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Abstract

We establish the polynomial-time solvability of a class of vector partition problems with linear objectives subject to
restrictions on the number of elements in each part. © 2000 Published by Elsevier Science B.V. All rights reserved.

1. Shaped partition problems

The shaped partition problem concemns the parti-
tioning of n vectors 4!, ..., 4" in d-space into p parts
$0 as to maximize an objective function which is con-
vex on the sum of vectors in each part subject to ar-
bitrary constraints on the number of elements in each
part. This class of problems has applications in di-
verse fields that include circuit layout, clustering, in-
ventory, scheduling and reliability (see [2,3,5,9] and
references therein) as well as important recent appli-
cations to symbolic computation [11]. In its outmost
generality, the shaped partition problem instantly cap-
tures NP-hard problems hence is intractable [8]. The
purpose of this article is to exhibit polynomial-time
solvability for a broad class of shaped partition prob-
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lems with linear objectives. To define the problem for-
mally, describe our results and raise some remaining
questions, we next introduce some notations.

Let @ and N denote, respectively, the rational
numbers and nonnegative integers. All vectors are
columns by default. The vectors of all-ones and
all-zeros, of dimension that is clear from the context,
are denoted by 1 and 0, respectively. A p-partition
of the set [n]:={1,...,n} is an ordered collection
n=(m,...,n,) of pairwise disjoint (possibly empty)
sets whose union is [#]. The shape of n is the tuple
|n|:=(|7|,...,|7,|) of nonnegative integers which
describes the number of elements in each part of =.
Let NZ2:={ieN?: 1"/ = n} denote the set of all
p-shapes of n. The first ingredient of the problem data
is a subset A C N7 of admissible shapes. The feasible
solutions to the problem are then all partitions 7 of [#]
of admissible shape |r| € A. The second ingredient of
the problem data is a d x n matrix 4 whose jth col-
umn A4/ represents d numerical attributes associated
with the jth element of the partitioned set [n]. With
each p-partition 7 of [n] we associate the following
d % p matrix whose kth column represents the total
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attribute vector of the kth part,

A"= Z A, Z A eqirr

JjEm jEen,

with -, . 4/:=0 when n; = (). The third ingredient
of the problem data is a convex functional C : Q¢** —
Q. The objective value of a partition n is then de-
fined by C(A4™). We consider the following algorith-
mic problem.

Shaped partition problem Given positive integers
d. p.n, matrix 4 € Q7*", shape set A C N/, and con-
vex functional C:Q*” — Q, either assert that A
is empty or find a partition 7* of admissible shape
|n*| € A attaining maximum objective value, that is,

C(A™ ) = max{C(4"): |n] €4 }.

A natural example is clustering, where n ob-
servation points 4',....4" € Q“ are to be grouped
into p clusters in such a way that the sum of suit-
ably defined cluster variances is minimized. The
restriction of shapes to a shape set A may allow
to reflect a priori information about the anticipated
number of data points in different clusters. For in-
stance, when minimizing the sum of the /; clus-
ter variances >\ (1/|m|) 3, ¢, |47 — A™|)?, with

A" =17 jen A’ the cluster barycenter, and the
a priori indication that all clusters have the same num-
ber of elements, the clustering problem becomes a
shaped partition problem with A={n/p-1} and C ona
matrix M € Q¢*? given by C(M)=a- (M, M) — B, with
the constants o = (p/n)* and f = (p/n) >}, 14717,
and with (M, M):= 3" | vME

The shaped partition problem in its full generality,
with d, p, n variable, with A arbitrary and possibly pre-
sented by a membership oracle, and C arbitrary convex
and possibly presented by an evaluation oracle, has a
very broad expressive power. In fact, as explained in
[8], even with fixed d = | or p =2, the problem im-
mediately captures NP-hard problems. A major result
of Hwang et al. [8] was that, with both d, p fixed, the
problem can be solved in polynomial-time with A and
C arbitrary and presented by oracles.

In the present article, we restrict the class of convex
functionals and assume C to be linear, but allow d
and p to vary as part of the input. The functional C

is then identified with a matrix C € Q9*?, and the
objective value of a partition 7 becomes (C,4™). We
prove in Theorem 1 the polynomial-time solvability
of the problem for a broad class of shape sets, which
in particular implies:

Corollary 1. Given d, p,n, matrix A€ Q%*", and
CcQ*r, the shaped partition problem can be
solved in polynomial-time for every shape set A of
one of the following two types:

1. Any set A= N} N {i: I<A<u} of shapes defined
by given lower and upper bounds.

2. Any explicitly given set A= {J',....}"} TN} of
shapes.

Note that, while the shaped partition problem is
obviously intractable if A is presented by a mere
membership oracle, Corollary 1 part 2 implies that if
p is fixed then it is solvable in polynomial oracle time
since an explicit presentation of A can be obtained by
querying the oracle on each element of {0, 1,...,n}7.
It would be interesting to find more general shape sets
under weak presentations for which the shaped par-
tition problem is polynomial-time solvable. In partic-
ular, for which of the following presentations (of in-

Wreasing generality), of shape sets which are convex in
' £g y

the sense A =NZ Nconv(A), is the problem tractable?

\) o Convex shape sets presented by an inequality sys-

tem conv(A) = {A: Ui<u}?
e Convex shape sets presented by a separation oracle
(cf. [6]) over conv(A)?

2. Optimization over shaped partition polytopes

The linear-shaped partition problem can be embed-
ded into the problem of maximizing C € @9*? over
the convex hull of matrices of feasible partitions, de-
fined as follows.

Shaped partition polytope The shaped partition poly-
tope of matrix 4 € Q?*" and shape set A C N/ is
defined to be the convex hull of all matrices of ad-
missible partitions,

Pl:=conv {4™: |n| € A} C Q7.

Shaped partition polytopes form a broad class which
captures and generalizes many classical polytopes (see

.}
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[2,4,7,8,10] and references therein for more details).
Since a shaped partition polytope is defined as the
convex hull of an implicitly presented set whose size
is typically exponential in the input size even when
both p and d are fixed, an efficient representation as
the convex hull of vertices or as the intersection of
half-spaces is not readily expected. It was shown in
[8], however, that if both p and d are fixed then the
number of vertices is polynomial in », which was the
key to the polynomial-time solution in {8] of shaped
partition problems with fixed d, p. Related bounds
were given in [1].

In the present article we allow d and p to be a vari-
able part of the input. In this situation, the enumera-
tive methods of Hwang et al. [8] fail: indeed, even if
one of d and p remains fixed, the number of vertices
of the shaped partition polytope may be exponential
in n. For instance, if d =1, p=n, 4 =[1,...,n],
and A = {1} then partitions correspond to permuta-
tions and P4 is the permutohedron having n! vertices.
If p=2,d=n A=11is the n x n identity matrix,
and A= N2 then P/ is affinely equivalent to the cube
having 2" vertices.

We now take a closer look at the shaped partition
polytope of the identity 7,

P =P = conv{I™: |n| € A} C Q"7

We aim to derive an inequality description of P*.
Consider the polytope T+ defined by

Th={XcQ™7: X>0, X1 =1, 1'X € conv(A)}.

Since each matrix /™ is {0, | }-valued with a unique
1 per row, it follows that P41 C T4 for any shape set
ACN?’. The converse is usually false. For instance,
let n=p=2and let A={(2,0),(0,2)} be anonconvex
set of two shapes. Then the 2 x 2 identity 7 lies in T
since 177 = (1, 1) € conv(A), but

I§ZPA_{[§ i:ﬂw@gl}.

Next assume that A is convex, that is, 4 = Nf N
conv(A). If conv(A) has the inequality description
conv(A)={A€ Q" A0, 1'A=n, Ui<u} then T"
has the description

T'={XecQ’: X>0 X1=1, UX"1<u}. (1)
As demonstrated below in Example 1, convexity is not

sufficient for equality P! = T'. We need a more re-
strictive assumption on A that we describe next. Recall

from [12] that a matrix is fotally unimodular if all its
subdeterminants, in particular all entries, are —1,0, 1.

Proposition 1. Ler A=N} N{i: Ui<u} be a convex
shape set with U being an integer matrix and u an
integer vector. If the matrix a(U ):=[1 U"]" is totally
unimodular then

conv(Ay={AeQP: 1>0,1"A=n, Ul<u}. (2)

Proof. Clearly conv(A)is contained on the right-hand
side of (2). Now, since a(U) is totally unimodular,
it follows (cf. [12]) that all vertices of the right-hand
side of (2) are integers. But A is precisely the set of
integer points on the right hand side of (2) since A =
N7N{A: UA<u}. Hence, all vertices of the right-hand
side of (2) lie in A and the proposition follows. O

However, as the following example shows, P”' may
be strictly contained in T4 even if A is convex and
a(U) (and hence U) is totally unimodular.

Example 1. Let n = p =4 and let A = {(2,0,0,2),
(1,1,1,1),(0,2,2,0)} be a convex shape set with 4=
NiN{A: UA<2-1}, where a(U) is totally unimodular
with

1 0 1 0

0 1 0 1

I 1 0 0

0 0 1 1

Then both T/ and P* are 10-dimensional polytopes
in the space Q*** of 4 x 4 matrices. However, P! has
24 facets and 36 vertices which are the {0, 1 }-matrices
I™, whereas T/ has 16 facets and 84 vertices. The
only integer vertices of T are the 36 matrices /™. To

verify directly that P! is indeed strictly contained in
T4, define two identical matrices

o 0 o 1
0 05 05 0
V=C=1lo5 0 0 05

1 0 0 0

Then V satisfies the inequalities defining 7 but at-
tains the value (C,V) = >, ;Ci;Vij =3 under the
functional C, which is strictly larger than the value
(C,I™) for any & with |r| € A.

Let U=[U',...,U”] be an m x p matrix, let
[U'1",...,U”1"] be the m x pn matrix obtained
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from U by replicating each column » times, and let
I be the n x n identity matrix. Define the following
(n + m) X pn matrix:

M=o et L e

We then have the following sufficient condition for
equality P = T to hold.

Lemma 1. Let A = N N {A: UA<u} be a convex
shape set with U an integer matrix and u an integer

vector. If the matrix n(U) is totally unimodular then
pr=TA

Proof. We use the total unimodularity of »#(U)
twice. First, if n(U) is totally unimodular then so is
a(U) = [1 UT]"; indeed, a(U) is the submatrix of
n(U) corresponding to rows (n+i: i =0,...,m) and
columns (j - n: j=1,..., p). Thus, by Proposition 1,
conv(A) has the description in (2), hence T has the
description in (1). Now, identifying Q"> % = Q" via
X — [Xl,l, ca ,X,,’l, N ,XLP, e ,/Yn,p], this inequality
description of 7! becomes

T'={XcQ™ X>0,

~7 .. - -1
I I |.x<| 1]}, (3)
v’ ...y’ u

Second, since n(U) is totally unimodular, so is the co-
efficient matrix of (3); hence, it follows (cf. [12]) that
all vertices of T are integers. But the integer points in
T are precisely all {0, 1}-matrices which equal /™ for
some 7 with 7| € A. Thus T/ = conv{/™: || € A} =
P" as claimed. [

Note that a necessary condition for n(U) to be to-
tally unimodular is that U itself is, which implies at
once that the same holds for the replicated matrix
[U'17,....UP1"]. However, this condition is not suf-
ficient in general: the matrix U in Example 1 (and
a(U), moreover) is totally unimodular but #(U) is not.

Using Lemma 1 and Proposition 1 we obtain the
following statement.

Theorem 1. The shaped partition problem can be
solved in polynomial-time for any d, p,n, matrix
A€ Q¥ linear functional C € Q“*?, and shape set

A =N} N {i Ur<u} with U and u being integers
and n(U) totally unimodular.

Proof. Define W:=4"C € Q"*”. By Lemma 1 we
have P = T*, which, by Proposition 1, has the in-
equality description (1). Therefore, we can solve the
maximization problem max{ (W,X): X € P{'} of W
over P{! = P! in polynomial-time by linear program-
ming over T/ using the description in (1), and ob-
tain an optimal vertex which equals / ™ for some 1*
with |z*| € A. For any partition 7, we have (C,4") =
(C,AI™) = (W,I™). Therefore, n* is an optimal solu-
tion to the shaped partition problem, and it can be
uniquely recovered from /™ by nr={i 1,"/ =1} for
j=1...,p. O

We can now demonstrate Corollary 1 stated in Sec-
tion 1.

Proof of Corollary 1. Part 1, where A = NJ N
{i: 1< i<u}, is a direct consequence of Theorem
1. To see part 2, let A = {Ai',...,A"} TN} be an
explicitly given shape set. For i = 1,...,m, solve a
shaped partition problem with A’:={A'} using part
1 with the lower and upper bounds /':=u':=4" and
obtain an optimal partition 7' of shape A’. Any best
partition among the 7’ is an optimal solution to the
shaped partition problem with 4. O
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