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1 Introduction

This paper stems from our desire to understand the configuration of asymp-
totic and principal curves on a minimal surface in R® and their degeneration
at flat umbilics. More precisely, at a general point of a minimal surface there
are two asymptotic and two principal directions, and the integral lines of,
say, the asymptotic directions form a family of orthogonal lines in a neigh-
bourhood of this point. However, because the surface is minimal, umbilic
points are isolated and flat, that is all sectional curvatures are 0. They are
of interest because all directions through such points can be viewed as both
asymptotic and principal.

Any family of pairs of lines can be described locally by a binary dif-
ferential equation. It turns out that the family of principal curves (resp.
asymptotic curves) on a minimal surface is given by a very restricted type
of binary differential equation, namely one of the form R{f(z)dz?’} = 0
(resp., S{f(2)d2z?} = 0) where f(z) is some holomorphic function in the
complex plane and, as usual, we write z = = + iy and dz = dz + idy. Bi-
nary differential equations of this form arise in Teichmuller theory and the
theory of quasiconformal maps under the name of quadratic differentials. In
that language, we show that one can associate to any minimal surface in R®
a natural quadratic differential (the horizontal and vertical trajectories of
which are the principal lines of curvature). This observation may provide a
way to approach the study of the global topology of minimal surfaces. We

*The second author was partially supported by the Esprit grant VIVA while this paper
was in preparation.



hope to return to this in a future paper. For now our interests are purely
local.

The flat umbilic points of a minimal surface are precisely the points
where f(z) has a zero. The order of the zero provides a natural measure
of the ‘degree of flatness’ of the umbilic. We want not merely to describe
the configurations of principal and asymptotic curves at these umbilics up
to conformal equivalence, but also to understand the ways in which these
configurations split when we deform a degenerate flat point. To do this
we produce a classification of zeroes of BDE’s which are quadratic differen-
tials, and a description of their versal unfoldings, that is a finite-dimensional
family of deformations which contains (in some precise sense) all possible
deformations of the BDE. The question of relating the deformation theory
of the BDE’s above to those arising on the minimal surfaces is quite deli-
cate. As a start we show that any flat umbilic can be deformed, via a family
of minimal surfaces to one with only non-degenerate flat umbilics (whose
degree of flatness is one). Needless to say, BDE’s which are quadratic dif-
ferentials are of interest in their own right.

The outline of the paper is as follows. In Section 2 we introduce some
basic facts about minimal surfaces, and show how quadratic differentials
arise. We also prove the deformation result mentioned above. In Section 3
we make a classification of the singularities of these quadratic differentials,
corresponding to zero’s of f, and discuss their geometry. This is more or
less classical [?] and has been redone without the geometry in a much more
general context by [?]. We need the geometry, and the methods of proofs we
use extend to give deformation results. In Section 4 we discuss unfoldings,
and prove the versality result (every singularity corresponding to a zero
of f has a versal unfolding). As a by-product there is an easy to apply
infinitesimal criterion for versality. The versality result was obtained by J.
Hubbard and H. Masur [?] in 1979. In 1984, the versality result and the
infinitesimal versality criterion were obtained by V.P. Kostov [?] for forms of
any order. We give proofs of both results which differ from both the above,
and which are of interest because they are constructive and can easily be
made effective. In Section 5 we show that the BDE’s under consideration
split as two ODE’s, both of which are integrable in a natural way. In Section
6 we investigate the simplest degenerate singularity and its unfolding. In
Section 7 we make a start on describing the configuration of integral curves
for a generic deformation of the singularities. In [?] Hubbard and Masur also
explore the geometry of unfoldings; however, their interests are in quadratic
differentials with compact singular trajectories, their analysis is more global



than ours, and they are primarily interested in one stratum of the unfolding
space which is, from a purely local viewpoint, very degenerate and highly
non-generic. Our analysis is purely local. In a later paper we shall continue
the study these configurations.
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We thank Richard Morris for helping us understand the problem better by
drawing many examples of solution curves to these BDE’s using his Liverpool
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paper. Finally, we thank the National Science Foundation and Esprit for
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2 Minimal Surfaces

Our basic reference for minimal surfaces will be Osserman’s beautiful book
[?]. As described in the introduction we wish to determine the local nature
of the asymptotic and principal curves on such a surface. It turns out that
we can make a useful classification using the group of conformal mappings.
First we recall some basic facts from differential geometry.

Let X be a surface in Euclidean 3-space R?® with p a point of X. The
Gauss map associates to each such point a (coherently chosen) normal N(p)
in the unit sphere. The derivative of the map N is the Weingarten map
L which is an endomorphism of the tangent space T,X. If <,> denotes
the Euclidean inner product then a vector v in T,X is asymptotic if <
Lv,v >= 0. Clearly any multiple of v is also asymptotic, so we can refer
to asymptotic directions. The principal directions are the eigenspaces of
L; since L is self-adjoint the eigenvalues or principal curvatures are real,
and when they are distinct the principal directions are orthogonal. When
the product of the eigenvalues, the Gauss curvature, is negative there are
two asymptotic directions, bisected by the principal directions. A curve is
principal if its tangent vector at each point is principal, it is asymptotic if
its tangent vector at each point is asymptotic.

Now minimal surfaces are those for which the sum of the principal cur-
vatures are zero, so the Gauss curvature is non positive. They are also
characterised as those surfaces whose asymptotic directions are orthogonal.
When studying the configuration of principal curves on a surface [?], [?],
the intersecting points are those for which the eigenvalues of L coincide, the



umbilics, for at such points every direction is principal. When studying the
configuration of asymptotic curves {?], [?], the interesting points are those at
which the Gauss curvature vanishes, for there are two asymptotic directions
when the Gauss curvature is negative and none when it is positive. We see
that for minimal surfaces both types of point coincide, at such flat umbilics
all sectional curvatures vanish, and these are our principal objects of study.

The main result we shall need is the following classical result of Enneper
and Weierstrass.

Theorem 2.1 (See [?], pp. 63, 64.) Let D be a domain in the complex
z-plane, g(z) an arbitrary meromorphic function in D, f(z) an analytic
function in D having the property that at each point where g(z) has a pole
of order m, f(z) has a zero of order 2m. Then if we set

b= 51~ b= 5T (1 +6°), 65 = fo

the parametrisation

ap(z) = ﬂ?{ /Oz Or(2)dz } + constant

is isothermal and determines a simply connected miminal surface. Con-
versely any such surface can be represented in this form.

What we actually need is something considerably weaker than this. Namely

Theorem 2.2 Let X be a minimal surface, p € X. Then there is a neigh-
bourhood U of p in X having a representation as above.

This follows directly from the proof of Theorem 2.1 above given in [?].

We now turn to the determination of the principal and asymptotic di-
rections. Using the given parametrisation a direction corresponding to e
gives rise to a normal curvature

[ 2
[ f1A+1g )

This is maximised (resp. minimised) when 26 = arg(—fg’) (vesp. arg(fg’)).
Writing (f¢’) = u + v the equations for the principal directions are

| Re{-fge).

v(dy)? — 2udydx —v(dz)* =0 (a).



Given that the asymptotic directions bisect the principal directions and the
parametrisation is conformal the equation for the asymptotic directions is

u(dy)? + 2vdydz — u(dz)®> =0 (b).

Alternatively considering directions in which curvature vanishes one arrives
at the same result.

Clearly we have special points when v = v = 0; at such points every
direction is principal and asymptotic; these are the flat umbilics. They
correspond to zeros of fg¢'; in other words to zeros of f and of g’. If g has a
pole of order m then fg¢’ has a zero of order m — 1.

We are interested in the zeros of fg’, that is the flat umbilics. In par-
ticular we wish to understand how especially flat umbilics corresponding to
higher order zeros of fg' will break up under deformation. Naturally the
deformation should take place in the space of minimal surfaces. Our first
result ensures that we can deform any flat umbilic locally so that it breaks
up into simple flat umbilics, in other words so that fg’' = 0 has only simple
Zeros.

Theorem 2.3 Let p be a flat umbilic point on a minimal surface X, with
U a neighbourhood of p. Then we can find a smooth deformation X, of X
with the X, all minimal surfaces, X, = X and X, having only simple flat
umbilics.

Proof We shall supose tha the point p corresponds to 0 € D and that
f(z) = 2?™F(z) while ¢g(z) = z7™G(z) where F' and G are holomorphic
and F(0)G(0) # 0. Let a = (y,...,a,). We shall consider the following
deformations

fal2) = T](z = @)’ F(2),  gapa(2) = (JJ(z — ) NG (2) + Bz + ).

This has the right properties from Theorem 2.1 to yield, for each all (e, §,7)
sufficiently near (0,0,0) a minimal surface. We now need to find f.g, 5 -
Well

s = ([[G=a) NG ()+8)=D_({(z=) [[(z =)} )(G(2)+B2+7)

and the product

fabupy = [E-a)FUG ()+8)-3_({[I(z=a)}/ (=) F(2)(G(2)+B2+7).



We claim that for generic choices of a, 3,7 this product will have m — 1
distinct simple zeros. Indeed we shall show that this is so for all (a, 3,7)
off an analytic subset, and the result then follows from the Curve Selection
Lemma, [?].

The key is the fact that we want 0 to be a regular value of f.g,, 5. So we
consider the map A : D x C™*? — C given by (2,0, 8,7) = fa(2)g45(2)-
Let L;; denote the subset of C™%2 given by {(«, 3,7) : o = o;}. What we
shall show is that 0 is a regular value of the restriction of A (also denoted
by A) to D x (C™*%\ UL,;). For then A='(0) is a smooth manifold, and if
we consider the projection 7 : A~1(0) — C™*2 then 0 is a regular value of
fadu g if and only if (o, 8,7) is not a critical value of 7. But the set of
critical values will be a proper analytic subset of the image space by Sard’s
Theorem. To establish that A is indeed a submersion on the fibre over 0 we
compute the partial derivatives

ON/083 = H(z —a;)F(z) - Z{H(z —a;)(z — a;) 7' }2F(2),

ON/Oy = — Z{H(z —a;)(z ~ a;) " }F(2).

Now we only have problems if A = 0A/08 = dA/0y = 0. It is clear that
OA/OB = OA/dv = 0 imply that [J(z — «;)F(z) = 0. On the other hand we
may suppose that F' does not vanish on D so z = «, for some r. But then
the condition that dA/dy = 0 shows that [], . (o; — ;) = 0. But the o; are
all distinct, and the result is proved.

We now turn to studying the pair of equations (a) and (b) above and
their deformations, where u + iv is a holomorphic function. We believe that
these equations are of interest in their own right.

3 Binary Differential Equations

Let U be an open subset of C and f : U — C a holomorphic function
(not to be confused with the f above). Writing f = u + iv we consider
the corresponding equations (a), (b) in Section 2. We aim to describe the
corresponding integral curves, especially in a neighbourhood of zeros of f.
If we write vectors at z as aa% + 5% equations (a) and (b) can be rewritten

v(z, y)(B* - a?) = 2u(z,y)aB =0

u(z, y)(B* — a®) + 2v(z, y)aB = 0.



In turn these can be rewritten respectively as S{f(z)c*} = 0 and R{f(z)c*} =

0 where ¢ = o + 3, or better writing z = x + ¢y as usual, as
3{f(2)dz*} = 0 and R{f(2)dz*} = 0.

We now attempt to simplify these equations by making holomorphic changes
of co-ordinates. So suppose that we change co-ordinates using a holomorphic
function h : V — U. If h(w) = z and h'(w)dw = dz then the equations
reduce to

S{f(h(w))h' (w)*dw?} = 0, R{f (h(w)) k' (w)*dw*} = 0.

This allows us to replace f by (f o h)(h')?. Moreover since h is holomorphic
we still have the same picture up to conformal transformation. In fact we
shall look at a more general case, namely the D.E.

S{f(2)dz"} = 0 and R{f(2)dz"} = 0,

since this is really no more difficult to consider. Now we need to replace
f(z) by (f o R)(R')". The first results yields a normal local form for such
BDE’s.

Definition 3.1 We shall say that the holomorphic germs f, g : C,0 — C,0
are RDE-equivalent if g(z) = (f o h)(R')" for some biholomorphic h: C,0 —
C,0.

It is not difficult to check that this gives a group action of the set of
biholomorphic germs on the space of function germs. In the case 7 = 2 thisis
the equivalence relation traditionally associated with quadratic differentials
— in fact, a quadratic differential is usually defined as an expression of the
form f(z)dz? modulo precisely this equivalence relation (see, for example,
[?7]). The result that follows is classical in the case r = 2, has been established
for any non-zero complex number r by Kostov in the paper [?] and has been
generalised by Lando, Varchenko and others to the case of several variables;
see [?] for example.

Proposition 3.2 Let f : C,0 — C,0 be a holomorphic function with f
having a zero of order k > 0 at 0. Then we can find a holomorphic function
h:C,0 — C,0 with K'(0) # 0, such that (f o h)(R')" = 2* (when k = 0 the
RHS is 1). In other words f is RDE-equivalent to z*.



Proof Write f(z) = g(z)* with g holomorphic, g(0) = 0,¢'(0) # 0, so we
need to solve (goh)*(h')" = z*, that is g* is equivalent to 2*. Since we have
a group action (in particular an equivalence relation) this is the same as
asking that z* is equivalent to g*, in other words g* = h*(h’)". We can now
reduce to the case ¢'(0) = 1 by multiplying h by some constant. Clearly
now h'(0) # 0, indeed it must be one of the (k+r)th roots of unity. In what
follows we take it to be 1.
So writing g(z) = z + 2% + as2® + -+, h(z) = z + byz? + b32® +
oy gm(2) = 24 a2t ame™, h(2) =2+ b22° +- -+ b,2™ we need
to solve

h(2) (W' (2))F = g(2)

for h. If we write =,, for equality modulo terms of degree m we first show
that there is a formal power series solution. Suppose that we have found
b2,"' 7bm with
/ 2 __
h(2)(R'(2)* =m g(2). (%)x
We seek b,,,1 such that (%), holds. But this reduces to
2(m+1)
k

Writing ¢4 for the coefficient of 2™+ in h,(2)(h!,(z))¥ we find that

h’m(z)(hlm('z))i— + bm+1Zm+1 + b'r-&-lzm-"_1 Em—+—1 9(2)

bnt1 = {@mi1 = Cmar HE/(k +7m +2)}.

This shows that the b,, exist and are unique. So a formal power series
solution exists, and given A'(0) = 1 is unique. We could now proceed to
prove that it is convergent. Instead we give an alternative argument.

Let U be a neighbourhood of 0 on which g is holomorphic with ¢~ (0) N
U = {0} and let w, € U. Suppose that we want to solve g¥ = (h*)(h')" at
wy. We write h = y, and note that the above equation reduces formally to

dy
dz

Proceeding formally and integrating both sides we find

T ktr k

k k
yr g (2)-

so that

r

Yy = {(k+r) /gL(z)dz}m

8



If k is a multiple of r there is no problem with the formal integral h(z) =
f gr (2)dz, and one can check that it has the required properties. If k is odd
we write g+ (2) = +2z¥ H(z) for some convergent H and integrate term by
term to obtain 4z+ H(z) for some H;. (We set the constant equal to zero.)
Now {ij—rz [ g7 (2)dz}" in both (&) cases yields a well defined holomorphic
function on U. Moreover this function has a zero of order k +r at the origin,
so can be written zFt"H(2) with H(0) # 0. So we get h(z) = z(H(z)) %+,
with 2(0) = 1, and this has the required properties.

So we are reduced (in the case of major interest to us r = 2) to studying
the binary differential equations

R(z*d2?) = 0,3(2"d2?) = 0.

Note that since replacing f(z) by if(z) interchanges real and imaginary
parts, we can concentrate on one of the cases (the R case in what follows).
The case where the BDE’s are equivalent to R/S{2"d2?} = 0 is referred to
as type Ag.

Before proceeding further note that there is an action of the positive
multiplicative reals Rt via z +— tz, since R{z*dz?} = 0 if and only if
R{t*+22*d2?} = 0. So the corresponding mappings preserve the integral
curves. In particular the local picture of the integral curves near (0,0) is
the same as that inside a disk of any positive radius.

Example 3.3 Cases f(z) = z~.

In the case k = 0 we obtain repectively the curves y = *z+c y=c¢, r =c
More generally writing z = x + iy we can rewrite z* = A(z,y) +iB(z,y)
where A and B are homogeneous of degree k in = and y. We show how
one can solve the resulting BDE’s by quadrature; the fact that one can
do so is, as is usual, because of the existence of the 1-parameter family of
automorphisms mentioned above.
For the pair then becomes

B(z,y)(dy)* — 2A(z,y)dydz ~ B(z,y)(dz)* =0,
*)
Az, y)(dy)* + 2B(z,y)dydr — A(z,y)(dz)* = 0.

These are homogeneous equations and can be solved by integration. So write
u=1% v =g, sothat dr = dv,dy = udv + vdu, and the second BDE (for
example) becomes

A(v, uv)((dv)? - (udv + vdu)?) — 2B(v, uv)dv(udv + vdu) = 0.



Factoring out the v* terms this is
{A(1,u) — 2uB(1,u) — v*A(1,u)}(dv)*+

{—2uvA(1,u) — 2vB(1,u)}dvdu + {—v*A(1,u)}(du)? =0

QY 4 Bu(52) + Stup? =0

where
Q(u) = A(1,u)—2uB(1,u)—u? A(1,u), R(u) = —=2(A(1,u)+B(1,u)), S(u) = —A(1, u).

So

dv _ —vR(u) £ VVIR(u)? — 4v2Q(u)S(u).

du 2Q(u)

Note that Q(0) = A(1,0) = 1 so the RHS makes sense near v = 0, and
R?(0) — 4Q(0)S(0) = 8. We can now separate variables to obtain

dv _ —R(u) £ Rw) — QWS
2Q(u)

du

which can now be integrated.
(Working with polar co-ordinates one can also replace z by re? and ¢
by se™, so the BDE’s become

R or J(e*F120)) = 0,

so that .
k9+2g0=m7r+5,k9+2<p=m7r

for some integer m.)
Returning to the equations (*) and taking k = 1 we obtain

y((dy)* — (dz)*) — 2zdydz =0 (a)

z((dy)?® — (dx)*) + 2ydydx =0 (b).

Using the terminology of, for example [?], these are both stars. We seek the
singular directions: in (a) we set y = ax and deduce that a(a? —3) =0 so

the singular directions, in polar co-ordinates, are given by 6 = 0, %, %"; for
(b) the singular directions are § = %, 3%, ™= and the pictures for the integral

10



Figure 1: Non-degenerate singular point

curves of (a) and (b) is simply that of Figure 1 together with the same figure
rotated through 7 and superimposed on itself.

Indeed returning to the general case (*) above note that replacing z by
wz for a constant w replaces the original DE by

R or J(wt?2Fd2?) = 0.

If wk*2 = 44 this means that the original equations are interchanged; if
w**? = 41 we have an automorphism. So in general we expect a (k+ 2)-fold
symmetry of our DE’s (rotation through an angle of n/(k + 2)) and the
picture of the one DE can be obtained from the other by rotation through
7/2(k + 2). So taking k = 2 we obtain Figure 2.

Note that in the polar form of the BDE the singular directions are given
by § = ¢ so (k +2)0 = mm + Z, (resp. mm).

Note that since our normal forms were up to a conformal transformation
the angles between the singular directions at any singular point are always
equal.

Remark 3.4 [t is interesting to also consider the case of BDE’s of the form
R/S{f(z)dz*} = 0 where the function f(z) could have poles. This case is
not needed for minimal surfaces, but it is tmportant for Riemann surfaces,
where one often needs to consider meromorphic quadratic differentials. One
seeks local normal forms in a neighbourhood of the poles. It is not difficult
to see that things will not be as simple as in the zeros case: one obtains a
single modulus when the order of the pole is even, and none when the order
of the modulus is odd. Although this can be proved by the methods above, we

11



Figure 2: Case k=2

do not give details. For a different proof see [?]. We remark that one can
deduce deformation results using [?] together with the observation that one

can replace gdz? with g~'dz"2 in the case that g has a pole (since one can
always replace fodz with fdz(1/®)),

4 Unfoldings

When studying the binary differential equation R{f(z)dz?} = 0 we have seen
that there are a (countably) infinite family of local models f(z) = z*, one for
each non-negative integer k. The higher the value of k the more degenerate
(in some sense) the equations. On the minimal surfaces these correspond
to flatter and flatter umbilics. It is natural to ask how these degenerate
umbilics break up under deformation, and what the corresponding deformed
configuration of lines looks like. This leads to the following definitions.

Definition 4.1 Let f : C,0 — C,0 be a (holomorphic) function. A function
F :CxC",0 — C,0 with F(z,0) = f(2) is an unfolding of f. Let
a:CxC* (0,00 —» C,0,b:C*0— C",0 be holomorphic with a(z,0) = z.
Then G : C x C*,0 — C,0 defined by G(z,w) = F(a(z, w), b(w)){%(z,w)}?
is said to be induced from F. If F is such that every unfolding of f can be
induced from F then F is called a« BDE-versal unfolding of f.

Remark 4.2 These are just the standard definitions for unfoldings under
right equivalence adapted to our new equivalence relation. See for example

).

12



The basic fact that we need is the following.

Proposition 4.3 For small v the maps a,(z) = a(z,v) map the integral
curves of the family R/S{Fy.)(2)dz?} = 0 to those of R/I{G,(2)dz*} = 0.

In particular if F is a versal unfolding of f then the solution curves of the
families R/S{F,(z)dz*} = 0 contain pictures, up to conformal equivalence,
of all deformations of ®/S{f(z)d2*} = 0. The main result we wish to prove
is the following, which can be found in [?], where it is proved using the
inverse function theorem for Banach spaces. More general results have been
established by [?], by Lando [?] and by Kostov and Lando in [?], using
singularity-theoretic methods. The proof given here is an adaptation of the
one given in [?] for the case of right-equivalence of functions of a single
variable and has the virtue of being constructive.

Theorem 4.4 If f(z) = 2* then G : CxC*™',0 — C,0 defined by G(z,u) =
2 w2t 4wzt + -+ ug_y is BDE-versal.

Proof Let F : C x C*,0 — C,0 be an unfolding of z*. We first note that it
is enough to produce

a:CxC*0—C,0,b:C%0—C*1 0
with a(z,0) = z and

Gz,b(w)) = Pla(zw), w){ ooz w)}?  (+5).

This just uses the implicit function theorem. We first show that we can find
formal power series a, b which satisfy (**). Indeed we shall show that a and
b are unique.

Because of further applications we shall actually establish the existence
of a and b as above satisfying

Oa

Glz,b(w)) = Fla(z whu){ 55 (2 w))"

for any integer r > 1, so our theorem is just the special case r = 2. So by
hypothesis we have

F(2,0) = 2" and G(z,u) = 2* + w2572 + -+ upy.

13



We seek a(z,w), b(w) with
(1) Fla(zu)u){5e(zw) = Gz, bw)),

(2) a(z,0) ==z

Write
a(z’w) = ao(z,w) + (Ll(z,w) + az(z,w) g

a?(z,w) = (ag + ay + -+ + ap)(z, w)
b°(z) = (bo + by + -+ - + b,) (w)

where the a; and b; are homogeneous of degree i in w. To solve (1), our proof

is by induction on p. We need to show that we can find ag, -+, ap,b0, -, b,
with
oaP
F(a”(z,w),w){—a (z,w)}" = G(z, 0 (w))
z

modulo terms (in w) of degree p 4+ 1; we write this as =,;.;. We get the
induction started for p = 0 by taking ao(z,w) = z,b(w) = 0. Suppose we
have done the case p. We need to find a,y;, by With

F((@? +ap1)s (5 0), )G+ 22z, w)} iz G, (0) by ().

Using Taylor’s theorem this is equivalent to

(@ F(@(z0),u){ e (2 w))

0)  +rF@ (e, w 2z w)

(O Hap(ew) S (@2 w), w){ e (2w} Zper G, B ()b (),

Since we are only interested in terms of degree < p+1 in (b) the only relevant
term is rz’“g%l’;‘tl(z,w) while for (c¢) we need only consider a,,;{z, w)kz*"1.
So since

k

[

G(2, 0" (w) + by (W) = G(z,0°(w)) + D (bp+1),2°

Jj=

14



this reduces to

CF(@(z ), w) {2

92 (z,w)}" + G(2,0°(w)) Zpya

. 0a
BPZH (2, w) + k2" tapy (2,0) — Z(bp-H

By induction the expression on the left hand side of the equivalence
contains no terms of degree < p. So we are reduced (comparing coefficients
of terms of degree p + 1) to writing any power series §(z) in the form

0(z) = 2" Hrzd (2) + ka(2)} + Zﬁjzj * % %)
for some power series a.
Write a(z) = ag + onz + ay + - - -; then
rzd! (2) + ka(z) = r(oqz + 2032° + 3ag2® + - +)

+k(ap + gz + g2’ + ) = kag + (r + k)ayz + (2r + k)agz® + -

Since any 0(z) can be written (uniquely) as

k—2
0(z) = 2" TA(2) + Z B;2
§=0
for some power series A = Ay + A1z + Ay22 + -+ the result follows: take

a; = A;/(jr+k). (Note we have shown that a, b are unique.) This completes
the proof of the existence of @ and b at the formal power series level.

Now for the proof of convergence. This clearly involves some estimate on
the size of the terms o and (; which arise in the solution of (***). Since 6
already depends on a? and b” any such estimate will necessarily be obtained
by induction on p. We need the following notation and results. All power
series will be expanded about the origin in some complex space C™.

Notation

(1) For € > 0 let D, denote the closed disc in the complex plane D, =
{z € C :|z| < €}. For s > 2 the product {(z1,...,2,) € C°: |z;] <e,1 <
i < s} is denoted by B..

(2) Suppose that h(z,z) (resp. h(z)) is analytic on some neighbourhood
of the origin in C x C* (resp. C*), and let v = (3;,...,%,) be a multi-index.
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Then h, (2) (resp. h,) will denote the coefficient of 23z} ... 2% in the power
series expansion of h. We also write |v| for 4; + ... + i,.

(3) Let h be analytic in some neighbourhood of D, in C, so we can
expand it as a power series Y. azz®. We write ||| for 3 |ai|e®, this sum
converges since h is absolutely convergent on some neighbourhood of D..
Clearly |h(z)| < ||h]|| for all z € D,

(4) Let h be analytic in some neighbourhood of D, x 0 in C x C" (resp.
of 0 € C7) and let g be analytic on some neighbourhood of 0 in C”. Then
we write h < ¢ to mean that ||h,|| < |g,| (resp. |h,| < |g,|) for all v.

(5) For a vector-valued function h consisting of k analytic functions,
h = (hy,...,hs) we write h < g when each h; < g.

Lemma 4.5 (See [?], p 244.) Suppose that H, G, h;, ¢;, 1 < i < m, are
analytic functions, with

H(zy,...,2,) K G(1,...,ZTp),

hi(yla-”ayn)<<gi(y17"'ayn)a 1S2§m?

and suppose that the coefficients in the power series expansion of G and the
g: are real and nonnegative. Then

H(hl(y)v v 7hm(y)) < G(gl(y)a ree 7gm(y))'

Next we have a key result.

Lemma 4.6 Given any € with 0 < € < 1 there is a constant L > 0 (depend-
ing only on €) so that every function 6(z), analytic on D, can be written
uniquely tn the form

k-2

0(z) = 2 Hrzd (2) + ka(2)} + Z B;2’

J=0
with o(z) analytic on D, and ||a|| < L||6||, ||¢/]] < L||8]| and |3;] < ||6]].
We first need the following result.

Lemma 4.7 Let f(z) = 3,5, a;2° be a function analytic on D, 7, k > 1

and g(2) = 3,50 ]%%, so that f(z) = rzg'(2)+kg(z) where this makes sense.
Then g is also analytic on D.. Moreover ||g]| < ||f]|, and ||g'|] < ||f]]-
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Proof The first assertion is easy. Since f is analytic on D, its radius of
convergence is larger than e. So the series is absolutely convergent on some
closed disk D, with ¢ > €. So 3 |a;|2? converges for |z| < €, hence so does
> la;]lz|” and consequently >~ ;L%j;zj So g is absolutely convergent on D..
The inequalities are trivial.

We can now return to the proof of the preceding result.
Proof Any 0(z) can be written as a sum

k—2
0(z) = 2} + D 67

=0
with ~(z) analytic on D,. Clearly ||| < [|6]le'~* and |3;] < [|6]]- Now
apply the previous result to represent v(z) in the form {rza/(z) + ka(z)}
for some function a(z) with ||a]| and ||/|] < ||| < ||6]|€'.

The final ingredients of the proof are two convergent power series which

will be used in the comparison process. Let e,d, E, D be real and positive
constants and set

A(w—gg (w + o w,),

B(z,w)

blhj

e .
Z Hz+w, + ... +w,).
These power series have the following important properties.

Lemma 4.8 (i) A (resp. B) is convergent in some neighbourhood of 0 € C*
(resp. C x C*).
(i1) A(w)?P < (3e/d)P~* A(w) for p > 2.

For a proof see [?] page 246.

We now come to the proof of convergence. First the initial case, then
the inductive step.

In what follows we shall suppose that F'(z,w) is analytic on a neighbour-
hood of D,, x B, C C x C*, and the a(z,w) and b(w) are the power series
constructed above.

Proposition 4.9 We may choose D, E and e > 0 so that
(i) a*(z,w),b" (w), w; are all € A(w), 1 <i<r.
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Proof We follow that given in {?] page 247.

(i) So writing a'(z,w) — 2z = 351 (a1(2));w;, b (w) = 3, (b1),w; we
choose e so that e > max{||(a;(2));||, |(b1);|, 1}; note that this choice is
independent of d.

(i) Writing F(z + t,w) — F(z,0) = > A 20w’ = 3 g5 (2)Pw” we
set M = 3 |A;;, |ettI¥ which converges, and clearly ||g;,|| < Me U+IVD,
Writing c;, for the binomial coefficient of /w” in (t+w; +...+w,)"**!, the
coefficient of t/w” in B(t,w) is ED’*I*I=t¢,,. Choosing D > 1/e, E > M/¢
and using c;, > 1 we have

[ED7M7 e, | > EDTHT > et > g, |

as required.
Now for the inductive step.

Proposition 4.10 For a suitable choice of d we have
a, (2)w”, a,(2)w”, bw" all € A(w)

for all v with |v| > 1. In particular the a?(z,w) — z, b*(w) are all € A(w)
for all p.

Proof The case |v| = 1 is dealt with by the proof of the previous result.
Before starting the induction we remark that, denoting the linear part in ¢
and w of F(z +t,w) — F(z,0) by L(z,t,w), we have by the previous result

F(z+t,w) — F(z,0) — L(z,t,w) < (E/D) Z (t+w + ...+ w,).

Now let p > 1 and suppose that the proposition is proved for |v| < p. In
what follows the subscript v denotes the coefficient of w” in the indicated
expression as before. Now with |v| =p +1,

F(af(z,w),w), = (F(z+(a?(z,w) - z),w) — F(2,0)— L(z, a? {z,w) — z, w)),,.

By Lemma 5.5, Proposition 5.9 and the inductive hypothesis a?(z,w) — z <
A(w), w; € A(w) we find that

F(a?(zw), w), < (B/D)(Y. D((s + DAw)Y.

7=2
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Using (A(w))? < (3e/d)’~! A(w) this implies that

F(a”(z,w),w), < (E/D)(D_ D (s + 1) (3e/d)’ ") A(w).

j=2

Provided that 0 < 3D(s + 1)e/d < 1, we can sum this geometric series
and obtain 3ED(s + 1)%eA(w)/(d — 3D(s + 1)e). On the other hand since
G(z,bP(w)) = 21 + Zf;llzo(bp(w))jzj we see that G(z,b”(w)), = 0. Hence

(F(a”(z,w),w){%(z,w)}’—f—(}'(z, b(w))), < 3ED(s+1)2eA(w)™+ /(d—3D(s+1)e)

< 3ED(s + 1)%e(3e/d)" A(w)/(d — 3D(s + 1)e).

We may now invoke Lemma 5.6 to deduce that the terms a,(z), b, obtained
in solving the equation ?? above satisfy

laull, 18a,/0z|], |b.| all < BLED(s + 1)237e™ A, /(d"(d — 3D(s + 1)e))

where L is independent of v.
Now choose d so large that 0 < 3D(s + 1)e/d < 1 and

0 <3LED(s+1)*37e"™/(d"(d — 3D(s + 1)e)) < 1
this choice being independent of v. We now deduce that
llavll, 119, /0z]|, b, < Ay,
and in particular a?(z,w) — z, b*(2) < A(w) for all p.
Completion of Proof of Theorem 4.4

So we claim that the formal power series a and b constructed above
converge on some neighbourhood of the origin. In particular G(z,u)dz? =
(%1 + S50 w;2?) is a versal unfolding of z**!. The power series a, b
obtained above converge because

a(z,w) — z = lim (a?(z,w) — 2) < A(w)

p— 00
b(w) = lim P (w) < A(w).
p—o0

Since A(w) is convergent in some neighbourhood of the origin it easily follows
from the comparison test that ¢ and b are also analytic in some neighbour-
hood of the origin.
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Corollary 4.11 An unfolding F of a germ f is BDE-versal if and only if
the partial derivatives OF(z,0)/0u; span the quotient O,/J(f), where O,
15 the ring of holomorphic functions C,0 — C, and J(f) is the ideal of
functions spanned by f'(z).

Proof A deduction of the same kind for R-equivalence is given in [?] on
page 141. The proof required here is virtually the same.

5 Integrability

In this section we show that our BDE’s have first integrals.

First recall that given an analytic function A : C — C we can look at
the level curves of the real and imaginary parts of . So if h = U + iV
we consider the families of curves U = constant and V = constant. Since
holomorphic maps are conformal it is not difficult to see that at any point
z in the plane where the derivative h'(z) is non-zero the corresponding pair
of level curves are orthogonal. Indeed we have the following result.

Proposition 5.1 Let h = U + iV be as above. Then the level curves U =
constant and V = constant are the solution curves of the BDE

UU,(dy* ~ da®) + (U? — U2)dzdy = 0.

Proof Since U = constant we have U,dx + U,dy = 0 and similarly V,dx +
Vydy = 0. Multiplying these together and using the Cauchy-Riemann equa-
tions gives the result.

These level curves are of some interest in themselves, but we shall see
that generic BDE’s of the type we are studying do not yield integral curves
corresponding to the level sets of the real and imaginary parts of generic
functions h. Nevertheless we do have the following important result.

Theorem 5.2 (i) Given an analytic function h we can find an analytic
function f such that the integral curves of R{f(z)dz*} = 0 coincide with the
level curves of the real and imaginary parts of h.

(1) Away from the zeros of f the integral curves of the BDE given by
R{f(2)dz*} = 0 locally coincide with the level curves of the real and imagi-
nary parts of some analytic function h.

Proof (i) Writing f = w + v we know that R{f(z)dz?} = 0 reduces to
u(dy® —dz®)+2vdzdy = 0. So this would coincide with a BDE corresponding
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to the level curves of the real and imaginary parts of an analytic function
h=U+iV if u = U,U, and v = (U2 — U2)/2. The conditions that the
resulting f is analytic is that the Cauchy-Riemann equations hold. But

u, = U Uy + U Ugy vy = U, U, + U Uy = U, Uy — U,U,,.

Ve = UpUsy — UyUpey v, = UUsy = UyUyy = UpUsy + U,Us,.

Clearly u, = v, and v, = —u, as required.

(ii) Now for the converse assertion. Suppose given f = u + iv a holo-
morphic function. We now seek a function h = U + ¢V such that the level
curves of U and V are the integral curves of the BDE R{f(z)dz?} = 0. By
the above we seek U and V' with

w=UU, = -UV,,v= (U -U2)/2= (U} - V})/2.
But now we note that
(U, +1V,)? = 20 — 2iu = —2i(u + iv) = —2if.

Since h, = h, = h' we deduce that (h')? = —2if, so that formally h =
+/=2i [ /fdz + c. Of course the function h is generally not holomorphic
at the zeros of f, has two branches away from the zeros, and is well defined
only up to a constant. Nevertheless the level curves of the real and imaginary
parts of h are clearly well defined away from the zeros of f. (Of course we
know that the zeros of f play a key role in the geometry of the solution
curves of the BDE, so their appearance above is expected.)

6 Geometry of the Unfolding

We have seen that there is a holomorphic function h properly defined on a
cover of the complement of the zeros of f with the property that the level
curves of the real or imaginary parts of h project down (unambiguously) to
the integral curves of the BDE. We wish to understand the way in which
these integral curves will change as we move around the unfolding space.
We have already seen that there is a codimension-2 catastrophe, namely
the coming together of zeros of f, and hence singular points of the solu-
tion curves. Another low(er) co-dimensional change occurs when a singular
solution passes through two singularities. We identify the corresponding
stratum in the versal unfolding of the A, singularity.
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Example 6.1 A; singularity.

Consider the function f(z) = 2? with associated BDE ${z2d2%} = 0 and
its versal unfolding R{F,(z)dz?} = 0 where F(z,w) = F,(z) = 2? + w.
We know that the A, stratum is simply given by w = 0. We now consider
the values of w for which there is a singular trajectory passing through two
singular points. What we shall do is construct, more or less explicitly, the
relevant function h whose real and imaginary parts have level curves which
give the solutions of the original BDE. Indeed we need to find a family
H(z,w) = H,(z) which does the job for F,, for each w. We then seek points
(z1,w), (22, w) with H/ (z;) =0 for i =1, 2 and R{H,(z1)} = R{H,(22)}
(or we have equality of the imaginary parts instead).

Now we have seen that H(z,w) = +v/—=2i [ /2?2 + wdz and it is not
difficult to see that this is an odd function of z (note that v/—2i = £(—141)).

However
(w+ 2%)% = 2w? /(1 + 22/w).

This can then be expanded as a function z, indeed can be written in the
form +w?2G(22,w) for some analytic G. Now the zeros of H' are the zeros
of F namely +iv, where v?> = w. Substituting these in for z the condition
that the (say real) parts of the H, coincide is R{(-1 + 1)ivG(—w,w)} =
R{—(—1+17)ivG(—w,w)}. However by expanding and substituting one can
check that the function G(2?,w) when evaluated at 22 = —w is a non-zero
real multiple of 7v. Indeed

(1422 /w)V? = 3(1/2)(=1/2)(=3/2) . .. ((—2k + 3)/2)2%* [ (k'w*).

Integrating we obtain
D (1/2)(=1/2)(=3/2) ... ((=k +1)/2)2%+1 /((2k + 1)klwk).
Setting 22 = —w we obtain
v (1/2)(=1/2)(=3/2)... ((=2k + 3)/2)(=1)¥ /((2k + 1)k!) =
—iv > (1/2)(1/2)(3/2) ... ((2k — 3)/2)/((2k + 1)k!) # 0

as required. So the above condition comes to R(w) + I(w) = 0. Similarly
the condition for this to happen with the other level curves is R(w) = S(w).
(Compare the example in §II1.2 of [?], where there is a slight error.) So in
the unfolding space we have two strata. Figure 3 show the change in the
integral curves as the parameter moves across these strata. We label this
the Y'Y stratum for reasons which are clear from Figure 3.

22



TN
FRUERR RN
IRRERRAN
3,

W,
DRRAY
CUUVRA

LRARN

AN ~
N ~

EEEETITITRN .~
EEERIRRANOS N
[ h NN

Figure 3: YY catastrophe
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7 Generic Configurations for an Unfolding of 2*

We now wish to understand the topology of the integral curves of a generic
deformation of the BDE given by R{z*d2%2} = 0. So in particular these
deformations will only have simple singular points and no integral curves
joining two (or more) singular points. One can view these a being obtained
by selecting a generic point in the versal unfolding space. These configura-
tions will change as the unfolding parameter moves across the Y'Y strata,
and we saw in the previous section the way this occurs. (The degenerate
singular point stratum is of codimension 2 and so not relevant.) In [?],
Hubbard and Masur study the case, almost diametrically oppsed to what
we study, where all singular points are connected to one another by singular
trajectories.

Note that our discussion above shows that the BDE really does factorise;
that is the integral curves can be split into two (singular) foliations, namely
that given by R{h(z)} = constant and S{h(z)} = constant. Because of this
we shall start by considering each of these foliations separately, looking later
at the question of how the two mesh together. First recall the configuration
of the solution curves of the undeformed BDE. There is a single singular
point and k + 2 integral curves through that point. If we split the BDE each
resulting ODE has £ + 2 half branch solutions emanating from the singular
point. See Figure 4.

Out at the boundary of the unit disc other solutions get closer to these
singular half branch solutions. More importantly there are k& + 2 points
where the integral curves are tangent to the bounding circle of the disc. It is
easy to check that this tangency is simple, with the tangent curve meeting
the disc only at the point of tangency.

We now need a few definitions. In what follows we have a singular
foliation of the unit disc.

Definition 7.1 (i) A singular point of the boundary circle is a point of
intersection with a singular solution of the foliation.

(i) We say that a pair of points on the boundary are adjacent if they are
not separated by a point of tangency.

(iii) We say that a pair of arms are adjacent if they meet the boundary
circle in adjacent singular points. We say that a pair of Y'’s are adjacent if
each has a pair of arms which are adjacent.

There are three basic facts needed to understand these configurations.
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Figure 4: Solution curves for ODE

Theorem 7.2 (i) The singular foliation is determined up to topological
equivalence by the configuration (up to topological equivalence) of the sin-
qular solutions in the unit disk.

(ii) In a generic unfolding of an Ay_, singular point there are k sim-
ple singular points of the BDE. (We shall refer to simple singular points
hereafter as Y'’s.)

(i11) There are k + 2 tangency points in any small deformation of the
BDE. Moreover no two of the three singular solutions through any simple
singular points are adjacent.

Proof (i) See below.

(ii) The first result is immediate from the fact that an A,_; singularity
splits generically into k A;s.

(iii) Suppose given a family F(z,t) with F(z,0) = z* and so that for ¢ > 0
(and sufficiently small) the configuration of solution curves of R{F(z,t)dz*} =
0 is that to be studied. Recall that there are k + 2 tangency points of each
of the foliations corresponding to the unperturbed BDE R{z¥dz*} = 0 and
these remain under small perturbation. Moreover the tangency is simple
with the integral curve lying outside the open unit disc, and this property
will also be preserved on perturbation. Since in the deformation the simple
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singular points are created close to the origin each of the associated three
arms exits the circle between two points of tangency.

Suppose now that two of the arms associated with a simple singular point
are adjacent. The integral curves of the foliation then are all transverse
to the boundary circle between the points of contact of the two singular
solutions. In the enclosed region there may of course be further simple
singularities whose singular solutions meet the boundary between the two
points already mentioned. There is certainly one for which two of the points
of intersections are adjacent. But now integral curves leaving the boundary
between the two points return there at a different point because there ae no
tangency points. But the integral curves are the level curves of the real part
of some function h, and are all smooth 1-manifolds with boundary where
they meet the bounding circle. If we assign to each point on this interval
the other point on the boundary where the integral curve meets it again we
obtain a smooth map of an interval with no fixed points: a contradiction.

(i) It is now not difficult to see that the singular solutions cut the disc
into two types of region. Up to homeomorphism these are a rectangular strip
whose two ends are parts of the boundary circle, and whose sides are each
two arms of a Y. There are no points of tangency on the boundary. The
other is a sector of a circle, the circular part being the boundary circle, the
two bounding radii arms of a Y, with a single tangency on the boundary. The
integral curves in these regions are as indicated in Figure 5. The region types
are completely determined by the configuration of the singular solutions, and
the result now follows.

Remark 7.3 (1) If one assigns an indez of —1/2 to each Y and 1/2 for
each boundary tangency (tangent integral curve lying outside interior of disc)
then on any surface with boundary the sum of the indices is the Euler char-
acteristic.

(2) It is not difficult to see (using a little pasting and Euler character-
istics) that in a deformation of z* there are k — 1 rectangular regions and
k + 2 sectors.

Corollary 7.4 Each Y has two arms adjacent to two arms of at least one
other Y.

Proof Suppose that we start on the unit circle at some fixed singular point

and draw in the corresponding Y. We then move counterclockwise say and
insert each new Y as we meet its singular points on the boundary. Now we
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Figure 5: The two types of region

count the number of tangency points on the boundary, using all the while
the fact that any two of the three singular points on the boundary of the
Y are separated by a point of tangency. So after the first insertion we have
register 3 corresponding tangency points. The claim is that thereafter each
new insertion of a Y requires at least one new tangency point. This follows
from the fact that any new insertion can have at most two of its arms already
separated by tangency point. So after we have inserted all k singular points
we have registered at least 3 + (k — 1) = k + 2 tangency points. But this is
in fact the total number of tangency points, and so with each new insertion
exactly two of the arms are adjacent to singular points on the boundary
which are already registered.

We have seen that for each Y there is at least one pair of arms adjacent
to a pair of arms of another Y. This fact allows us to associate a graph with
each foliation.

Definition 7.5 The graph associated to the ODE of the BDE has for its
vertices the Y singularities of the deformation, and edges correspond to pairs
of singular points which have pairs of arms adjacent.

Proposition 7.6 (i) The resulting graph is a tree in other words is con-
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nected with no loops.
(11) If the the number of vertices of valency i is «(i) then a(i) = 0 for
i 24 and o(1) + a(2) + a(3) = k while a(1) + 20(2) + 3a(3) = 2(k — 1).
(71) This tree does not determine the configuration of the singular solu-
tions.

Proof (i) It is not difficult to see that there is at least one Y whose 3
associated boundary singular points are separated by no others. If £k > 2
there will be a (unique) second Y with two sides adjacent to the outer arms
of the first. Continuing in this way (see the proof of the previous Corollary)
we obtain a connected graph.

We now need to show that it contains no loops. But if there was a loop
then choosing a vertex or Y it is clear that all subsequent Y’s occur in one
of the regions partitioned off by two of the arms, and so it is not possible
for the loop to close up.

(ii) This is now clear from (i).

(iii) The configurations given in Figure 6 are clearly distinct but give rise
to the same graph.

Figure 6: Distinct configurations yielding the same graph

As mentioned above we would like to enumerate all possible generic
configurations of singular solutions in the split ODE. We now describe what
one might term the fundamental move repeated application of which allows
one to change from one possible configuration of the foliation to any other.
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Basically this is the local Y'Y catastrophe discussed above which occurs
across a codimension 1 subset of the space of BDE’s of the type discussed
here. The basic change is indicated in Figure 7, where at the point of
transition a pair of Y’s share a common arm.

Cc

Figure 7: Effect of YY change on graph

The effect on the graph of the configuration is indicated in the same
diagram. The idea here is that each vertex has valency at most 3, that is
there is at most 3 adjacent edges; the effect of the move is to swap pairs of
edges, or in the case where one of the Y has valency 1 to transfer one of the
edges from the other Y. The effect on the three possible configurations in
the case k = 4 is illustrated in Figure 8.

Figure 8: The three configurations for k=4

Another way of describing the singular solutions is by first labelling the
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Y’s, say 1 to k, and then starting at some point on the circumference writing
down the numbers associated to each singular point. In this way we arrive
at a string of 3k numbers, with each of the numbers 1 to k£ occuring 3 times.
It would be of interest to characterise the strings that can occur in this way.
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