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Abstract
It is shown that for every ¢ > 0 there exists ¢/ > 0 satisfying the
following condition. Let & be a system of n straight-line segments in
the plane, which determine at least cn? crossings. Then there are two
disjoint at least ¢'n-element subsystems, S;,S; C S, such that every
element of S crosses all elements of S,.

1 Ihtroduction, results ,

Given a system S of simple continuous curves (“strings”) in the plane, we can
define a graph Gs as follows. Assign a vertex to each curve, and connect two
vertices by an edge if and only if the corresponding two curves intersect. Gs
is called the intersection graph of S.

Not every graph is an intersection graph of a system of curves [EET76]
(see Figure 1 for a simple example). Moreover, it is not hard to show that

only a very small fraction of all the 2(3) labeled graphs on n vertices have this
property. ‘

Theorem 1. The number of labeled graphs on n vertices which can be obtained

as the intersection graph of a system of simple continuous curves in the plane
is 20(nlogn)'
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The problem of recognizing intersection graphs of planar curves (the so-
called “string graph problem”) is known to be NP-hard [K91], but it is open
whether this problem is decidable [KM91]. In some very special cases, e.g.,
when S consists of segments, there are trivial recognition algorithms [CGP98],
[FMP95]. But even in these cases we do not know much about the structure
of intersection graphs. One of the most striking examples illustrating our
ignorance in the subject is the following simple open

Problem. Is it true that every planar graph is the intersection graph of a
system of segments in the plane?

The aim of this paper is to prove some Ramsey-type results for intersection
graphs of segments. In other words, we establish necessary conditions for a
graph to be the intersection graph of a system of segments. We recall a simple
observation from Ramsey theory. As usual, let V(G) and E(G) denote the
vertex set and the edge set of a graph G, respectively.

Theorem. [EHP99| Let H be a fized graph of k vertices. Then every graph G
with n vertices, which does not contain an induced subgraph isomorphic to H,
has two disjoint sets of vertices, Vi, Vo C V(G), such that |Vi|,|Va| > nt/*k-1/2
and :

(i) either all edges between Vi and V; belong to G,

(1t) or no edge between Vi and Vy belongs to G. O

Note that the weaker result, with roughly log n in the place of n*/(*=1) im-
mediately follows from Ramsey’s theorem [ES35]. Combining the last theorem
with Theorem 1 (or rather with the fact that there is at least one forbidden
induced subgraph in the class of all segment intersection graphs, say, the 15
vertex graph depicted in Figure 1), we obtain the following

Corollary. There exists a constant ¢ > 1/14 such that every system S of
n segments in the plane has two disjoint subsystems &1,82 C & such that
|S1], |S2] > n®/2 and

(1) either every segment in S; crosses all segments in S,

(11) or no segment in S; crosses any segment in S,.

Note that here, as well as in the sequel, we only consider systems of seg-
ments 1n general position, i.e., we assume that no two segments are parallel
and no three endpoints are collinear. ,

The main result of this paper, formulated in the next two statements,
substantially strengthens the last Corollary. In all of these results, A stands

for an absolute constant smaller than 144, 618.



Theorem 2. Any system S of n segments in the plane with at least cn?
crossings (¢ > 0) has two disjoint subsystems, 81,82 C S, such that |S,|,|Sz| >

P) A . .
L%G—-n and every segment in Sy crosses all segments in S;.

Theorem 3. Any system S of n segments in the plane with at least cn?
non-crossing pairs (¢ > 0) has two disjoint subsystems, S;,82 C S, such that

|S11,|S2| > %%{in and no segment in S; crosses any segment in Ss.

A geometric graph is a graph whose vertices are points in general position
in the plane (i.e., no three points are on a line) and whose edges are straight-
line segments connecting these.points. Our last two results are easy corollaries
to Theorems 2 and 3, respectively. .

Theorem 4. Any geometric graph G with n vertices and at least cn? edges
(¢ > 0) has two disjoint sets of edges Ey, E;, C E(G) such that |E,|, |Ey| >
(c/32)A+2 ('2’) and every edge in E; crosses all edges in E,.

Theorem 5. Any geometric graph G with n vertices and at least cn® edges
(¢ > 0) has two disjoint sets of edges Ey, E; C E(G) such that |Ey|,|E;| >
(c/34)A+2 (;) and no edge in E, crosses any edge in E,.

The rest of the paper is organized as follows. In Section 2, we establish

Theorem 1. Theorems 2 and 3 are proved in Section 3. The last section
contains the proofs of Theorems 4 and 5, as well as some concluding remarks.

2 Bounding the number of intersection graphs
of segments

The aim of this section is to prove Theorem 1.

Let & = {51, $2,..., 3.} be a system of segments in general position in the
plane. Assume that s; is not parallel to the y-axis and can be described by
the relations:

sit y=ax+b, <zx<d; (1=12,...,n).

Two segments, s; and s, cross each other if and only if

b~ b .
J - < min{d;, d;}.

max{¢;,¢j} <
a; — aj

Thus, whether or not s; crosses s;, is determined by the sign of polynomials
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P{,'J'} = a; — aj, Q{l}j} = C,’(ai — aj) 4+ b; — b]',

for any distinct i # j € {1,2,...,n}. These are 2(’2’) polynomials of degree at
most 2 in the 4n variables {a;, b;, ¢;, d;}.

We use the following form of the Milnor-Thom theorem [M64],[T65].

Theorem. [W68] The number of different sign patterns for m polynomials of
degree at most d in k variables is at most (dedm/k)F.

\Applying this bound with m = 2(;), d = 2, and k = 4n, we obtain that
there are at most (2e(n — 1))4 = 29(nlogn) different ways how the crossing
relationship can be defined among n segments in the plane.

3 Proofs of Theorems 2 and 3

Three sets of points in the plane are said to be separable if each of them can
be separated from the other two by a straight line. Given three separable sets,
there is no straight line which intersects the convex hull of all of them.

Lemma 3.1. Every set of n points in general position in the plane has three
separable subsets of size |n/6].

Proof: Assume without loss of generality that n is divisible by 6, and let
P be an n-element point set. Choose two lines that divide the plane into 4
regions, containing n, 2n,n, and 2n points of P in their interiors, in this cyclic
order. Let Py, P>, P3, and P, denote the corresponding subsets of P. By the
ham-sandwich theorem, there is a line ¢ which simultaneously cuts P, and P,
into two halves of equal size (see Figure 2). Then ¢ avoids either the convex
hull of P; or that of P;. Assume, by symmetry, that P; is ‘above’ /. Then P,
and the parts of P, and P, ‘below’ / are three separable sets. O

Lemma 3.2. Let § and T be two systems of segments in general position
in the plane. Then there are two subsystems S* C S, T* C T such that
S°1 > LISI/168], [T] > ||T1/168), and

(i) either every segment in S* crosses all segments in T,

(i) or no segment in S* crosses any segment in T ~.

Proof: Let |S| = m,|T| = n, and suppose, for simplicity, that both m and n
are multiples of 168. Let P be the set of endpoints of all segments in §. By
Lemma 3.1, there are three separable m/3-element subsets, Py, P,, P; C P.
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Color a segment ¢t € T with color 7 if its supporting line does not intersect the
convex hull of P; (i = 1,2,3). Let 7; denote the segments of color 7. At least
one third of the elements of 7 get the same color, so we can assume with no
loss of generality that |7;] > n/3.

If there are at least m /168 segments in S, both of whose endpoints belong
to P;, then we are done, because these segments are disjoint from all elements
of T;.

Hence, we can assume that at least (1/3 — 2/168)m = 9m/28 elements
of § have precisely one of their endpoints in P,. Let () denote the set of
other endpoints of these segments. Let us choose three separable subsets
Q1,Q2,Q3 C Q, each of size at least |)]/6 = 3m/56. Just as before, color a
segment t € T; with color 7 if its supporting line does not intersect the convex
hull of Q; (1 = 1,2,3). Again, at least |7;|/3 > n/9 elements of 7, get the
same color, say color 1; they form a subsystem 7;; C 7;.

Let S;; denote set of all elements of S with one endpoint in P; and the
other in Q;. Clearly, we have |S1;| = [Q1] > 3m/56.

Let us repeat now the whole procedure with 7y, in the place of § and Sy,
in the place of 7. We obtain two subsets, 7* C T;; and §* C Syy, satisfying

$ITul o n 57| > 1511|
56 168’ - - 168

It follows from the construction that if any element of S* crosses at least one.
element of 7, then every element of §* crosses all elements of 7*. O

77 =

Given any system of segments, S and 7T, in general position in the plane,
define their crossing density, §(S, T ), as the number of crossing pairs (s, ), s €
S, t € T divided by |S| - |T|. Clearly, we have 0 < 46(S,7) < 1.

Theorems 2 and 3 readily follow from the next result.
Theorem 3.3. There exists a constant A < 144,618 satisfying the following

condition. Let S and T be any sets of segments in general position in the

plane, and suppose that their crossing density is at least ¢ > 0. Then there are
two disjoint subsystems S’ C S, T' C T such that

S|, T 71,

|_168

and every segment in S’ crosses all segments in T'.

|S|*168|

Proof: Let |S| = m,|T| = n, and suppose first that both m and n are powers
of 168. According to our assumption, §(S,7T) > c.

)



Applying Lemma 3.2, we obtain two subsystems, $* C S, 7* C T, such
that |S*| = m/168,|7T*| = n/168, and 6(S*,T*) is either 1 or 0. In the first

case we are done, so assume §(S*,7*) = 0. Then we have

167 167 . 1672
0 T =T )+ 58S =5 T+ 1

Therefore, at least one of the crossing densities 6(S, T — T*), §(S — §*,7T),
88 =8, T —T") exceeds

c<4(S,T)=

§(S—8* T —T").

1682

C1 = 6]6827—1'

In other words, there exist two subsystems, & C S, Ty C 7T, with |S1] >
m /168, |Ti| > n/168 such that 6(S1,71) > 1.

Applying Lemma 3.2 to & and 77, we obtain two subsystems &* C &,
T=* C Ti, such that |S**| > m/168%,|T*| > n/168%, and §(S**, T**) is either
1 or 0. Again, we can assume that 6(S**,7**) = 0, otherwise we are done. As
before, we can find two subsystems, S, C &y, T2 C Ty, with |Sy| > m /1682,
|72] > n/168% such that

o 1682\’
5(527 7?2) > C'ZA:: (& (m) .

Since the crossing density between any two sets is at most 1, after some
log %

1682
16821

k<
log

steps, this procedure will terminate. That is, when we apply Lemma 3.2 for the
k-th time, we obtain two subsystems &’ C S, 7' C T such that |S'| > m/168*,
|7l > n/168% and §(S’,T') = 1. Thus, every element of S’ crosses all elements
of 7', and |S'| > ¢*m, |T’| > ¢*n, where

log 168
A < 1682
og 1682—1

< 144, 618.

This completes the proof of Theorem 3.3 in the case when m and n are
powers of 168. Otherwise, using an easy averaging argument, we can find



So € S, To C T, whose sizes are powers of 168, |So| > m /168, |To| > n/168,
and §(Sp,To) > c. Applying the above argument to Sy and 7o, the result
follows. O

Proof of Theorem 2: Assume, for simplicity, that n is even. Given a system
of n segments in general position in the plane, which determine at least cn?
crossings, one can partition it into two equal parts so that the crossing density
between them is at least 2¢ (see e.g. [PA95]). Applying Theorem 3.3 to these
parts, the result follows. O

Proof of Theorem 3: Let S be a set of n segments in general position in
the plane with at least cn? non-crossing pairs. For any s € S, let ¢(s) denote
the supporting line of s. The set £(s) \ s consists of two half-lines; denote
them by hi(s) and hy(s) . Let Hy := {hi(s) : s € S}, Hy := {ha(s) : s € S},
T := SUH, UH,. Further, for any h € H, U H,, let s(h) be the unique
segment s € S, for which h,(s) or hy(s) is equal to s.

Note that if two segments s,t € S do not cross each other, then the crossing
between their supporting lines, #(s) and £(t), gives rise to a crossing between a
pair of elements of T, involving at least one half-line. Therefore, the number
of crossing pairs in T involving at least one half-line is at least cn®. There are
three possibilities:

1. for some 7 = 1,2, the number of crossing pairs in H; is at least cn?/5;
2. the number of crossing pairs between H; and H, is at least cn?/5;

3. for some 7 = 1,2, the number of crossing pairs between H; and S is at
least cn?/5.

In Case 1, applying Theorem 2 to H;, we obtain two subsystems, H;1, Hiz, C

. A A ..
‘H, whose sizes are at least (—22/?56Ln > %SL, and every half-line in ‘H;, crosses

all half-lines in H;,. Then S; := {s(h) : h € Ha} and S := {s(h) : h € H;2}
meet the requirements in Theorem 3.

In Case 2, apply Theorem 3.3 to obtain H} C H,, H) C H,, whose sizes
are at least < 5§An, and every element of H, crosses all elements of H}. Setting

Sy :={s(h) : h € H|}, and S; := {s(h) : h € H},}, the result follows. Case 3

can be treated similarly. O




4 Concluding remarks

First we show how Theorems 4 and 5 follow from the previous results.

Proof of Theorem 4: Let G be a geometric graph with n vertices and at least
en? edges. The next result of Ajtai, Chvatal, Newborn, Szemerédi [ACNS82]
and, independently, Leighton [L83] (see also [PA95], [PT97]) implies that there

e af € 52 ool T
are at least e crossings pairs of edges.

Lemma A. Let G be a geometric graph with n vertices and e > 4n edges, for
some ¢ > 0. Then G has at least % crossing pairs of edges.

Thus, we can apply Theorem 2 to the system & = E(G). We obtain two
subsets E, E; € E(G) such that every edge in E; crosses all edges in F;, and

E\| = |Ey| > €322 2 o (¢/32)4+2 (). O
2

336

Theorem 5 can be proved similarly. The only difference is that, instead of
Theorem 2 and Lemma A, we have to use Theorem 3 and

Lemma B. [P91] Let G be a geometric graph with n vertices and ¢ > 3n/2
edges, for some ¢ > 0. Then G has at least 24;:2 pairs of edges that do not
cross and do not share an endpoint.

" The above theorems can also be established using Szemerédi’s Regularity
Lemma [S78]. However, in that case, the dependence on ¢ of the sizes of the
homogeneous subsystems whose existence is guaranteed by our results gets
much worse.
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