphism, J can be expressed as

J(C1,C2 ¢1,¢2) = (3)
/ Ty( $1()r1(81(2)) — #5(t)ka(a(t)) )
st

VEr ) +65@)

x\/#7(t) + 65 (t) dt.

The index J has three desirable properties: (1) It does
not directly compare the numerical values of curva-
ture, 52) It is symmetric with respect to Cy and Cy,
i.e. J(Cy,Ca; 1, ¢2) = J(C2,Cy; ¢2,¢1), and (3) It is
independent of any reparametrization of ®. Thus, J
compares the shapes of the curves while avoiding the
problems associated with previous formulations.

We use J to compare similarity of shapes and
choose the bi-morphism which gives the smallest value
of J (subject to constraints of equation (2)) as the
most desirable.

vex segment and passes onto an adjoining concave seg-
ment (or conversely) its image on the Gaussian circle
reverses direction. We call the point on the Gaus-
stan circle at which this reversal happens a fold point.
Clearly, a fold point is a local extremum of the Gauss
map. Since the differential of the Gauss map is zero
at local extrema, by our assumption, the Gauss maps
of our curves have only a finite number of fold points.

Returning back to equation (5) recall that the
Gauss maps of the two curves are identical except
for a rotation. Suppose we rotate the Gauss map
of the second curve through the required amount
(= ©2(¢2(0)) — ©1(41(0))), then the maps become
identical; and in particular, their fold points coincide
on the Gaussian circle.

Since ¢, is continuous and orientation preserving,
the fold points of ©;(¢:(t)) on the Gaussian circle
are identical to the fold points of ©:(s;). Similarly,
the fold points of ©2(¢2(t)) on the Gaussian circle
are identical to the fold points of ©3(sz). Since the
fold points of of @1(¢1()) and the rotated version
of ©2(#2()) are identical, we conclude that the fold
points of ©;() and the rotated version of ©() are
identical.

More precisely, suppose ui, ¢ = 1,---, N are points
of C; whose images are successive fold points of its
Gauss map, and v; are points of C» whose images



are successive fold points of its Gauss map. Then the
angular deviation ©, (ui4+1)—©1(u;) between locations
of successive fold points of C; on the Gaussian circle
are identical to the angular deviation ©2(v,(is1)) —
©2(v,(i)) for some circular shift o() of the index ¢,
i.e., the strings

[©1(u1) — O1(u2), ©1(u2) — O1(us),
ey @1(uN) - @l(ul)

and

[©2(v4(1)) — O2(vo(2)), ez(vaéz)) — ©3(vo(3))s
o+ O2(vg(n)) = O2(vs(1)

are identical. We call these strings angular deviation
strings since they tell us the angular deviation of the
normal between the locations of successive fold points
on the Gaussian circle.

Further analysis establishes the completeness of
this result, that is [9] :

Proposition 2: A bi-morphism @ satisfying equation
(4) exists between two curves iff the curves have iden-
tical angular deviation strings (modulo circular shift).

Proposition 2 establishes an equivalence relation
between curves. C) ~ C, if there exists a bi-morphism
® for which J(Cy, Cs; ¢1,92) = 0. From the proposi-
tion it follows that C; and C3 have the same angu-
lar deviation strings, and hence C; ~ C;. Finally, If
C) ~ C5 and C3 ~ Cj3, then all three of them have the
same angular deviation strings and therefore C; ~ Cj.

Proposition 2 can be refined for diffeomorphic cor-
respondences [9].

5 The Numerical Algorithm

When the two curves cannot be exactly matched,
the optimal bi-morphism is found by seeking #; and
¢» that minimize J subject to constraints of equation
(2). Since J is designed to be independent of any par-
ticular parametrization, a straightforward numerical
minimization of J cannot uniquely determine ¢; and
¢2. Numerical roundoff and data noise can cause the
two functions to be unstable. To obtain stable perfor-
mance, we regularize J by adding terms that depend
on the smoothness of ¢; and ¢,. The functional we
minimize is

J1(C1, Ca; ¢1, ¢2) = J(C1,Ca; 81, ¢2)

Ll "
+ C(m . T2(47(2)) dt +

L2 7"
m/sl T2(¢2(t)) dt),

where, the first term is just the old index. The second
term is the regularizing term with ¢ being a small reg-
ularizing constant and I';() a positive function which
(like D 18) measures the deviation of its argument from
zero. L, and L, are the total arc-lengths of C; and
C, and are used to scale the relative contribution of
Ci and C: to regularization.

The most obvious choice for I'y and 'z is T'j(z) =
2 2 . . .
Z; and I'2(z) = Z7. However this choice is known to
3 2

give an algorithm sensitive to outliers in the data [2].
Instead we choose functions which behave like z2 for
small values of z and are robust against outliers. We
use (2]

22 z2
Li(e) =lg(l+ 7). and Do) =lg(l+ ).

In the numerical algorithm we approximate ¢; and
¢4 as piece-wise linear functions and use a discrete ver-
sion of projected gradient descent to obtain the opti-
mal correspondence. Each curve is sampled uniformly
at N points along its arc-length, giving an N x N grid
in C; x C, (fig. 5). The circle S! is sampled at M
knot points ¢;, i = 1,-, M. The functions ¢, and ¢a
are piece-wise linear between consecutive knot points,
hence they are completely determined by their value
at the knot points. The functions are further con-
strained so that the knot (#1(¢;), #2(¢;)) can only be
one of the N x N grid points. In other words, the cor-
respondence is an M-sided polygon in C) x C2 whose
vertices are some subset of the N x N grid points.

The optimization algorithm has two stages: in the
first stage a good initial guess of ¢, and ¢, is ob-
tained, and in the second stage the guess is iteratively
improved by locally descending in the solution set de-
fined by equation (2). The initial guess is obtained by
starting from several correspondences that uniformly
map the arc-length of C; to the arc-length of Cs, ex-
ecuting one iteration of the descent, and choosing the
result which has the smallest value of J;. Further de-
tails of the algorithm are available in [9]. The values
of N, M, (, o, and o2 used in the algorithm are shown
in Table 1.

Symbol Name Value
N Mesh Points on each Curve 120
M Knot Points for Bi-mophism 10
¢ Regularization Constant 9.0
g1 40.0
g2 20.0

Table 1. Constants Used in Numerical Experiments.

6 Experiments

Due to lack of space we cannot exhibit all experi-
mental results. We present some examples from real-
\[rvi)rld images. Additional examples can be found in
9].
Figures 6 and 7 are MRI images of a dog heart.
obtained at diastole and systole. The endocardium
(inside of the left ventricular cavity) is outlined by
hand in both images. Figure 8 shows the two curves
overlaid in the same image gmagniﬁed for better view-
ing) and the bi-morphism found by the algorithm of
the previous section. The bi-morphism matches the
shape features well; in particular, the papillary mus-
cles (the triangular notches at 2 and 8 o’clock) are
matched well. The correspondence provides some in-
dication of the non-rigid motion of the heart.



Figures 9 and 10 show the initial and final images
of the growth cone lamellipodium of an Aplysia neu-
ron with the outlines drawn on the image. Figure 11
shows the bi-morphism found by the algorithm. The
bi-morphism strongly suggests the temporal develop-
ment of shape of the growth cone.

7 Conclusion

We proposed a geometric procedure for non-rigid
shape-based correspondence between curves. It is free
of the problems of earlier procedures. We also ana-
lyzed curves whose shape can be exactly matched and
showed that these curves form equivalence classes. Ex-
periments with real-world data indicate that the tech-
nique can be used in a number of applications.
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