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Abstract

Shellability of simplicial complexes has been a
poweriui concept 1n poiyhydral theory, 1in P.l.
topology and recently 1h connection WwWith
Cohen-Macaulay rings and toric varieties. It 1s
well known that all Z-spheres and all boundary
complexes of convex polytopes are shellable, but
the analogous theorem fails for general
simplicial balls and spheres. Iin this paper we
study transformations ot simplicial p.1.
manifolds by elementary boundary operations
(shellings and inverse shellings). As the main
result we shall show that a simplicial p.1l.
manifold .M' can be transformed in any oOther
simplicial p.l. manifold &’ hommeomorphic to A
using these elementary operations. The tools we
need (which were partly not published 1in
English) and related results are summarized. In
the last part we study generalized shellings of
totally strongly connected simplicial complexes
and the erffect on the face numbers oI the
complex. ‘
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1. INTRODUCTION

The concept of stellar subdivision and shellability has an
interesting history going back to the 19th century. The early
"proofs" of the Euler relation for convex polytopes (Schl&fli,
1852) were based on the then unproved assumption that boundary
complexes of convex polytopes are shellable (see Gridnbaum [20]).
This incompleteness was rectified 120 years later by Bruggesser and:
Mani [8]. Shellability then played a key role in the first complete
proof of the upper-bound conjecture (Motzkin, 1857) by McMullen
[29], which provides a tight upper bound on the number of faces of
a convex d-polytope with n vertices.

The study of convex polytopes and polyhydral sets was
stimulated since the early 1950°s by many problems arising from
linear programming. In the past 15 years the interest in convex
polytopes and simplicial manifolds has advanced greatly by the
developement of strong connections to Cohen-Maccaulay rings and
toric varieties. The proof of McMullen’'s g-conjecture - the
complete characterization of the face ngmbers of simplicial
polytopes - is one of the fundamental results based on this theory
(Billera/Lee [5], Stanley [43]). More detailed background and
motivation is presented in the following sections.

2. BASIC CONCEPTS

Let P be a convex polytope. The boundary complex of P is de-
noted by B(P) and F(P) := 3(P) v {P}. For a single point p we write
#({p}) =: p. For more informations about polytopes the reader is
referred to [20]. In the sequel ™ always denotes a d-dimensional
simplex. ‘

A finite simplicial complex % is defined in the usual way in an
abstract sense. Nevertheless we also use notations and
constructions arising from geometrical realizations of simplicial
complexes. The members of € are the faces of € and dim A denotes
the dimension of a face A of €. € is a simplicial n-complex if n is
the maximum dimension of its faces. We use the following notations:
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st(A;€) := {Be €: AS B} "(open) star” =
clst(A;€) := U{F(B): B e st(A;€)} "(closed) star"
ast(A;€) := {Be €: BN A = @} “"antistar” ¥

link(A;€) := ast(A;8) N clst(A;¥8) i

AR(B) := {A € €: dim A = k} V/

skelk(ﬁ) := {A € €: dim A = k} "k-ckeleton™ -
vert(8) := Al(ﬁ) “vertices" v
18] := U € "underlyting polyhydron Ctopological spaced”

The maximal faces of € are the facets of 8. € 1s pure provided
all facets have the same dimension. A pure simplicial complex € 1s
strongly connected provided every two facets F,F' of € can be
linked together by a path of facets F:Fo,...,Fr =F', that means

F,_,N F, is a common facet of F _ .F, for i=1,..,r. A missing face

i -

of € is a simplex D & € with ®(D) € €, dim D = 1. A subcomplex €
of € is full in € provided A € €, vert(A) € € implies A e €. A
simplicial n-complex M is called a simplicial n-ball, sphere or

manifold if |AM| 'is/yball, ;;qsphewmanifold, respectively.

-

@\ nbina orial 3—-— p .
DA St § 5 4 balls, spheres, manifolds and homeomorphisms to be

or

considered are/ﬁiecewise lz’.n.ea.r.J

Bd(€) denotes the boundary complex of a pure simplicial n-complex
€. This is the subcomplex of ¢ which has as facets those
(n-1)-faces of € which are contained in only one facet of 8. The
set of the interior faces of 8 is denoted by Int(€) := € \ Bd(€).
We use "&" for homeomorphic polyhedrons and "=®" for isomorphic
complexes. But, because additional isomorphisms are always allowed

(and often necessary) we shall mostly write "=" instead of "=".
The Jjoin of simplicial complexes ¢, is defined by €8 =
{A-A': A e €A € €'} where A-A':= A U A' if the complexes are

considered as abstract complexes. A realization in euclidean space
is given by the convex hull A-A':= conv (A U A'). Here it is always
assumed that |21}, | are joinable (see [19,22]). This is, for
instance, the case if [€],[€]| are embedded into disjoint affine
subspaces containing no parallel 1lines. The Jjoin of subsets of
joinable complexes is defined in the obvious way. We shortly write



€-A instead of ®-<{A>. But realize that one has to disfinguish
between the join of 8 with the empty simplex (€-<®@)> = €) and the
join with the empty complex (8@ = @).

(2.1) DEFINITION. (1) Let M be a simplicial n-manifold, and let
F = A‘B be a facet of M such that A e Int (M), B(A)'B € Bd(AM) and
dim A,dim B 2 0. Then we call

M= p_F.M = M\ F(A)'B

an Celementaryd k-shelling of M4 where k:=dim B.
The inverse operation is denoted by p*rJﬂ i = p::«ﬂ and pt stands for

an elementary boundary operation which is a shelling or an inverse

shelling.
(2) For simplicial n-manifolds M, M we define:

M Eh, o :q-;.M’:pr _,,leM.
+ +

x M M = M
M s h L ] Pr Pl

(3) For a simplicial n-ball X we say:
K is shelladle e X 22 F(T")

A simplicial n-sphere * 1is called shellable if there exists a facet
F of # such that # \ {F} is a shellable n-ball.
Remarks and additional notations. (1) It can happen that there

exists a face A € Int(#) and different faces B ,B, such that
3(A)'B1,3(A)'Bz S Bd(M) and A'Bl,A'B2 are both facets of 4. But for

every B € Bd(M) there exists at most one A € Int(M) such that A'B
is a facet of 4 with B(A)-B £ Bd(4). Thus p__ s uniquely

determined by B and we write o __ p;. Conversely we write p; for

an inverse elementary shelling. This implies that A € Bd(M) an§v

link(A;Bd(M)) = B(B) for a missing face B of A. A v o 2
(2) M 22y 4 as well as M = M imply Ml = M.
obviously “z;h" is an equivalence relation. -

There is a strong connection between shellings and certain

stellar operations.
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(2.2) DEFINITION. Let M be a simplicial n-manifold and let @ # A
€ M such that link(A;M) = B(B)'£, where B # @ is a simplex not
contained in M. Then we call o

Mz (M \ A-B(B)-£) U B(A)-B-£. N

“(A B) '
’ =, p | 0
a stellar exchange.
Remarks, examples and additional notations. (1) Clearly zc(A B)'M »
is again a simplicial n-manifold with Ix(A BfMI = M.
-1 _ ﬂf .
Obviously u(A By n(B.A) holds. i?‘

The equivalence of simplicial manifolds by stellar exchanges is
denoted by "=x ",

gstex
(2)'In the case of dim B = 0, i.e. B = {b} is a (new) vertex, the
operations x(A,B) =: o(A'b) = o, are well known as stellar

subdivisions (see [19,22]). Here it is A € Bd(M) or A € Int (M)
respectively, depending on whether ¥ is a ball or a sphere.
-« -1

Conversely u(A 8) = o is an inverse stellar subdiviston in the

case of dim A = O.

Clearly the definition of stellar subdivisions and their inverses
are st111 applicable to arbitrary simplicial complexes (and even
to more general complexes). Conform with the former notations

¢ %', ¢ means that & is obtainable from % by stellar sub-

divisions and "z;t" denotes the stellar equivalence using both

steliar and inverse stellar subdivisions¢ ey
(3) #(A,B) = o7'0, holds.«|

(4) If dim A + dim B = n (i.e. £ = {@}) then % a8y - X(a, By is
called a bistellar k—operattor}_ if dim A = k. & [V

Obviosly we have x(A B) = x(B RE The related equivalence rela-
tion is denoted by "~£8t“.

If dim B2 1, B = p-B', then x(A B) is uniquely determined by p and
the facet F := A-B' of M. We then say that F is vistible from p and
we write x(A,B) =: xp/F (for motivation see part 5).

(5) M 2R2P8E 4 4 X b bet M is defined in the obvious way.

Note that these notations do not imply any order for the perfor-
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mance of the involved types of operations. An elementary operation

is an elementary boundary operation or a bistellar operation.

3. STELLAR EQUIVALENCE

The concept of stellar subdivision belongs to the standard
tools in the theory of simplicial complexes and has an old and rich

tradition. For more informations the reader can consult any book

about p.l. topology [19,22]. Later on we need the following

fundamental theorem
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(3.1) THEOREM. For arbltrary 51mp11c1al complexes the following

holds:

g = e x €
&) = 18] @ & %,

Remark. From remarks (2) and (3) for (2.2) follows that the same‘}

>

holds for stellar exchanges. T

A complete proof of the above theorem can be found in the book
of Glaser [19]. For earlier results see [1,31]. There e&xist many
theorems of the above type. Ewald and Shephard proved a convex
version of (3.1). Indeed they showed the bistellar equivalence of
boundary complexes of simplicial polytopes, but they did not

emphasize thls

‘/ (3 2) THEOREM (Ewald/Shephard 1974 [18]). Boundary complexes of
'(51mp11c1al) polytopes are stellar (bistellar) equivalent in a
geometrlcal sense. This means this can be done in such a way that

\all the spheres appearlng in the equivalence are polytopal.

Y

In the next sections we shall prove some generalizations of
this theorem. There are many interesting unsolved problems
concerning stellar equivalence. We only mention here the following
long outstanding problem which is not solved even for polytopal

spheres (see in [22])

it

(3.3) PROBLEM Let 8 87 be stellar equivalent 51mp1101al com-

plexes. Does there exists a common stellar subdivision

e -8t , ¢ B2t _¢ 2
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In dimension 2 the answer is known to be yes.
(3.4) THEOREM (Ewald, 1984 [14]). Let 81,82 be simplicial

2-complexes, |81| = lﬁzl. Then there exists a common stellar

subdivision €. £ ° .
T Ty B AN LT

Since about 1870 anbﬁﬁ%giesfing cénnecﬁion between the theory
of convex bodies and algebraic geometry has developed. Let P = Q?
be a full dimensional polytope with 0 € int P and let then X be
the fan of convex cones spanned by the faces of P. With every cone
is assoziated an affin variety, namely the spectrum of the ring of
all Laurent polynomials with support in the dual of the cone. These
affin varieties can be glued together in a natural way by using the
combinatorial structure of E£. The resulting variety is a projective
toric variety. This far-reaching result leads to a complete
characterization of the face numbers of simplicial and simple
polytopes [43].

Stellar subdivions of fans correspond to blow-ups of the
assoziated varieties. Thus (3.2) and (3.4) respectively yield
transforms of projective toric varieties and complete toric
3-varieties into projective space by composite of blow-ups and

blow-downs (Ewald [15]).

4. BASIC CONSTRUCTION THEOREMS

At the beginning of this section we shall enumerate some basic
construction methods which may be of intrinsic interest. The first

Lemmas deal with permutations of elementary operations. /£
(4.1) LEMMA. Let.M .M'.M be simplicial n-manifolds suuh that -

(a) M _sh_, M

Tne OQQMQAJHMN\ \f\ Wm\g

(b).M; contains no missing face of J& Hquané'% sowﬂhwﬂ kwq«na
(e) A% = X(A,B)A& v o be meave@‘
Then the following holds: é° KQ‘°“ ﬂr7 -~

M = X(A.B)'M{ ._5_’.‘__. an La%*/u(‘\' on /

Proof..M; 2.M1 and (b) imply B ¢-M£. Hence-Mé is well defined. On

the other hand every p; = P_o.p appearing in the process inverse to
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(a) is applicable to.Mz, because (b) guarantees D # B.

(4.2) LEMMA. Let J&,Aq,ﬁg be simplicial manifolds. Then we have:

.M - x ./“. »
2 (A,B) 1
Proof. A 2 F implies A-B(B) n #(F) = @. Furthermore the applica-

bility of x on A& implies B « J& and therefore we have B & F.

M = M M = M = M
1 Pog o AZF > 2 Py x(A.B) 1

s

(A, B)
Hence B(A)-A n F(F) holds too. From this it is easy to verify the
applicability of the operations and the validity of the identity on

the right hand side.

(4.3) LEMMA ([35]). Let M be a simplicial n-manifold and

% B)Jt: (M \ A-B(B)-£) UB(A)'B-¥ and

x(C’D).i‘,’ = (£ \ C-B3(D)-¥£) u B(C)-D¥.

Then the following holds
(1)

2 2 = 2 2 M
(B-C,D) (A,B) (A,B) (A-C,D)

(2) Link(B-Cix, 5 A) = B(A) B(D) ¥ g
(3) link(A-C;H#) = B(B)-B(D)-£" Doyl
(4) link(A;u(A.c’D)JU = 3(B)-u(c’D)£

Proof (Details .re left to the reader). First one have to
establish (2) which shows that the left hand side of (1) is well

defined. The validity of (3) guarantees the existence of % a-C D)JL

Then (4) can be proved to show that the right hand side of (1) is
well defined. Finish with the proof of identity (1).

Next we study how to replace certain constructions by
elementary operations.

(4.4) LEMMA ([37]). Let M be a simplicial n-manifold and X € M a*
shellable n-ball. Then the following holds.

Mo (AN Int (X)) U p-Bd(X)
Proof. By our assumption follows the existence of an inverse
shelling X = o ... o0 F(F ).
AL A 0

From this we obtain by induction on m:

M\ Int (X -Bd(X) =
(M N\ Int (X)) U p (X) xAm xAl x"o"”
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(4.5) LEMMA ([32)). Let 4 be a simplicial n-manifold, A € Int (M)
and p € link(A;M) such that
(a) ast(p;link(A;M)) 1s shellable
(b) link(p;M) N Int(ast(p;link(A;M))) = {2}
Then we have
M zbst(-M \ st(A;M)) U p-ast(p;link(A;M) B(A)) =: A

Proof. The proof works with induction on the number r of facets
of ast(p;link(A;M)). In the case of r=1 we clearly have M = XXM'

. - + + - . . .
Otherwise let P.s ...p+52$(sl) = pBr...pBZW(Sl) = ast(p;link(A;M))
be an inverse shelling. Then case 1 can be applied on-M.A'Br,P
to get A" i= Xy M T X s,

Now the conditions (a),(b) hold for M”,A,p and furthermore we have

= M * = o - . »» .
P+Sr_£..P+52?(Sl) = Par-l...sz?(Sl) = ast(p;link(A;4”)) which

completes the proof.

(4.6) LEMMA ([37]). Let M be a simplicial n-manifold and let
% < Bd(M) be a shellable (n-1)-ball. Then we have
sh

MU DKo A
Proof. Given a shelling e . ... P_; X = F(F)) of X, we get
1 m
M= p P_ e P (MU p-X).
p-Fy p-F, p-F

(4.7) LEMMA ({37]). Let M be a simplicial n-manifold, ¥ € Bd(AM) a
shellable (n-1)-ball and X € link(p;#M) for a vertex p € Int(AM),

Then

Y QL N] \ print(X) =: &
Proof. Let Pg -+ P_p X = y(Fl) be a shelling of X.
1 m

By induction on m one obtains:
R M= M . =: M
p__p.y1 p—p-Fm \ p-int (M) and

BA(M) = (Bd(M) \ Int(¥X)) U p-Bd(X).

Now we are able to replace, under certain niceness conditions,

stellar subdivisions by elementary operations.



(4.8) LEMMA ([32]). Let 4 be a simplicial n-manifold and
A € Int(M). If 1link(A;M) is shellable then '

M x o M
bst A

Proof. This follows immediately from Lemma (4.5).

(4.9) LEMMA ({37]). Let M be a simplicial n-manifold and A =
Bd(M). If both link(A;M) and link(A;Bd(M)) are shellable then

OA‘M sh,bst

Proof. Following Lemma (4.6) the shellability of clst(A;Bd(AM))
implies # := M U p-clst(A;Bd(M)) 2Py A,
Furthermore the shellability of link(A;M) implies the shellability
of ast(p;link(A;M)) = B(A)-1link(A;M) and it is easy to see that
(b) of Lemma (4.5) holds too. So we get

M Xy (AN St(A;H)) U p-B(A) link(A;M)

= (M N\ st(A;M)) U p-B(A)  1link(A;M)

Xxo M
A

(4.10) LEMMA ([37]). Let M be a simplicial n-manifold and A €
Bd(AM). If both 1lint A;M) and link(A;Bd(AM)) are shellable then

M sh, bst oA"“’-

Proof. Following Lemma (4.5) the shellability of clst(A;M) implies

A Xpge (AN SE(AIM)) U prBd(clst(A;M)) =: A,

Now clst(A;Bd(M)) = clst(A;Bd(M)) is a shellable n-ball which is
contained in link(p;M). So we obtain by Lemma (4.7)
M BB\ pst(A;BA(M)) = o, A

(4.11) LEMMA. Let M, M be simplicial manifolds. Then it holds:

= X, pyMand clst(A, M) N Bd(AM) = F(F), F a facet of Bd(A)

=-» M zﬂh M
Proof. As bistellar operations do not affect the boundary we
clearly have M” := M N\ (A-B(B) U {F>) = # N\ ( B(A)'B U <{F»).
F € clst(A,M) implies F = A'-B' where A = A'*a, B = B' *b.

Let dim A = k and ;\‘,...,Ao and Bn_k,

facets of A and B respectivly such that A°= A' and Boz B'. Then the

e ,B0 be any ordering of the

v,



following holds

M = p ce. P M and
-A-B_ . -A-B

M= p e P M
~B-A -B-A,

(4.12) LEMMA ([351]). For every simplicial n-ball %X holds
% shellable = oA% shellable

Sketch of the Proof. Let be o, = and let be given an

o
A (A, D)

inverse shelling of X

+ + _ -
(%) Py Py T(F) =p, coP,y FE) =X
r 2 r 2

Let us consider one of the facets Fi e st(A;%), say Fi= A-S and let
be A':= AN Ai (A1:= @). Then we have to replace in (%) Py by the

by

e .. ce
sequence p+a_Ak's 'o+a-A1-s’ where Al, ,Ak is an order of the

facets of A starting with the facets of st(A',B(A)) if A'e B(A) and

any arbitrary order else.

The following decomposition lemma plays and importent role for
the inductive ar-ument in the proof of the main theorem of this

section. '
(4.13) LEMMA ([34]). Let ¥ be a simplicial complex. Then there

exists a unique decomposition € = B(P)- € such that P is a
simplexoid (i.e. B(P) = 3(T1)'.u.'3(Tr), Tk-s simplices) and P 1is

maximal with this property.
Idea for the Proof. Let D be the simplicial complex which has as

facets the missing faces of €. The connected components of D yield

the desired decomposition.
‘ Remark. Clearly, if P1’Pz are simplexoids then 3(P1)-3(P2) is

again isomorphic to the boundary complex of a simplexoid.

Now we are able to replace stellar subdivisions by elementary

' operations without any niceness assumptions.

THEO |

| (4.14) THEOREM ([37]). Let M, be simlicial n-manifolds. Then
| f
| .

M| = | M| e M SD2DST, 4,

//
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“ Especially we have F(T) sh,b8t , & and X sh. b8t , F(T")
‘<I§g;§g§;yrsimplicial n-ball X.
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Sketch of the ProBfTMTEE'sufffgﬁgyﬂ¥gllows at once from remark
(2) for (2.1) and remark (1) for (2.2). In order to prove the

existence of our transformation we can assume M= u(A BfM (apply

remark for Theorcm (3.1)).

Now let link(A;M) = B(B)' £ and let £ = B(P)-£ be the unique
decomposition of £, according to Lemma (4.13), and let be given an’
equivalence 2 ... # & = 2(T"*!) or #(T"), according to (3.1).

If m := dim £ = 2 or r < Zlai-o then £ is polytopal and hence
shellable (see Steinitz Theorem in [20]) which implies the
1

shellability of £. From this and u(A B) = 0; o, we conclude our

assertion immediately with the help of Lemma (4,8),(4.9) and
(4.10).

We proceed by induction on m and r. Let ® Then wWe may

e,y "
apprly *® to B(P)-£ and get "(c D)(3(}?)-.8') = $(P)-a13'. Two cases

arise.

Case 1. D = M,
Following (1) c¢- Lemma (4.3) can construct M by steps:

M Siace.ny H Sanm A (BCiD) e,
(2),(3),(3) of Lemma (3.4) then enable to show that in each step
the inductive assumption concerning m respective r is applicable.
We remark that D &« A if dim D = 0.

Case 2. D e A,

This case can be reduced to case 1. As mentioned above we may

assume dim D 2 1. Let D = ppE, p a vertex of D. Then we subdivide
£ in the O0-face » (which clearly yields an isomorphic complex),

2 q)-‘f’ = (£ \ p-link(p;¥')) V q- link(p;¥£’), where q is a new

vertex not contained in M,
From Lemma (4.3) we then derive

.3 % 2 A
M (B'p»Q)_> JKI (A:B)% "ﬂz -— (A-p,93) M,

from which we obtain our assertion by the inductive argument
or by applying Case 1 in the second step respectively.

/2



5. TRANSFORMATIONS OF CLOSED MANIFOLDS AND SPHERES

In 1978 Ewald realized the connection between bistellar
operations and shellings. Moving along a suitable ray starting from
a vertex of a simplicial polytope P “one can see"” (having realized
P in a suitable manner) all the facets of P in a certain ordering.
‘This impliés both a shelling of the boundary complex of P and a
bistellar equivalence between the boundary complex of P and that of

a simplex.

(5.1) THEOREM (Ewald, 1978 [13]). Let P be a simplicial
d-polytope and let p be a vertex of P. Then there exists a

(geometrical) bistellar egquivalence

qa
. B = B
Xore_ XosE, (F) ()

Remarks. (1) An alternative proof works with the help of Gale-

diagrams (see [26]).

(2) Kleinschmidt [24] has generalized this process on non-
simplicial polytopes.

(3) So called regular bistellar operations of fans were used to
prove that a r.aplete smooth toric 3-variety can be transformed
into a projective one by blow-ups with non-singular centers (Ewald
[16], Danilov [11]).

(5.2) TBEOREM (Bruggesser/Mani, 1972 [8]). Boundary complexes of
polytopes are shellable (this can be done starting with the facets
of the star of an arbitrary vertex of the polytope).

This deep result has produced many applications. As already
mentioned, (5.2) was the basis for McMullen’s proof of the upper
bound conjecture. With the help of shellings of simplicial
polytopes Blind and Mani ([7] proved in 1986 the conjecture of
Perles that simple polytopes have isomorphic boundary complexes
provided their l-skeletons are isomorphic.

Let R = C[xl,...,xn] be the polynomial ring with the natural
grading by degree, where the variables are interpretet as the
vertices of a (d-1)-dimensional simplicial complex €. Let then be 1
the ideal generated by the missing faces of €. Factoring out I from

/3



R vields the so called Stanley-Reisner ring A of € (see(38, 42]). A
result of Reisner [38] in 1976 states that the Stanley-Reisner
rings of homological spheres are Cohen-Macaulay rings. One
consequence of this result was Stanley’s new proof of the upper
bound theorem for convex polytopes and its extension to homological
spheres [41]. There was spend much effort to get combinatorial
proofs of the results of Reisner and Stanley. In 1979 Kind and

Kleinschmidt proved that shellable ;implicial _ complexes are

Cohen-Macaulay [23]. Another method was used by Stanley [40].

Combining the global construction in (5.1) with similar local

processes enabled us to prove:

(5}3) THEOREM (Pachner, 1981 [33]). Let P,P' be simplicial 4d-
polytopes with the same number of vertices. Then there exists a

(geometrical) bistellar equivalence
X, .- x13(P) = B(P')

such that all the polytopes appearing in the equivalence have the
same number of vertices (especially one can choose P' to be a
stacked polytope (see [4,20])).

It has tu.ned out that shellability is not a property which
holds for general spheres. ’

(5.4) THBEOREM (Edwards, 1975 (12]). There exist nonfshellable

triangulated (topological!) 5-spheres. < e oL
it S L

For this reason it was surprising that Theorem (5.1) could be

generalized to simlicial spheres. ?Pu;,ﬁ’?‘«

;)_‘,w

4

(5.5) THOREM (Pachner [35]). Let M, M be closed simplicial
manifolds. Then we have

A = (M e Mo

Proof. Replace the corresponding keywords in the proof of Theorem

(4.14).

(5.6) COROLLARY. Every simplicial n-sphere is bistellar equiva-
lent to the boundary complex of the (n+l1l)-Simplex.

For simplicial 3-spheres with up to nine vertices this was
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proved by computational constructing (Altshuler/Bokowski/Steinberg,
1980 [3]) all these spheres. Using the ideas of Kind/Kleinschmidt
and based on (5.6) Lee recently has found a new proof of the
Cohen-Macaulay property for simplicial spheres [27].

We do not know, whether Theorem (5.3) can be generalized to
simplicial spheres. It is only known:

(5.7) THEOREM (Pachner [32]). Let # be a simplicial n-sphere. If
¥ can be transformed inte 3(T“+1) by bistellar operations without
bistellar n-operations then # can be transformed into the boundary
complex of a stacked polytope by bistellar operations without
changing the number of vertices during the process.

For the construction of special collars in part 6 we need the
following strengthening of a theorem in [35].

(5.8) THEOREM. Every simplicial n-sphere # is the boundary
complex of a shellable simplicial (n+l)-ball X. X can be choosen
such that »# is full in X.

Proof. Following Theorem (5.6) it 1is sufficient to prove our

assertion for »#° = x(A,B)f assuming that the assertion holds for 7.
Case 1 B & X

Then X := p: X is a shellable ball with boundary complex »'.
Case 2 Be X

Indeed we than have B € Int(%X) and following Lemma (4.12) OB% is
again a shellable ball with boundary complex /. As B & aBK we then

can apply case 1 to get a shellable ball X with boundary complex
b 4

Stellar subdivions applied in all faces C € Int(%’) which are
missing faces of #* then yields the desired ball (Lemma (4.12)). .

For further informations about bistellar equivalence and
related problems the reader can consult [13,25,33,35].

6. TRANSFORMATIONS OF MANIFOLDS WITH BOUNDARY AND BALLS

A survey about shelling can be found in [10]. In addition to
the facts presented till now we mention the following important

/5
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result. Do £y P
THEOREM (6.1) (Rudin, 1958 [39],Grinbaum, 1972 [21]). There exist

non-shellable simplicial balls.

As we have seen in Theorem (4.14) one succeeds with additional
bistellar operations. Certainly, it would be more convenient to
deal with boundary operations alone. In order to replace bistellar
operations by shellings and inverse shelling we need special.
partial collars.

(6.2) LEMMA. Let M be a simplicial manifold an F be a facet of A.
Then there exists a simplicial manifold M such that
(1) M 2B, 4
(2) M is full in &

(3) Bd(M) N BI(M) = F(F)

Proof. Let be A € Bd(M). Then link(A;Bd(M)). is a simplicial
sphere and Theorem (5.5) asserts the existence of a ball X such
that
(a) Bd(X) = link(A;Bd(M))

(b) Bd(X) is full in X

(¢) X is shell-r"le

From (a),(b) follows,.that M o= MU AKX is again a simplicial
manifold with Bd(M') = (M N\ st(A;Bd(M)) U B(A) K. Furthermore (c)
implies the s}}ellability of B(A)-X and B(A)'X is containted in
link(a;#’) for every vertex a of A. Hence we obtain 2B, A
directly from Lemma (4.7). Further (b) implies that M contains no
missing face of A,

Applying the above process to all the faces of M4 N\ F(F) after
having them ordered by decreasing dimension, yields the desired
manifold.

Remark. Generalizations of (6.2) are obvious.

Now we are able to prove the main theorem of this paper.

(6.3) THEOREM. Let M, M be simplicial manifolds with boundary.

Then the following holds:

MmN = M @ A = M
sh

Proof. Following Theorem (4.14) it is sufficient to proof M. =
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x“ B).M ksh.M. We may assume that M is connected. From this follows

that M is strongly connected (see [2]) and hence there exists.a
sequence Fo""’Fr of facets of M such that Fo € st(A,X), F := F]r

is a facet having one of its facets in the boundary of X and
F _,+F, have a facet in common. We choose such a sequence with

minimum r and then prove by induction on r:

There exists a simplicial n-manifold Jﬂl such_ that

M BB M, M= -8h o Mo M
1 ’ 1 X(A,B)Jﬂl and 1 sh 1

Let S be the facet of F contained in Bd(M) and let then Mz be the

simplicial n-manifold constructed in Lemma (6.2) with respect to M,

S. From (2) of Lemma (6.2) follows that we can apply z(A B) on .Mz
r .- sh .
and Lemma (4.1) yields Jﬂz HS X(A,B)Jﬂz _— M,

In case of r=0 (3) of Lemma (6.2) enables us to apply Lemma (4.11)

which yields JKZ’ -&h .Mz. That means our assertion holds for Ml i =

M
2

Otherwise (1) and (3) of Lemma (6.2) allows to apply p_, on A, . The

minimality o r implies F & st(A;.Mz). Hence x can be applied

(4,B)

on M := p M . and Lemma (4.2) vields p__#' = M, where M5 :=

X s B)'Ms' Now the inductiv assumption applied on .M3 proves our

assertion.

(6.4) COROLLARY (Pachner [37]). For every simplicial n-ball «
holds:

~ n
xx o F(T)

(6.5) COROLLARY (Pachner [37]). Let » be a simplicial n-sphere
and p € ver‘c,(.b’1 ).

Then there exists a transformation

E + +1
F = (T .
Xore Xp /¥ ( )

Proof. Apply Theorem (6.3) on ast(p;>).
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7. PSEUDOSHELLINGS AND FACENUMBERS
Let fi(ﬁ) be the number of j-dimensional faces of a simplicial
(d-1)-complex. The vector f£(¥) := (fo"“’fa-x) will be called the

f-vector of €. For many purposes the h-vector h(€) defined by

3 (_qyi-ifd-d -
(7.1) B (8) = I (D) (§3)e,., @, 1= 0,008

is easier to deal with. For the algebraic interpretation of h(®€) in
Stanley-Reisner rings the reader is referred to [42].

Different from stellar subdivisions elementary operations allow
an explicit computation of the numbers of faces. Following
Corollary (6.4) X = #(T ') holds for every simplicial (d-1)-ball

X. Let k; and %: respectively denote the numbers of elementary

k-shellings and inverse elementary k-shellings if %X 1is constructed
from $TTd_1) in this way. It is well known and easy to calculate

with the help of (7.1) that h(p; K) = h(X) - e holds, where e,

denotes the k-th unit vector (k=0,...,d) and dim A = k-1. Hence we
- get:
— + - - 3 - -
(7.2) hi(%) = Kd_l_i Ki_l, i=1,...,4-1

Obviously these equations remain true if we use generalized
shellings which change the f-vector in the same way. Many authors
have already considered simplicial complexes which «can be
constructed from a single simplex by jnverse generalized shellings
(compare [9,23]). These complexes are in general no manifolds, but
they are of the following type:

(7.3) DEFINITION. A totally strongly connected complex € is a
pure simplicial complex with the property that link(A,8) 1is
strongly connected for every Ae® (A=® included!).

We want to preserve this property when allowing additional
generalized shellings.

(7.4) DEFINITION. Let €, € Dbe totally strongly connected
(d-1)-complexes, A € 8, dim A = k. Then we call 3+F € :=

~ +

Pia,B)

/€



i
- R
*
3

= € an inverse Celementary) k-pshelling (= pseudoshelling)
provided & = € U A-B(B), where F = A'B is a (d-1)-simplex such
that F(F) n € = A-2(B) holds. The inverse operation is called an

elementary (d-1-kO~-pshelling and is denoted by 8—r = 3(3 Ay

Remarks and examples. (1) Note that a pseudoshellings is not

determined by A or B alone. The applicabillity of 3(3 A)e’ implies

B-B(A) & Bd(¥®'). The notations 'HJEEL+", "z;sh" are defined as.

usual.

(2) We allow inverse (d-1)-pshellings p(F 0)8, F a (d-1)-simplex.

This implies F(F) m 8 = {(F>-@ = @, From this follows @ &« € which
psh

implies € = @ and @ ——— $%T“°1). Thus given an equivalence @ z}sn

2 we always may assume that there appears precisely one inverse
(d-1)-pseudoshelling and no (-1)-pshelling (which is the inverse
operation).

(3) Let #* be a simplicial (d-1)-sphere and F a facet of #. Then

B_Ff is a simplicial ball.

From remark (3) of Definition (7.4) and Corollary (6.4)
we get:

(7.5) € simplicial ball or sphere = @ z;sh €

Let be © Q}sn €. Analogously as for elementary operations let
then A;(g) respective k;(ﬁ) denote the number of k-pshellings and

inverse k-pshellings in this process (starting with the empty
complex @). Clearly these numbers do not depend only on €, but also
on the present equivalence. (7.2) generalizes to:

(7.6) (A7 = AT _)(€) depends only on € as
d-1-i i~-1
h (&) = & -7 _)(€) holds for i=0,...,d. It is h = 1.
i d-1-i i-1 0
Examples. h(F(T 1)) = (1,0,...,0), h(B(T)) = (1,...,1).

The number of facets increases by one or decreases by one
respectively if an inverse elementary pshelling or an elementary
pshelling is applied. Obviocusly the number of vertices calculates
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as follows (compare remark (2) for (7.4)):

O £ - - + -
£,0= AN - A )(8) + (Mg ,~ Mg)(E) = da+ (A, Ay ) (8)
Hence we get from (7.6):

4
(7.7) £,(¢) = d + h (€) and £,_ (€) = E h (¥)
i=0

b8

Obviously every inverse k-pshelling of € induces one inverse

j-pshelling in skeld_z(B) for j = k-1,...,-1. Thus we obtain:
+ a-1 +
kk_l(skeld_z(e)) = L kj(ﬁ) and analogously it is
i=k
i
N (skel ,(€)) = L X (8). Consequently we get:

J=0

(7.8) Let be @ zbsh €, dim € = d4-1. Then it holds:

(1) @ =, skel, ,(¥)

(2) (hi- hi_l)(skeld_z(g)) = hi(ﬁ), i=20,...,d-1, and

"

hi(skeld_2(8)) =

h (€)
j J

0

Together with (7.7) this leads to:

j+l
.= d-1i
(1.9) £,(6) := E (4232,

]h. (€), §=-1,...,d-1
=0 i-1

Let us consider now bistellar operations. Let ui(AhAP) denote
the number of bistellar k-operations in an equivalence M? 2%8t

(transforming M into M), For a simplicial (d-1)-sphere we write
Hi(f) 1= pi($(Td),f). From (7.1) follows easily that a bistellar

k-operation decreases hi for k+1 < 1 £ d-1-k by one if 2k = d-1,

and increases hi for d-k < 1 < k by one if 2k =2 d-1. Hence we get:

(7.10) Let be A zbst A, Then

(1) (| - B )(M,M) = (h = h () = (b = h)(A), 0si==d-1.



That means (W, _, .~ pi)(AMJH’) depends only on M, M.

Especially for spheres we have (¥ - um )(®) = (h - h )(P).
d-1-i i i+l i
i-1

(2) h (M) ~h (M) = E (M, 7H ) (M)
i j=0 a-1-J J

This leads to an easy proof of the Dehn~Sommerwville eguations.
(7.11) For closed simplicial (d-1)-manifolds (hy, ;- hi)LM) are
topological invariants, 0 = i = d. Especially for a sphere ¥ it

holds (hd_i-hi)(f) = 0.

Proof. |M| = |M| implies M = M (Theorem (5.5)) and following

(7.10) we then get:
(h,_,~h, )(#) - (hy . ~h )(H)
i i d-1i i

d-i-1 i-1
= ‘Z (yd_l_j-uj)(vﬂ,«ﬂ) -'2 (ud_l_j-uj)(ﬂ,vﬂ')
Jj=0 =0
a-1 d-l_
= I ud_l_.(«ﬂ,aﬂ’) - L H (MHN) =0
. 3 . Jd
J.‘-O J=°

Especially for spheres we get
(h,_ ~h )(#' = (By_, ~h )(B(T)) = 0.
-i i a-i i

Remark. For i=0 this yields the Euler equation (use (7.8)).

Pseudoshellings make it possible to construct other manifolds
than spheres or balls.

(7.12) THEOREM. For every orientable closed simplicial 2-manifold

M holds @ zpsh‘M. It is (h2~h1)(MJ = -6g(M), g(M) the genus of M,
Proof. Let F = x-y'z and F' = x' ‘y' +2' be two disjoint triangles
of M, SkelloM) contains a path x = xo,xl,...,x:r = x'. Using stellar

subdivisions and Theorem (6.3) we may assumeé X, "X, « M Tfor

i=1,...,r. Now we are able to construct a surface M4 of genus
g(M) = g(M) + 1 by elementary pshellings and its inverses by the
following steps:

€ := 8 _ -3 M
1 P, eyPee,y™



A+ A + ~ 4 A+ A+ A+

. - 8 y
83 p(z,x-x'-z')p(z,x-z’)p(y'.z-Z’)p(y,z-y‘)p(x'.y-y')p(x,y-x') 2
N =BT - -3 €. .

(%o X2 %y) (X Xy Xpog) (Rg Xp %) 3
From this follows
h(M) - h(M) = -2e2+ re + (5e1+ ez) - (e2+(r"1)e1) = 4e1-.2e2.

Together with (7.5),(7.11) this implies our assertion.
(7.13) CONJECTURE. @ x;sh.m holds for simplicial manifolds.
Remark. We believe that a general proof is possible with the help
of handle-body theorems (see [36]).

Last we shall present a combinatorial interpretation for some
known consequences of the Dehn-Sommerville equations (see [30]).
Let »* be a simplicial (d-1)-sphere, p € vert(*) and X := ast(p;¥),
£ := link(p;”). From Corollary (6.4) we get an equivalence
F(r¢ 1) o X which yield bistellar equivalences 3(Td) %ot # and

$(Td-1) kzst £ (compare Corollary (6.5)). Obviously we have:

Every elementary k-shelling of % induces a bistellar k-operation of
»# and £. Fvery inverse elementary k-shelling of X induces a
bistellar k-operation of £ and a bistellar (k+l)-operation of ¥
respectivly. Hence we obtain:

+
J'_
bo(£ = x:.(m A (K), §=0,...,41.

PN

M (2 (%) +A3(X), §=0,...,d, and

From (7.6) and (7.10) then easily follows:
(7.14) (1) (h,

i+l

-h )(®) = (h -h )X, i=0,...,d-1
i i+ d-

1 i

hi(f) = (h0+ ol t hi)(W) - uh+1-i+ el t hd)(K), i=20,...,d
' (2) (h- h )(x) = (h- h , )(K)’ i = 0)---;d-2
i i-1 i d-i

h(f) =(th+ ... +h)X)-(th . +...+h)X), L1=0,...,d~1
i 0 i -1 [+

Certainly this implies:

(7.15) h_(¥#) = h_(X) + h (£) = h, (X)) +h (£), 1i=20,...,d.
i i i-1 da-i i

We hope that additional ideas will solve the following problem:



(7.16) PROBLEM. Find combinatorial proofs of:
For every simplicial ball ¥ holds
(1) h(¥) 2 0

(2) (b, = h _ )(X) 20, 2i=d-1
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