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Abstract

Let P, Ps,..., Pyyy be pairwise disjoint n-element point sets in general position in d-space. It is shown that
there exist a point O and suitable subsets Q; C P; (i = 1,2,...,d+ 1) such that |Q;| > c4|P;|, and every
d-dimensional simplex with exactly one vertex in each (; contains O in its interior. Here ¢4 is a positive constant
depending only on d. © 1998 Elsevier Science B.V.

1. Introduction

Let P, P,,..., Py be pairwise disjoint n-element point sets in general position in Euclidean
d-space R%. If two points belong to the same P, then we say that they are of the same color.
A d-dimensional simplex is called multicolored, if it has exactly one vertex in each F; (i = 1,2,...,
d + 1). Answering a question of Bdrany et al. [2], Vrecica and Zivaljevié [18], proved the following
Tverberg-type result. For every k, there exists an integer n(k, d) such that if n > n(k,d), then any
pairwise disjoint n-element point sets P, P,..., Py, C R? in general position induce at least k
multicolored vertex disjoint simplices with an interior point in common. (For some special cases, see
[3.9,17].) This theorem can be used to derive a nontrivial upper bound on the number of different
ways one can cut a finite point set into two (roughly) equal halves by a hyperplane.

The aim of this note is to strengthen the above result by showing that there exist “large” subsets of
the sets P; such that all multicolored simplices induced by them have an interior point in common.

Theorem. There exists cq > 0 with the property that for any disjoint n-element point sets
P,P,...,Pyy C R? in general position, one can find a point O and suitable subsets (}; C P,
1Qil = calBi| (i = 1,2,...,d+ 1) such that every d-dimensional simplex with exactly one vertex in
each Q; contains O in its interior.
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The proof is based on the k = d+1 special case of the Vre¢ica—Zivaljevié theorem (see Theorem 2.1).
It uses three auxiliary results, each of them interesting on its own right. The first is Kalai’s fractional
Helly theorem [10], which sharpens and generalizes some earlier results of Katchalski and Liu [11]
(see Theorem 2.2). The second is a variation of Szemerédi’s regularity lemma for hypergraphs [15]
(Theorem 2.3), and the third is a corollary of Radon’s theorem [14], discovered and applied by
Goodman and Pollack [8] (Theorem 2.4).

In the next section, we state the above mentioned results and also include a short proof of Theorem
2.3, because in its present form it cannot be found in the literature. Our argument is an adaptation
of the approach of Komlés and Sés [13]. For some similar results, see [5,6,12]. The proof of the
theorem is given in Section 3. It shows that the statement is true for a constant ¢; > 0 whose value
is triple-exponentially decreasing in d.

2. Auxiliary results

Theorem 2.1 [18]. Let Ay, As, ..., Agyy be disjoint 4d-element sets in general position in d-space.
Then one can find d+ 1 vertex disjoint szmplzcev with a common interior point such that each of them
has exactly one vertex in every A;, 1 <i<d+ 1.

A family of sets is called intersecting if they have an element in common.

Theorem 2.2 [10]. For any « > 0, there exists 3 = 3(a.d) > 0 satisfying the following condition.
Any family of N convex sets in d-space, which contains ar least (1( dl]) intersecting (d + 1)-tuples,
has an intersecting subfamily with at least 3N members.

In fact, if N is sufficiently large, then Theorem 2.2 is true for any 3 < 1 — (1 — a)!/(4+1) In
particular, it holds for 7 = a/(d + 1).
Let H be a (d + 1)-partite hypergraph whose vertex set is the union of d + 1 pairwise disjoint

n-element sets, Py, P, ..., . P41y, and whose edges are (d 4+ 1)-tuples containing precisely one element
from each P,. For any subsets SiCP (1 <i<d+1), let e(Sy,....S441) denote the number of
edges of H induced by S| U---U Sy . In this notation, the total number of edges of H is equal to
e(Pr,.... Payy).
It is not hard to see that for any sets 5; and for any integers t; < |5/, 1< d+1,
e(Sy,...,S e(Ty,..., T, S S,
(S Sd+1) :Z (T, ..., Tuy1) (I 1|) (| 1+1|> )
1S1] - | Sat] VAIRRRR IRy t tas
where the sum is taken over all ¢;-element subsets 7; C S;, 1 <i < d+ 1.
Theorem 2.3. Let H be a (d + 1)-partite hypergraph on the vertex set Py U --- U Py, |P| = n

(1 i< d+1), and assume that H has at least 3n?"" edges for some 3> 0. Let 0 < £ < 1/2.
Then there exist subsets S; C P; of equal size |S;| = s > H‘“ n (1 <i<d+ 1) such that

() e(Sy, ..., Sq41) = Hsd“

(i) e(Q1,...,Qdp1) > 0 forany Q; T S; with |Q;| > es (1 <i<d+1).
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Proof. Let S; C P, (1 <i < d+ 1) be sets of equal size such that

6(5[, PN ,Sd+])
IS ’d+l —g2d

is maximum, and denote |S|| = -+ = |S444] by s.
For this choice of S;, condition (i) in the theorem is obviously satisfied, because

6(517"'?Sd+|)>e(P|,...’Pd+]): ;3 S 6

2d = 2d d T _2d
’Sl ,d+l—6 nd+l—¢ =" s ¢

Taking into account the trivial relation

e(St, ... Sar1) < &
[SI'dH—aM =0

the above inequalities also yield that s > 8/<n.
It remains to verify (ii). To simplify the notation, assume that s is an integer, and let (9; be any
cs-element subset of S; (1 <7< d+1). Then

e(Qr,....Qar1)=e(S1,...,Sa41)
—e(S) —Q1,52.83,...,8441)
—e(Qr,5 — Q2,53 ..., 8441)
—e(Q1,Q2,9 — Q3,..., Sqv1)

—e(Q1,Q2.Qs,. .., Sav1 — Qur1).

In view of (1), it follows from the maximal choice of .S; that

d+]ff(5] —Q|.S2.....,Sd+[)
1S1 = @Q[[S2] -+ | S|

(] — o)t (S —Q,Ta, ..., Tay) s\?
= (1 -¢) Z (1= ¢)sldt] /(ss)

TCSi, Tij=(1—2)s
2<i<d+ |

. 6(51,52,...,5,1 2
<(1 -—E)SdH i 1) [(1 —5)5}

e(S1 —Q1,52,....Sqr1)=(1—¢)s

=e(S), ..., Sqr)(1 —e)' =

Similarly, for any 7, 2 < ¢ < d + I, we have

e(@r. ..., Qic1.Si — Qi Sixr...., Sa1) < e(Sh, ..., d+|)€i—]_62d(1 —€).

Summing up these inequalities, we obtain
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as required. O

A (d + 1)-tuple of convex sets in d-space is called separated if any j of them can be strictly
separated from the remaining d + 1 — j by a hyperplane, I < j < d. An arbitrary family of at least
d + 1 convex sets in d-space is separated if every (d + 1)-tuple of it is separated.

Theorem 2.4 [8]. A family of convex sets in d-space is separated if and only if no d+1 of its members
can be intersected by a hyperplane.

Let n > d + 1. Two sequences of points in d-space, (p|,...,pn) and (qi,...,qy), are said to have
the same order type if for any integers 1 < 4 < --- < igy; < n, the simplices p;, ... p;, ., and
Gi, - - - Giy,, have the same orientation [7]. It readily follows from the last result that if C|,...,C),
form a separated family of convex sets, then the order type of (pi,...,p,) will be the same for every
choice of elements p; € C;, 1 <1< n.

3. Proof of Theorem

Let Py,..., Pyy) be pairwise disjoint n-element point sets in general position in d-space. If a
simplex has precisely one vertex in each P;, we call it multicolored. The number of multicolored
simplices is N = nd+1,

By Theorem 2.1, any collection of 4d-element subsets A; C P;, 1 <7< d+ 1, induce d+ 1 vertex
disjoint multicolored simplices with a common interior point. Thus, the total number of intersecting
(d + 1)-tuples of multicolored simplices is at least

(;:i)d‘{»l 1 ( N )
(n;dd_—ll)d*" (Sd)d2 d+1)

Hence, we can apply Theorem 2.2 with a = 1/ (Sd)‘sz We obtain that there is a point O contained in
the interior of at least

8N = B8(1/(5d)% , d)nt+!

multicolored simplices.

Let H denote the (d + 1)-partite hypergraph on the vertex set Py U --- U Py, whose edge set
consists of all multicolored (d + 1)-tuples that induce a simplex containing O in its interior.

Sete =1/ 2d2d, and apply Theorem 2.3 to the hypergraph H to find S; C P;, 1 < i < d+1, meeting
the requirements. By throwing out some points from each S;, but retaining a positive proportion of
them, we can achieve that the convex hulls of the sets S; are separated. Indeed, assume, e.g., that
there is no hyperplane strictly separating S;U---U.S; from S, U---U Sy, . By the ham—sandwich
theorem [4], one can find a hyperplane & which simultaneously bisects Sy, ..., Sy into as equal parts
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as possible. Assume without loss of generality that at least half of the elements of Sz, | are *“above” h.
Then throw away all elements of S; U---U.S; that are above h and all elements of ;1 U---U Sgy
that are below h. We can repeat this procedure as long as we find a non-separated (d + 1)-tuple. In
each step, we reduce the size of every set by a factor of at most 2.

Notice that in the same manner we can also achieve that, e.g., the (d+ 1)-tuple {{O}, conv(S)),...,
conv(S,;)} becomes separated. In this case, h will always pass through the point O, therefore O will
never be deleted.

After at most (d + 2)2% steps we end up with Q; C S;, |Q:] > es (1 < i < d + 1) such that
{{O}, conv(S}),...,conv(Sz;)} is a separated family. It follows from the remark after Theorem 2.4
that there are only two possibilities: either every multicolored simplex induced by Q1 U - -+ U Qg4
contains O in its interior, or none of them does. However, this latter option is ruled out by part (ii) of
Theorem 2.3. This completes proof. O

Instead of applying Theorem 2.2, we could have started the proof by referring to the following
result of Alon et al. [1], which is also based on Theorem 2.1. For any 3 > O there is a 3; > 0 such
that any family of Sn®*! simplices induced by n points in d-space has at least 3n?*! members with
non-empty intersection.

Our proof easily yields the following.

Theorem 3.1. For any 3 > O there is a (3] > O with the property that given any family of Bndt!
simplices induced by an n-element set P C R?, one can find a point O and pairwise disjoint subsets
Q: CP(i=1,2,...,d+ 1) such that at least Bjn members of the family have exactly one vertex in
every Q;, and each of them contains O.
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