Annals of Operations Research 4(1985/6)145—-194

LP-BASED COMBINATORIAL PROBLEM SOLVING

K. HOFFMAN

Operations Research Division, National Bureau of Standards, Gaithersburg,
Maryland 20899, USA

and

M. PADBERG

Graduate School of Business Administration, New

New York, USA

1.

focuse

Abstract

A tutorial outline of the polyhedral theory that underlies linear programming
(LP)-based combinatorial problem solving is given. Design aspects of a combina-
torial problem solver are discussed in general terms. Three computational studies
in combinatorial problem solving using the polyhedral theory developed in the
past fifteen years are surveyed: one addresses the symmetric traveling salesman
problem, another the optimal triangulation of input/output matrices, and the
third the optimization of large-scale zero-one linear programming problems.

Keywords and phrases

Integer programming, polyhedral theory, facets, cutting planes, traveling salesman
problems, triangulation of matrices, large-scale zero-one problems, software design,
computational testing.

Introduction

Several recent computational studies in combinatorial optimization have
d on applying the polyhedral theory developed in the past fifteen years to actual
problem solving. The resulting computational advances in the state-of-the-art have
been considerable, especially as far as the exact optimization of large-scale combinatorial

The second author’s work was supported in part by NSF Grant No. MCS 8304634.

An carlier version of this paper was published in NATO ASI

matical Programming (© Springer-Verlag, Berlin - Heidelberg, 1985).
© J.C. Baitzer A.G., Scientific Publishing Company

| - - s
T pien 1Y (130 102

York University, New York,

Series VF15, Computational Mathe-

e SNy |} ¥ S—

S WELIWAGRITN e e m e n . - . —

¥

'.\ T

&

146 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

poo A

optimization problems is concerned. Indeed, a common aspect shared by all of the
computational studies surveyed in this paper is that all of them address problems
belonging to the class of NP-hard combinatorial optimization problems for which to
date no technically good (or polynomially bounded) algorithms are known. Of course,
these empirial studies will not resolve the fundamental question of whether or not
exponential worst-case behavior is the best that we can expect. However, it is entirely
possible that — as has been observed in several cases — a gulf exists between the
empirical record and the theoretical (worst-case) analysis of numerical problem solving.
For instance, the fact that the simplex method exhibits exponential performance on
some artificially constructed problems has in no way discouraged the many users who
rely daily on the simplex method for the optimization of linear programming problems
having thousands of variables.

Mounting empirical evidence indicates that both pure and mixed integer
programming problems can be solved to optimality in economically feasible computa-
tion times by methods derived from our improved understanding of the underlying
polyhedral theory. This theory leads to new cutting-planes, that in a well-defined sense
are best-possible cutting-planes and that are thus different from the traditional cutting-
plane described in the pre-1985 textbooks on integer programming. While the theory
developed is -in most cases (still) incomplete — meaning that’fas’ some point in the
calculation recourse must be made to enumerative methods such as branch and bound
(with embedded linear programs) — the cutting planes ‘derived from the polyhedral
theory differ from the traditional ones in an additional important aspect: The latter
ones are known to have a high density of non-zero coefficients and thus lead to

explosive storage requirements, whereas the polyhedral approach leads to inequalities -

that in most cases preserve sparsity and have moderate storage requirements.

In sect. 2 of this paper, we give a tutorial outline of the polyhedral theory that
underlies the computational studies referred to above. In the third section, we discuss
some design aspects of a combinatorial problem solver in general terms. Much of the
implementational detail is left out. For more detailed descriptions, see Bernal et al. 4],
Padberg and Grotschel [59], and Crowder et al. [1 1]. In sects. 4,5 and 6, we survey
three computational studies concerning the symmetric traveling salesman problem, the
optimal triangulation of input/output matrices, and the optimization of large-scale
sparse zero-one linear problems without special structure. Space and time limitations
prohibit us from discussing the recent papers by Martin and Schrage [45] and Van
Roy and Wolsey [65] that address the optimization of large-scale mixed zero-one
linear programming problems and are based on results on the facial structure of such
problems developed in a series of recent paper by Baranyi et al. [2,3], Padberg et al.
[58],and Van Roy and Wolsey [63,64]. . :

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 147

2. Combinatorial problem solving and linear programming

Combinatorial optimization problems can be stated in the following way:
Given a finite set £, a family F of subsets of £ and weights ¢, € R for all elements
e € £, we are interested in finding a member F* of F such that

c(F*y= 5 ¢, (2.1)

e F*

is as small (or alternatively, as large) as possible. To 'model’ combinatorial optimiza-
tion problems, one associates with every element e € E a variable X, ,i.e. a component
of a vector x € RE indexed by e. (Note that for notational convenience. we write R
rather than [R'E'.) With every subset F C E one associates a vector x© € IRE , called
the incidence or characteristic vector of F. defined as follows:

1 fore€ F
xf = (2.2)
0O fore€ F.

Thus. to every subset F C £ there corresponds a unique zero-one vector in RZ, and

vice versa. For any family F. we let P, be the convex hull of the incidence vectors of
png F
all members of &, i.e.,

Pg = c:onv{xF e REIFe 5}. (2.3)

Pg is a polytope in R® and every extreme point of Pg uniquely corresponds to a
member of F, and vice versa.

We can solve the combinatorial optimization problem (2.1) by solving the
problem

xI;in{ch Ix € Pg} (2.4)

since. by the linearity of the objective function of (2.4), every optimum solution to
(2.1) corresponds to an optimum extreme point solution of (2.4), and vice versa.

By the theorem of Weyl [67], there exists a finite (integer) matrix A and a
vector h (of integers) such that

B={x € RE | Hx < 1} (2.5)

148 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

holds and, consequently. our combinatorial optimization problem (2.1) becomes the
linear program

min{ch | Hx < h}. (2.6)

Evidently, if we know the description of Pc} by way of linear inequalities (2.5). then
we can use linear programming methods such as the simplex method to solve the com-
binatorial optimization problem (2.4).

Of course, the description (2.5) of the polytope Pc is not unique. as one can
append any non-negative linear combination of the rows of Hx < h to this system
without changing the solution set. One is thus led to consider minimal systems of
linear inequalities that describe P (i.e. linear inequalities that define facets of the
polytope Pg). We recall that the dimension of P, denoted dim P._j, is the affine rank
of P minus one, where the affine rank of any set SC RE is the cardinality of the
largest affinely independent subset of S. An inequality fo < fo, where f€ RE and
fo € R defines a facet of Pg if we have

i) PpCixe RE | fTx < f,} and

(i) dim(Py Nix € RE | fTx = fo}) = dim Py ~ L.

Property (i) is referred to as the ‘validity’ property of the inequality Tx< fo with
respect to the polytope Pg . whereas property (ii) expresses the condition that the
hyperplane fTx = fo isgenerated by the (extreme) points of a facet of P~ . In the linear
description (2.5) of P, we can drop all the rows of Hx < h that do not define facets
of Pg . Thus, a minimal system of linear inequalities defining Py is obtained. If Pe is
of full dimension (i.e. if dim Pz = |E1), then such a minimal system is unique modulo
muitiplications of its inequalities by positive scalars. In the general case, ie. if
dim Pg < |El, thensucha minimal system is unique modulo multiplication by positive
scalars and linear combinations of the equations defining the smallest affine subspace
of RE that contains P-. . :

There are several ways in which the family J of subsets of E arises in actual
combinatorial problem solving. Typical for integer programming on graphs is the
situation that one looks for a well-defined combinatorial configuration in a graph
(e.g. a maximum-weight stable (or independent) node-set or edge-set. a minimum-
weight Hamiltonian cycle, or a minimum-weight clique<covering of all nodes). It is
clear that in these cases, the ground-set £ corresponds either to all the nodes or to all -
the edges (or in certain instances to both all nodes and edges) of the given graph. The
combinatorial configurations that one looks for define the elements of the family F.

In other situtations, one starts with a system of linear inequalities in n zero-one
variables that correspond to the ‘formulation’ of some underlying ‘real-world’ problem
arising in economics. the management of public or private enterprises. engineering, etc.

K. Hofrman, M. Padberg, LP-based combinatorial problem solving 149

In this case. one has £ = 11.. ... n},and the family F of subsets F of E is given by the
correspondence

FEF<=>xF ix &€ R" | 4x < b. X =Qorl forj=1....nt Q27

where A4 1s some given m X1 matrix of rationals and b is a vector with m rational
components. Of course. in the case of an integer program on a graph. one can always
write down a 'formulation’ of the problem by way of linear inequalities in zero-one
variables as well. thus obtaining a linear system 4x < b whose zero-one solutions
correspond uniquely to the combinatorial configurations that one looks for in the
graph.

We will now assume that — no matter what combinatorial problem is con-
sidered — we have a ‘formulation’ of the optimization problem at hand and denote
by

D={x € R"iAx <b x; =0or ! for j=1,..., nt (2.8)

the set of feasible solutions. Indeed. any formulation will do and will be called the

‘user-supplied’ formulation. The combinatorial optimization problem can then be
stated as

min{cTx | x € D}. 2.9

Letting

F=IiFcCi1..... nt i xF € D},
where x¥ is the characteristic vector of F, we have that
Pg = conv(D). | (2.10)

where conv (D) means the convex hull of D in R”, i.e. the convexification of the dis-
crete set Din R".

The following concept of relaxation is typical for linear programming
approaches to combinatorial problem solving. Denoting

P={xEIR"IAbe.O<x]_<1forj=1,...,n}, 2.11)

we obtain a polytope that satisfies

150 K. Hoffman, M. Padberg, LP-based combinatorial problen solving

2.12
Pg cC P ()
and thus we have the easy (but important) consequence

min{cTx | x € Pt = minicTx i x € P}. (2.13)

F

Furthermore. one can readily prove that every extreme point of P"f is an extreme point
of P, but of course not conversely since P will, in general. have many more extreme
points than P . However, if the second problem in (2.13) produces a zero-one solution
vector, then we have solved the combinatorial optimization problem (2.9).

There are only few instances where the preceding (naive) relaxation idea has been
proven to solve the combinatorial optimization problem for all possible choices of
the objective function; for instance, this is the case when the matrix 4 is totally
unimodular or perfect (see Padberg [50] for a related survey). But even if the relaxa-
tion procedure does not work for all possible choices of the objective function, it may
still work for the particular objective function of the user-supplied formulation of the
optimization problem at hand. Taking this chance seems worthwhile since we know
how to solve linear programming problems efficiently. Indeed ~ except for certain
purely enumerative attempts at solving combinatorial optimization problems — all
proven methods for solving general combinatorial optimization problems use this
relaxation idea as their point of departure. For instance, the only integer programming
method implemented up to 1982 in the form of commercially available software
— branch and bound — uses precisely this naive relaxation of the combinatorial opti-
mization problem. (For post-1982 developments, see IBM [28].) The trouble with
such ordinary branch and bound (empirically observed in many instances of com-
binatorial optimization problems) is that the 'integrality gap’ in relation (2.13) may
be very large. As a case in point, Crowder et al. {11] report on a zero-one problem
with 548 variables where the left-hand side of (2.13) produced a value of 8691.0, while
the right-hand side of (2.13) produced a value of 315.3 for the user-supplied formu-
lation. Predictably, commercially available, state-of-the-art branch and bound codes
failed to close this enormous integrality gap even when the computer (an IBM 370/
168) was permitted to run for several hours of CPU time. The way out of this situation
is to use improved formulations of the combinatorial optimization problem employing
the polyhedral approach to combinatorial optimization outlined above.

Returping to the ‘ideal’ situation where we know a complete linear description
(2.5) of the underlying polytope, it is in general out of the question to generate and
store all of the data of the linear program (2.6) in the- computer. This is so because
— while A is guaranteed to be a finite matrix — it can still be expected to be extremely
large. Indeed, in most cases of interest, the number of rows of A is known to grow
exponentially and worse with the parameter n, (i.e. with number of variables of the
problem). An alternative to enumerating all known rows of H is to solve periodically
the following problem:

K. Hoffman. M. Padberg, LP-based combinatorial problem solving 151

(2.14) Facer-identification problem: Given a point ¥ € RE and a polytope Pq.
find a facet-defining linear inequality fTx < fo for R7 which is violated by
X (ie.such that fTx > fo holds). or prove that no’such inequality exists
(ie.thatx € Pg holds).

Using (2.14) as a subroutine in a linear programming code. we can generate violated
facet-inequalities ‘on the fly" as we need them to cut off fractional linear programming
optima. More precisely. we think of the following iterative procedure for solving
combinatorial problems (see e.g. Padberg and Grotschel [59)).

(2.15) Relaxation merhod Jor combinatorial problems

(2.15.1) (Initialization). Let (LP,) be a valid linear programming relaxation
of the combinatorial problem under consideration (e.g. the user-
supplied formulation without the integer restrictions). Set k =0
and go to (2.15.2).

(2.15.2)'(LP-solver). Solve (LP,). let x* be an optimal solution to (LPk)
and go to (2.15.3).

(2.15.3) (Facet-identification). Solve the facet-identification problem (2. 14)

for x* and the polytope Pg'

(2.15.3.1) If one or more violated facet-inequalities for B, are found,
define (LP, ., ,) to be (LP,) amended by the violated facet-inequfﬂi-
ties. replace k£ + 1 by k. go to (2.15.2).

(2.15.3.2) If a violated facet-inequality does not exist, stop.

If a finitely convergent LP solver is used in step (2.15.2), then the relaxation
method (2.15) is finitely convergent. Moreover. if the simplex method is used in step
(2.15.2), then one readily shows that termination in (2.15.3.2) occurs at a zero-one
feasible solution to the combinatorial optimization problem. On the theoretical side,
it has been proven independently by several authors that the combinatorial optimiza-
tion problem (2.4) is solvable in polynomial time if and only if the facet-identification
problem (2.14) is solvable in polynomial time for rational ¥ € RE. (See Grotschel
et al. [20], Padberg and Rao [56], and Karp and Papadimitriou [31] see also Padberg
and Grotschel [59] for a related summary.) _

This relaxation method (even when the theoretically non-polynomial simplex
method is used) has proven computationally efficient also in cases where a complete
linear description (2.5) of the associated polytope is known. For instance, for the
problem of finding a maximum-weight matching in a graph, Edmonds [14] has found
a complete linear description of the polytope. An algorithm utilizing the facet-identifi-
cation problem (2.14) as a subroutine was given by Padberg and Rao [57]. This

1

152 K. Hoffman. M. Padberg, LP-based combinatorial problem solving

algorithm was implemented by Grotschel and Holland [192] and found to have an
equal or better empirical performance on large-scale problems than the theoreticaily
proven polynomial algorithm by Edmonds [14] as modified by Burkard and Derigs
(6] . There are other classes of problems where the above algorithmic idea works.

In general, however, we know of many problems for which complete linear
descriptions (2.5) of the associated polytope are unknown to date. Indeed. in view of
the NP-hard characteristic of the general zero-one problem, such complete characteriza-
tions may prove to be elusive forever for many practically important combinatoriai
optimization problems. Yet, just as ordinary branch and bound used only the most
naive form of relaxation of the combinatorial optimization problem (and proved to be
successful in solving sufficiently many practical problems), we can utilize the above
polyhedral description to improve upon the naive relaxation of a combinatorial
optimization problem by adding a parrial list of facet-inequalities in the relaxation
method (2.15). If it so happens that we do not find a violated facet-inequality in this
method, either because it does not exist or because we just do not yet know the full
description, or because we do not yet know how to algorithmically generate a known
facet-inequality, then we can at termination of (2.15.3.2) still resort to branch and
bound and have an improved chance of proving optimality by the latter method due
to a much ‘tighter’ relaxation.

The challenge in combinatorial optimization is thus to find a sufﬁcxently large
sub-system H*x < h* of the complete system Hx < h of tl‘;ﬁpolytope Pg that per-
mits one to reduce the integrality gap in relation (2.13). For)§ we choose such a sub-
system H"x < h* carefully, then we obtain

min {cTx | x€ Bpt> min{cTx | H'x < h*} > min{cTx | x€ P}. (2.16)

The smaller the integrality gap between the ‘improved’ linear formulation and the
optimization problem in zero-one variables, the more likely the chances of optimizing
the problem by branch and bound. As a case in point, in the example by Crowder et al.
[11] referred to above, sufficiently many inequalities were generated automatically
to yield an objective function value of 8643.5 for the 'improved’ formulation. As it
so happened, with the remaining integrality gap being so small, the entire optimization
(including a branch and bound phase) of this previously unsolvable problem took
091 minutes of CPU time on an IBM 370/168 starting from scratch with the user-
supplied formulation.

We conclude this tutonal outline by giving a general example that illustrates
the major points of this section.

(2.17) Example: Consider the“prdblem of finding a maximum-weight stable (or
independent) node set in a finite undirected graph (without loops and multiple edges)
G = (V,E) with node set V and edge set £. We recall that § C V is a stable set if

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 153

v.w & § implies (v, w) &€ E.ie. vand w are not connected by an edge of G. In terms
of the general notation of this section. the ground set £ is the node set V of G. while
the family F is the set of all stable subsets of V. P_, is the vertex-packing polytope.
Introducing zero-one variables x, for all v € V. we can formulate the problem as
follows:

maximize Z Cv xv
vE V

(P1) subject to X, tx, S 1 forall e=(v,w)EE

w

xU=O or 1 forall ve v,

where ¢, for v € V are the node weights for a given problem instance. The formulation
(P1) correctly models the problem. but is rather ‘weak’ from a linear programming
point of view. Let C be the node set of any clique of G (a node set of a maximal
complete subgraph of G) and G be any family of cliques of G that cover ail edges of G.
That is, § may (but need not) be the family of all cliques of G. Then we can formulate
the same problem as follows:

maximize Z €, X,
ve vV
(P2) subjectto ¥ x, <1 forall ce G
vel

xu=0 or 1 forall v e v.

Denote Z; the optimal objective function value of (P1) and (P2), Zp, the optimal
objective function value of the (naive) linear programming relaxation of (P1) and
Zp, likewise for the formulation (P2). Noting that we are maximizing, we obtain, as
in (2.16). the following inequalities:

2,<2,<2z,. (2.18)

Moreover. Padberg [49] has shown that the inequalities of (P2) define facets of the
polytope Pq . whereas the inequalities of (P1), in general, do not. Now consider the
special case of ﬁndingamaximum-cardinality stable set in an odd anti-hole (the comple-
ment graph of an odd cycle without chords) having n nodes with n> 7 (see Padberg
[52]). One readilv shows that Zpy =n/2.since x, =1/2 forall vE€ V is a feasible solu-

B

154 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

tion of (P1) satisfying all inequalities (except non-negativity) as equations. and an odd
anti-hole is a regular graph of degree n — 3 having n(n — 3)/2 edges. Taking G to be
the family of all maximum-<ardinality cliques of the odd anti-hole. one finds
Zp, =2+ 2/(n — 1), while Z; = 2. The maximum-cardinality cliques are. of course.
a proper subset of all cliques of an odd anti-hole and their totality does not define the
associated polytope Pg . (See Padberg [49.52.53], Trotter [62], and others.) How-
ever, this example demonstrates the basic idea: A proper subset H*x < h™ of the
totality of all facet-defining inequalities Hx < h of the polytope Pg can have a
dramatic effect upon the goodness of the resulting (naive) linear programming relaxa-
tion of the combinatorial optimization problem because the second formulation
permits one to obtain Z by simply rounding down. From a user’s point of view. of
course, any formulation of the problem 'will do’. In terms of the relaxation method
(2.15), formulation (P1) provides the first linear programming relaxation (LP,). Then
a combinatorial problem solver based on (2.15) generates facet-defining inequalities
to yield formulation (P2). Thus an improved formulation of the combinatorial prob-
lem is generated automatically. Branch and bound or any other enumeration method
may still be needed since. at present, as for most integer programming problems of
practical interest. the complete description of the vertex-packing polytope is unknown.

3. Design aspects of a combinatorial problem solver

As discussed in sect. 2, we will assume that the combinatorial optimization
problem is of the form

min{cTx | Ax < b, xl.=00r 1 forj=1...., n} . (3.1

where ¢ is a vector with n components, A is an n X n matrix and b is a vector with m
components. An overall framework for a combinatorial problem solver is given in fig. 1.
This flowchart is designed for a software package to optimally solve large-scale zero-
one problems having thousands of zero-one variables and can. alternatively. be used as
a heuristic procedure for obtaining ‘reasonable’ feasible solutions. and at the same time
a true lower bound on the optimal objective function value of (3.1). The latter provides.
of course, a yardstick to measure the 'reasonableness’ of the solutions found.

In this design. we start by reading the data of the user-supplied formulation
into the computer. In a. ‘preprocessing’ phase. the formulation is inspected auto-
matically and permanent problem reductions may be carried out. Such problem
reductions concern the fixing of certain variables due to feasibility and/or optimality
considerations to either zero or one, the clearing of rows of common divisors greater
then one, the ‘cleaning up’ of the user-supplied formulation such as reducing 'Big M’s’,
the ‘classification’ of constraints, and the detection of special structures. Some of the

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 155

Read probiem data

v

Permanent problem reductions |

v

Global problem to be optimized

J

_ Vv

Heuristics

v

Subprobiem selection

Permanent
probiem Local problem optimizer
reductions |l
Global
Redefine optimum
global problem attained?

User output

Fig. 1. The overall flowchart.

methods used in this preprocessing phase are discussed in the paper by Crowder et al.
[11] and will be elaborated in a forthcoming paper by Bernal et al. [4]. After pre-
processing, we thus obtain the definite version of the zero-one problem to be opti-
mized. which we will call the global problem’ to be optimized.

In the next phase, heuristics are used to find an upper bound on the objective
function of (3.1). While satisfactory heuristics exist for many specially structured zero-
one problems (e.g. the vertex packing problem, the set-covering problem, the traveling

> Bk

156 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

salesman problem), quick and efficient heuristics for general zero-one problems are
scarce. One such heuristic is the pivot-and-complement heuristic due to Balas and
Martin [1]. It is important to note that a good upper bound permits the ‘fixing’ to
zero or one of certain variables permanently once a good lower bound is also known.

Since this framework is to be used to solve zero-one problems having possibly
thousands of variables, one proceeds next with the selection of a subproblem for
actual optimization. How to select a subproblem is clear in the context of integer
programming on graphs: In the case of a traveling salesman problem with several
hundred cities, for instance, one has to optimize over tens of thousands of variables
(corresponding to the edges of the graph). Clearly, the bulk of these variables will be
zero in an optimal solution; thus, it will be sufficient to consider the problem on a
sparse subgraph of the entire problem induced by the ‘short’ edges of the graph. To
prove the optimality of a solution of the sparse problem to the global problem, one
needs to 'price out’ the variables temporarily set equal to zero. If their reduced costs
exceed the gap between the linear programming optimum and the integer optimum.
then they were correctly set to zero. Otherwise, the subproblem is redefined. By a
judicious choice of the subproblems selected (e.g. by selecting larger and larger sub-
problems) one can ensure that the process is convergent. In general, the subproblem
selection can be done on the basis of a normalized cost criterion. i.e. we can order
the variables by increasing ratios

m 172 (3.2)
L)

and use a cut-off value for determining the variables of the actual subproblem to be
considered. At later stages of the calculation, such selection may be based on normal-
ized reduced cost, rather than the original cost. Currently, except for integer programs
on graphs, it is not clear how to select a suitable subproblem so as to ensure zero-one
feasibility of the selected subproblems (provided one knows that problem (3.1) is
feasible). Of course, if a (good) feasible zero-one solution has been found heuristically,
or during the course of computation, one can always include the variables that are in
a. feasible solution in each of the subproblems, thus ensuring the feasibility of all
selected subproblems. We note that in the case of a traveling salesman problem.
criterion (3.2) is identical to the one based on the original cost ¢; and was success-
fully used by Crowder and Padberg [10] and Padberg and Hong [54] to optimize
a 318<ity problem involving 50 403 zero-one variables. .

The most important phase of the combinatorial problem solver is the phase
called the ‘'local problem optimizer’. Included in this sub-system is a problem set-up

~1

K. Hoftman, M. Padberg, LP-based combinarorial problem solving 15

¥

Probiem setup

Linear problem solver

A v

Constraint generation

Any
violated
constraints
found?

. Yes
Revise

linear program

Branch-and-bound

}

Fig. 2. The local problem optimizer.

routine, a linear program optimizer. a package of problem-dependent subroutines for
the constraint generation, as well as a branch and bound routine. In other words, this
is the relaxation method (2.15) of sect. 2 amended by a branch and bound procedure.
Examples of how the constraint generation (2.14) of sect. 2 is carried out for different
problem strutures are discussed in later sections of this paper. Figure 2 shows the flow-
chart of the ‘local problem optimizer’. : .

Having obtained an optimal solution for the subproblem considered in the local
problem optimizer, one proceeds to extend ('lift") the newly generated constraints to
include all zero-one variables of the global problem. Such an extension is theoretically
and’ computationally possible using the various 'lifting’ procedures described in the
literature. (See Padberg [51] and Wolsey [68] for the case of general zero-one prob-
lems.) More specific results apply to specially structured zero-one problems (e.g. the
traveling salesman problem, vertex packing, set covering). One then computes a lower
bound on the optimal objective function value of (3.1) (e.g. by optimizing the linear
programming relaxation of the global problem). Assuming that a feasible zero-one
solution was found (either by a heuristic or by the local problem optimizer), we then
have an upper bound and a lower bound on the optimal objective function value of
(3.1). At this point. one may be able to fix variables based on the reduced costs of

158 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

the linear program and the gap between the LP solution and the feasible zero-one
solution found. This fixing of variables may enable further permanent problem re-
duction (Crowder et al. [11]). A new subproblem is then selected among those vari-
ables that were not fixed at either zero or one. The latter has to be done in such a
manner as to guarantee convergence (the strategies for the selection will depend on the
structure of the actual problem on hand). For general zero-one problems. at present
we always use the global problem (i.e. we bypass the subproblem selection) because
the sizes considered so far permitted us to do so.

In the next three sections, we describe facets of the polytope Pg and the status
of the respective facet-identification problem (2.14) for three classes of combinatorial
problems: the traveling salesman problem. the triangulation of large input/output
matrices. and large sparse zero-one problems having no special structure. These three
types of problems are chosen because computational studies have proven that cutting
planes related to the facets of the underlying polytope are an indispensable tool for
the exact solution to these problems. A summary of the computational resuits of these
studies will also be provided in these sections.

4. The symmetric traveling salesman problem

In the symmetric traveling salesman problem (hereafter abbreviated to TSP),
one is interested in finding a shortest round-trip or rour through n cities such that
every city is visited exactly once. The traveling salesman problem has its historical
origins in graph theory. Euler [15] (translated in Biggs et al. [5]) studied related
problems, as did Sir William Rowan Hamilton in 1859 (see Hankins {25]). The prob-
lem appears to have been formulated and coined the '‘messenger boy’s problem’ by
Menger {46]. In the seminal work by Dantzig et al. [12}, a tour of forty-nine cities
is optimized. This computational advancement is a milestone in the history of mathe-
matical programming calculations. Since that time, the problem has been studied
extensively in the applied mathematics and operations reséarch literature. (See Lawler
et al. [35] for an up-to-date survey of the traveling salesman problem.)

Consistent with graph-theoretic notation. let G = (¥, £) denote the complete.
undirected graph having n nodes (representing the cities), and let the vector ¢ with
components ¢, for all edges e € E denote the symmetric distance table of the graph
(ie. if edge e connects nodes 7 and j of the graph, then c, is the (symmetric) distance
between cities i and j). The assumption that G is complete is for notational con-
venience only since, in a minimization context, missing edges of the original graph can
be adjoined by assigning arbitrarily large distances to them.

A round-trip or tour through the n cities corresponds to a Hamiltonian cycle
in the graph G and thus the family J of sect. 2 is the family of all subsets of edges of
G that form a Hamiltonian cycle. The ground set of sect. 2 is the set £ of all edges of
G and the zero-one vectors of interest to us are those that correspond to subsets of

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 159

¢dges forming a Hamiltonian cycle in G. In an undirected complete graph with n
nodes there are exactly i (n — 1)! Hamiltonian cycles and thus in R™. where
m =1 n(n=1). we have eiactly that many zero-one points of interest to us. Taking
the convex hull of these 3 (n = 1)! points, we obtain the traveling salesman polytope
over which we wish to minimize the linear form given by the vector c.

To formulate the TSP as an integer program. denote by A4 the n-by-m node-
edge incidence matrix of G where, as before, m = 3 n(n —1). Furthermore, for any
vector x € RE with components x, for all e € E. we denote for any subset W C ¥

x(twy =5 X, . (4.1)
e S E(W)

where E(W) is the set of edges in G with both ends in the node set W. The TSP is
the following minimization problem:

minimize c¢x ’ (4.2)

subjectto Ax = 2 (4.3a)
x(W) < IW| -1 for all nonempty proper subsets WCV (4.3b)

0<x <1 (4.3¢)
forall e€ E,
x, integer (4.3d)

where 2 is the vector with n components equal to 2 and | W] is the cardinality of W.
The constraints (4.3a) express the condition that every node must be met be exactly
two edges in every tour. Conditions (4.3b) express the conditions that cycles having
less than n edges are of no interest to us as they do not correspond to Hamiltonian
cycles in the graph and are called subtour-elimination constraints (see Dantzig et al.
[12]). (Note that the upper bound constraints are duplicated for notational con-
venience in (4.3c).) It is important to note that the requirement (4.3d) is essential,
since fractional solutions will occur. This of course means that additional linear in-
equalities are needed to describe the traveling salesman polytope if the integrality
requirements (4.3d) are dropped.

A first (naive) linear programming relaxation of the traveling salesman problem
as used in the relaxation procedure (2.15) is given by (4.2), (4.3a), (4.3b) (4.3c). If the
optimal solution of this linear program is integer, we have solved the traveling salesman
problem. Otherwise we need more (facet-defining) inequalities to eliminate (chop off)
the fractional linear programming optimum. If we run out of known facet-defining

1

160 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

inequalities to do this job before obtaining a tour, we then resort to branch and bound.
In the next section we discuss classes of inequalities that define facets for the traveling
salesman polytope.

The astute reader will have noticed that this naive relaxation involves exponen-
tiglly many constraints and thus — prima facie — it is not implementable. Indeed.
historically, this has been the reason that the above formulation has been ignored in
the literature. There are several formulations reported in the literature that replace
the above inequality system by one that is polynomial in the number n of nodes of
the graph (typically, however, at the expense of introducing additional variables).
Whatever the merits of these other formulations, we know that half of the constraints
of (4.3b) define facets of the traveling salesman polytope. Thus, they are essential in
defining the polytope. The way out of the dilemma is to include the constraints (4.3b)
in those that are generated ‘on the fly’. The real question, therefore. is not how many
constraints we have, but whether or not we can find violated (facet-defining) in-
equalities efficiently. The answer to this question is positive for subtour elimination
constraints as well as other inequalities.

4.1. FACETS OF THE SYMMETRIC TRAVELING SALESMAN POLYTOPE

The set of linear inequalities (4.3a), (4.3b) and (4.3c) defines a polytope that
contains (properly) the traveling salesman polytope. We now wish to append to this
set of constraints facet-inducing inequalities which will ‘tighten’ the above formula-
tion when the requirement ‘x integer’ is ignored. There are many types of facet-
inducing inequalities known for the problem (see Grotschel and Padberg [21]), of
which we will discuss three types that can all be described by the inequality

k k
> x(W) < Wyl + 2 (W1 =1) = k2. (44)
i=0

i=1

where (+) denotes rounding up to the closest integer. The sets W; are proper subsets of

V satisfying the following conditions for i =0, 1.. .., k:
W, "W 1, Q=1 .k (4.5)
IWAW,1 > 1, i=1,....k, (4.6)
W, N W =290 1<i<j<k. | (4.7)

k odd. (4.8)

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 161

The edge set C = Ul’-‘= o E(W;) is called a comb in G (see Grotschel and Padberg [21]
and Padberg and Grotschel [59]). The inequalities (4.4) are called comb constraints.
For k = 1 and IW,| = 1. we retrieve the subrour-elimination constraints (4.3b) intro-
duced above. A comb is a 2-matrching constraint (Edmonds [14]) if the inequalities in
both (4.5) and (4.6) hold as equalities. A comb is a Chvatal-comb (Chvatal [9]) if the
requirement (4.7) is dropped and the inequality (4.5) is required to hold as an equality.
A thorough discussion of comb inequalities can be found in Grotschel and Padberg
[21]. where it is proven that comb inequalities belong to the class of linear inequalities
that occur in any minimal linear constraint system for the TSP (modulo a multiple of
the rows of 4). The linear programming formulation of the symmetric traveling sales-
man problem provided by (4.2)—(4.4) is still only an approximation. however, since
the associated linear constraint set is not complete (i.e. it admits basic solutions that
are non-integer). Furthermore. as indicated above. one would not wish to list all

Table 1*

No. of No. of subtour No. of comb

cities elimination constraints constraints

6 25 60

7 56 2100

8 119 42 840

9 246 667 800

10 501 8 843 940

15 16 368 1993711 339 620
20 0.5.10° 1.5 . 10'®
30 0.5.10° 1.5 - 10%
40 0.5 .10" 1.5 . 104¢
50 0.5 .10 10¢°
120 0.6 . 10%¢ 2.10'7

*Extracted from Padberg and Grotschel (59].

known facets since even for very small TSPs. computers are not now, nor ever will be.
capable of handling systems of linear equalities of the size needed (see table 1). But to
stress this important point again. it is nor the number of constraints needed to fully
describe the polytope that matters in computation: rather it is the question of whether
or not we are able to find violared constraints efficiently. i.e. in polynomial time.
Using the classification of all comb constraints shown in table 1. we are faced with the
following facet-identification probiems (2.14):

162 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

(4.9) Identification of subtour elimination constraints (SEC):

Given a point ¥ € RE satisfying 0 < x,< lforalle€ E.findaset WC V.,
2 < |WI < n-1,suchthat X(W)> (W| — 1 holds or prove that nosuch W C V exists.

(4.10) Identification of 2-matching constraints (2C):
Given a point X € RE satisfying 0 < X, < lforalle€ E.findaset WC V

and aset Tofedgese,... e in E(IT1> 3) with the properties
(@) e hasoneendpointin W i =1,..., ITI
(b) e‘.ﬂei=(b 1 <i<j<|TI
(¢) IT1 odd.

| |
such that x (W) + x(T)> |W|+!IT|/2{holds or prove that no such WC Vand TC £
exist. LS
(4.11) Hdentification of comb constraints (Co):

Given a point X € R® satisfying 0 < X, < 1 for all e€ E, find sets W,
W,...., W, C Vwith the properties

@ IWNAWI=1 i=1,.. 5k
b) IWAWI=1 Q=1 .,k
<

(c) w',ﬂ w, =0 1 <i<jy k
(d) & odd,
such that
k k

W)+ T EW) > Wi+ Y (wi- - &

i=1 i=1
holds or prove that no such sets W, w,, ..., W, C V exist.

In Padberg and Hong [54], a heuristic is provided for the identification of
violated subtour elimination constraints. The algorithm requires a total computational
effort which is polynomially bounded. For a complete answer to the question of
whether or not -there exists a subtour elimination constraint which chops off some
feasible point x, the algorithm by Gomory and Hu [18] must be applied to the graph
obtained by the refined shrinking procedure described by Padberg and Grotschel [59].
If all calculations are performed carefully in both algorithms. then the identification
of subtour elimination constraints can be carried out by a polynomially bounded
algorithm (i.e. problem (4.9) is solvable in polynomial time).

K. Hoffman, M. Padberg, L P-based combinatorial problem solving 163

Padberg and Rao [57] have shown that a modification of the minimum-cut
algorithm by Gomory and Hu [18] can be used to identify violated 2-matching con-
straints. and that this algorithm solves problem (4.10) in polynomial time. The Pad-
berg and Rao algorithm. as well as a reduction heuristic for 2-matching constraints. are
described in Padberg and Grétschel [S9] .

For the general comb inequalities. no-polynomial exact algorithm is known to
date. Padberg and Grotschel [59] give a heuristic procedure whose effectiveness re-
mains to be tested in numerical problems.

A complete description of the methodology for the facet-identification prob-
lem (2.14) for symmetric TSPs (heuristics and exact algorithms to the extent known
to date) can be found in Padberg and Grotschel [59] . The known results indicate that
for a large class of facets of the traveling salesman polytope, the facet-identification
problem (2.14) is solvable in polynomial time.

4.2. COMPUTATIONAL RESULTS FOR LARGE-SCALE SYMMETRIC TRAVELING
SALESMAN PROBLEMS

In this section we give a brief summary of the papers by Crowder and Padberg
[10], Grétschel [19], and Padberg and Hong [54]. There are, however, several other
studies (unpublished) that utilized polyhedral information in the actual solution of
symmetric traveling salesman problems such as the solution of a 125<ity problem
. done by students of W.R. Pulleyblank at the University of Grenoble (France) and the
solution of a 68-city problem done by students of L. Wolsey at the Catholic University
of Louvain-a-Neuve (Belgium).]

Related studies concemning the use of cutting planes in the solution of sym-
metric traveling salesman problems have been carried out by Land [34] and Miliotis
[47,48], Fleischmann [16,17], and earlier by Hong [27]. While these studies reported '
good results for medium-sized traveling salesman problems, their methodology did not
focus on testing the polyhedral theory described here, which is the intent of our brief
survey. ‘

Figure 3 depicts the overall flow of calculations to be performed in imple-
menting the relaxation method (2.15) as applied to traveling salesman problems,
when one ignores the aspect of subproblem selection. The very bottom loop in this
flowchart is necessary because a zero-one solution found by branch and bound may
correspond to a collection of subtours and thus needs to be excluded. The three
studies that we will survey used flowcharts differing in minor details. While Grétschel
[19] carried out the constraint identification visually, both Crowder and Padberg [10]
and Padberg and Hong [54] used fully automated procedures (no manual intervention)
in their respective software.

The first instance of a symmetric traveling salesman problem involving more
than 100 cities that was solved using only subtour elimination, 2-matching and comb
constraints is a 120-city problem given by the data in the Deurscher General Atlas

164 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Find a "good” tour using a heuristic

v

[Set up the initial LP min {cx |Ax =2,0S x <1}

~ J

i

Solve the current LP by the simpiex method

A
Is the optimum solution Yes
< x a tour? m
\L No
Add the Run fast heuristics to find (SEC),

inequalities to the (2C) or (Co) inequalities that are
current LP violated by x

—é—&(ﬂated inequalities found?>

\LNo

Run the exact algorithms to find
1 violated (SEC) and (2C) inequalities

Yes /O . . >
<
€ leolated inequalities found?

\],No

Fix variables using the reduced costs

Y

N Call a branch & bound code

No
Generate € < _ -
violated (SEC) Zero—-one solution corresponds to a tc»ur?)

ine;ualities Yes
and add to
the current LP m

Fig. 3. Flowchart.

(Mairs Geographischer Verlag, Stuttgart, 1967/68). In Grétschel [19], no recourse
to branch and bound or other enumerative methods was needed in order to obtain an
optimal tour (i.e. only the relaxation method (2.15) for combinatorial optimization
problems was used). -

In order to find and to prove optimality of this problem, thirteen iterations of
the relaxation method (2.15) were necessary. In this process. only 96 subtour elimina-
tion and comb constraints of the total universe of 10'7? such constraints were gener-

ated to establish optimality of the tour. More precisely,

K. Hoftman. M. Padberg, LP-based combinatorial problem solving 165

36 subtour elimination constraints.
23 2-matching constraints. and
35 {other) comb constraints

were needed to find and to prove optimality of the tour.

A comprehensive study using the facet-defining inequalities for the TSP was
pertormed by Padberg and Hong [54]. They sampled 74 symmetric traveling salesman
problems in order to broadly assess the computational value of facet-defining linear
inequalities for the solution of traveling salesman problems. We note that out of the
total 74 problems. only 54 were solved (to optimality). but in all cases. excellent lower
bounds were obtained when compared to the solutions found by using the heuristic
due to Lin and Kerningham [40] .

In order to evaluate the value of facet-defining inequalities towards the goal of
proving optimality. Padberg and Hong [54] used the following approach: Given a
heuristically obtained solution. they soived the LP relaxation problem (4.2.4.3a, 4.3c)
(i.e. the 2-matching relaxation of the symmetric TSP) with the heuristically obtained
tour as a starting point. Using the same heuristically obtained solution. they then ran
the problem a second time. generating facet-defining inequalities. This run either
terminated with an optimal tour or. in case of an inability to identify a suitable new
constraint. defaulted with a lower bound for the problem obtained by solving the. by
now. enlarged linear programming problem. This approach yielded two values: VALUEI
is the objective function value without cuts and VALUE2 is the objective function
value with cuts. If TOUR denoted the minimum length tour of the problem, then the
following ratio is a good proxy for measuring the added value of the additional work:

RATIO = (VALUE2 - VALUE1)/(TOUR - VALUE!).

Note that RATIO is zero if no improvement is obtained (e.g. if no constraint was
generated which altered the LP values). while RATIO is one if the constraint-genera-
tion procedure terminates with the optimal tour. RATIO ranges from zero to one
inclusively, and due to taking both differences and a ratio, the measure is invariant
under scaling and translating the data. As the exact value of TOUR is known only
a posterion, it is worth pointing out that RATIO is a conservative valid measure of
the improvement (if TOUR is a possibly suboptimal value obtained heuristically).
It should further be noted that the same starting solution for the respective linear
programs is used for the computation of both VALUE1 and VALUE2, which is
known to greatly impact the performance of simplex methods.

Here we will discuss only two of several parts of the computational study by
Padberg and Hong [54] . In one part, they ran fifty-five randomly generated Euclidean
TSPs using the pseudo-random number generator by Lin and Kerningham [40], which
generates coordinates x; and y; with values between 1 and 1000 fori=1,.. ., n. Be-

166 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

cause coordinates are generated as pairs. the same random seed for 5 + m cities pro-
duces a graph that is properly contained in the graph on the first # cities. thus per-
mitting one to study how increasing n affects the added value of the facet-inducing
inequalities. Ten different problems were run for n = 15.30,45,60and 75. respectively.
using ten different seeds for the random number generator. Furthermore. five
Euclidean problems with n = 100 due to Krolak et al. [33] were included in this
statistical part of the study, although they are different from the others.

Table 2
Fifty-five Euclidean TPSs

n 15 30 45 60 75 100

Ratio u 1.0 0.99 0.93 0.92 0.88 0.92

s 0.0 0.03 0.11 0.10 0.09 0.02 _
TOUR 3555 4738 5566 6297 6878 21507 ...

o 383 314 224 181 224 525 0 o

Tv ’W

GAPI u 224 352 379 452 387 1507

o 121 100 149 133 93 313 e
GAP2 s 00 5 24 38 50 120 Tre¥”)

¢ 0.0 15 57 44 44 43 S
PIVOT2 u 11 34 47 76 87 167

o 2 7 13 30 23 40 »
APIVOT 4 2 13 11 36 31 97 Lo

o 2 5 12 29 22 38 -
TIME2* . 033 1.37 4.46 1447 3052 108.74 o~

o 0.03 0.26 1.27 6.82 1081 3997 PR
ATIME* 0.07 0.46 1.39 6.25 11.64 50.4

o 003 0.23 1.23 6.63 10.63 31.7

" cuts u 3 12 15 26 28 72
o 2 5 8 13 12 18 T
. "v_.a

OPTIM 10 9 5 4 3 0 *

*Seconds, IBM 370/168 MVS.

Table 2 contains all the relevant statistics for this part of the study. The entries
in table 2 were obtained by averaging the respective individual figures, and their mean
K is given with o being the standard deviation. The top row of table 2 contains the
value RATIO. As it is to be expected, RATIO declines with increasing n. TOUR is
the tour length obtained by the heuristic.

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 167

The bottom line of table 2 (OPTIM) specifies the number of times the linear
program terminated by proving the optimality of the heuristically obtained tour.
GAP!1 measures the average difference between TOUR and the objective function
value of the (initial) linear program (4.2). (4.3a) and (4.3¢) (i.e. the 2-matching relaxa-
tion of the svmmetric TSP). GAP2 is the crucial measure in evaluating the constraint-
generation procedure: it is the difference between TOUR and the objective function
value of the amended linear program. PIVOT?2 is the average of the total number of
pivot operations carried out by the constraint-generating program. APIVOT is the
average increment of the pivot count over what it takes to solve the initial linear
program. Likewise, TIME2 specifies the total CPU time of the constraint-generating
program. ATIME the average increment over the respective times for the initial
linear program. Note that to terminate with an average lower bound of 21 387 for
n = 100. it took on average 108.74 seconds of CPU time, while it took on average
50.4 seconds of CPU time less than 108.74 seconds to obtain an average lower bound
of 20 000. (The numbers in the corresponding rows labelled o are the respective
standard deviations from the sample problems.) Finally. CUTS is the average number
of constraints that were generated and amended to the original linear program. Thus
for the 100ty problems. the initial linear program has 100 rows and 4950 variables,
while at termination of the constraint-generation procedure, the linear program in-
creased on average to 172 rows and 5022 variables, a truly modest increase given the
complexity of the problem and the goodness of the bound obtained. For the in-
dividual figures for all of the sample problems, the reader is referred to the original
paper (Padberg and Hong [54]).

Another part of this study was done in order to permit a limited comparison
of the performance of the constraint-generation procedure vis-a-vis other approaches.
Therefore, a number of test problems that have been used by other researchers were
solved. The results are summarized in table 3. The heading 'without cuts’ refers to
the solution of the (initial) linear program: TIME]1 is the CPU time in seconds, PIVOT1
the pivot count. VALUEI] the objective function. TOUR refers to the minimum
length tour or the value of the best tour found by the heuristic or during earlier runs
with the TSP code, and is the initial solution for the TSP code in the run reported in
table 3. The heading 'with cuts’ refers to the constraint-generation procedure: VALUE2
is the objective function value of the linear program with cuts, the first column under
PIVOT2 refers to the total number of pivots, the second column under PIVOT?2: refers
to the number of pivots carried out after the default in the constraint-generation
procedure (i.e. the second column is already counted in the first). CUTS specifies
the total number of cuts generated in the run, its second column the number of cuts
that were dropped after defaulting. TIME2 is the total execution time to termination
in CPU seconds. RATIO is the value discussed in the introduction to this section.

DAN42 is the 42<ity version of the 49-city problem due to Dantzig et al.
[12]. The solution was proven to be optimal in 3.10 seconds of CPU time after adding

168 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Table 3
Eight problems from the literature

Without cuts With cuts

Problem TIME1 PIVOT! VALUELT TOUR VALUE2 PIVOT2 CUTS TIME2 RATIO

DAN42 2.57 30 641 699 699 37 0 9 0 3.10 1.0
GRO48 4.09 33 4769 5046 50315 83 9 32 8 9.16 095
HEL48 369 33 11197 11461 11461 33 0 10 0 430 1.0
TOMS7 779 44 12633F 12955 12940 61 4 22 1 1040 095
KROL70 1633 53 6237 67S 673 120 8 44 10 3191 098
GROI20 11120 69 66627 6951 6928- 166 17 49 4 17144 0.92
KNUI21 454 45 328 349 343% 7413 10 1 725 0.76

112

LIN318 670.8 251 387657 41349 4123657 578 70 171 64 1751.46 0.96

nine constraints. (These constraints include one type not discussed here; see Padberg
and Hong [54] .) GRO48 is a 48-city problem due to Grotschel (48 cities with distances
given in Shell’s road atlas of Germany). The program terminated with a lower bound
of 5032 for the optimum tour after 9.16 seconds of CPU time; the best tour found by
the heuristic has a length of 5046. HEL48 is the 48-ity problem due to Held and Karp
[26]. The solution was proven to be optimal in 4.30 seconds of CPU time after adding
ten constraints. TOMS7 is the 57<ity problem due to Thompson and Karp [61]. A
lower bound of 12 940 for the optimum length tour of 12 955 was obtained after
10.40 seconds of CPU time. (Optimality was proven by Held and Karp [26].) KROL70
is a 70-city problem due to Krolak et al. (33]. After 31.91 seconds of CPU time, a
lower bound of 674 on the heuristically obtained best tour of length 675 was obtained.
GROI120 is the 120-ity problem due to Grétschel described above. KNU 121 is a
supersparse 121<ity problem due to Knuth [32]. 7.25 seconds of CPU time were used
to obtain a lower bound of 344 on the optimum tour length of 349, published in the
New York Times.

LIN318 is a 318<ity problem, the data of which are published by Lin and
Kerningham [40]. The data come from an actual problem involving the routing of
a numerically controlled drilling machine through three identical sets of 105 points
each plus three outliers. As the drilling is done by a pulsed laser, drilling time is negli-
gible and the problem becomes a standard traveling salesman problem. The only
exception to the standard form is that a particular start and end point are to be used:
the resulting Hamiltonian path problem can, however, easily be accommodated within

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 169

the linear programming framework by assigning a negative distance to the particular
arc. The distance table of the complete graph on 318 points (with the exception of
one edge) was computed from the coordinates published by Lin and Kerningham [40].

The most surprising outcome of the computational study by Padberg and
Hong [54] is that only very few additional facet-defining inequalities are needed in
order to obtain an excellent lower bound on the minimum tour length and. in some
cases. to also prove optimality. Consistently. the results obtained in the statistical part
of the computational study are at most 0.5% off the optimal tour length: the standard
deviations are consistently small as well. The results for the test problems from the
literature including the — by 1980 standards — truly large-scale traveling salesman
problems with 120 and 318 cities. respectively, generally out-performed the results
that one might expect based on the statistical part of the study. In particular, the
bound for the 120<ity problem obtained this way indicates that the solution is within
0.04% of the optimum tour. and the bound for the 318-ity problem indicates that
the solution is within 0.26% of the minimum length Hamiltonian_ path through the
318 points. With the resulting (remaining) gap between the best tour found and the
bound obtained by the use of facet-inducing inequalities being so relatively small.
it was entirely realistic to expect that any good branch and bound procedure would
enable one to solve largescale traveling salesman problems to optimality, as was done
by Crowder and Padberg [10].

Crowder and Padberg selected the same ten problems from the literature as
those chosen in the previous study (as shown in table 4). with KRO124 through
KROI128 being the five 100-city problems due to Krolak et al. [33]. Several changes
in the code used by Padberg and Hong [54] were implemented to improve the lower
bounds. These changes concerned the identification of additional subtour-elimination
constraints and the determination of the ‘hard core’ of the respective TSPs that re-
mained to be optimized. To this end. a subroutine was written to fix non-basic vari-
ables of the last LP optimum at either zero or one. using the available upper and lower
bound on the optimal objective function value. The basic idea for this ‘variable
fixing’ can be found in the paper by Dantzig et al. [12]. It is very effective and. on
average. a reduction of the n(n — 1)/2 variables of a TSP with n cities to 5% of that
number was obtained. The reduction in the case of the 318<ity problem was even
more impressive and was between 2% — 3% of the original variables.

In table 4. n is the number of cities and m = n(n — 1)/2 is the number of
variables (the number of edges of the graph) except in the case of KNU121. a super-
sparse problem having 222 edges only and 121 nodes. ng is the number of rows after
running the problem with the changed TSP code. using the best available tour as a
starting solution for the linear program: mpg is the number of variables that were
either basic at the final linear programming optimum or that could not be fixed at
their respective non-basic value. TIME is the total execution time to obtain LPVALUE
at termination. RATIO is the ratio described in this section. Three runs were made for

170 K. Hoffman, M. Padberg, LP-based combinatorial problem solving
Table 4
Ten large-scale TSPs
Problem n m ng mg TIME” RATIO LPVALUE
GRO48 48 1128 86 104 9 0.95 5031.06
TOMS57 57 1596 89 91 7 0.98 12 948.5
KRO124 100 4950 187 248 66 0.97 2122531
KRO125 100 4950 170 446 122 091 21978.00
KRO126 100 4950 183 185 52 0.98 20730.08
KRO127 100 4950 192 220 114 0.97 21257.48
KRO128 100 4950 203 334 213 0.93 21970.83
GRO120 120 7 140 199 239 149 0.97 6 934.89
KNU121 121 222 139 182 9 0.90 346.5
LIN318A 318 50403 496 1372 2231 0.97 41269.83
LIN318B 318 50403 495 1144 2283 0.97 41 269.00
LIN318C 318 50403 495 1208 2295 0.97 412 820.0
*Seconds, IBM 370/168 MVS.
Table 5
Breakdown of constraints by type

Problem Subtour 2-matching Comb Total

GRO48 21 16 1 38

TOMS7 16 16 0 32

KRO124 54 32 1 87

KRO125 40 28 2 70

KRO126 43 37 3 83

KRO127 S5 .36 1 92

KRO128 45 57 1 103

GRO120 51 28 0 79

KNU121 18 0 0 18

| WA 318 157 20 0 177
V.
Total 500 270 9 779
-Percent 64.3 346 1.1 100

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 171

problem LIN318, labeled A, B and C. LIN318A is a run of LIN318 started with the
suboptimal tour of length 41 349 found by Padberg and Hong [54] using the revised
software system just described. The run LIN318B used the optimal tour length 41 345
found by Crowder and Padberg [10] as a starting point — a check to ensure the
validity of the software output. The third run, LIN318C, used the same information
as LIN318B. but with a factor of 10in the data to increase the precision of the distance
calculation.

Table 5 gives a breakdown of the facet-inducing linear inequalities that were
generated in the respective runs with the (changed) TSP code to get the linear programs
of table 4. As noted earlier, the constraint identification for (general) comb inequalities
was rather ineffective.

Finally, table 6 presents the results of using the IBM package MIP/370 as the
branch and bound package to prove optimality for each of these problems. The first
two columns display the problem size: ng, is the number of rows and my is the
number of columns of the (pure) zero-one problem to be optimized. The column
labeled MIP gives the number of times the MIP/370 program was called, i.e. the
number of passes through the bottom loop of the flowchart in fig. 3 in which branch
and bound calculations were required to prove optimality of a tour. The first of the
two columns labeled NODES gives the number of nodes of the branch and bound tree
generated to find the optimum zero-one solution, and the second column gives the
total number of nodes generated in MIP/370 to prove optimality. Likewise, the first
of the two columns labeled TIME gives the time spent in the branch and bound
procedure to find the optimum zero-one solution, whereas the second one gives the
total time spent in the MIP/370 program to prove optimality. (Thus, in problem
GROA438 it took 17 nodes and 2 seconds of CPU time to find the optimum and one
additional node, and an additional second to prove optimality.) The respective times
have been rounded to the nearest second: in some cases, the MIP times add up to the
total execution times, indicating that MPSX/370 solved the linear program in less
than one second. The total CPU time for the MPSX/370 computation of solving the
linear program (plus constraint generation and re-optimization where applicable),
as well as the time spent in the MIP/370 program are reported in the last but one
column labeled TOTAL TIME.

h A first glance at table 6 shows that the computation times as well as the total
branch and bound effort spent on optimizing the zero-one linear programming prob-
lems are extremely low. To optimize the (previously unsolved) problem GRO48, a
total of 18 nodes had to be generated and the entire execunon time of the MPSX-
MIP/370 routine took 5 seconds of CPU time. The 'gap’ between the linear program
value of the corresponding TSP output and the optimal tour is 14.94, i.e. roughly
0.3% of the optimal tour length. This fact, together with the high cutting power of
the facet-defining subtour-elimination and comb constraints, is responsible for the
low computation time. The same can be said about virtually every other problem.

K. Hoffman, M. Padberg, LP-based combinarorial problem solving

172

'SAN 891/0LE WAl spucdag

68S tiv 98 £8F 80FV 0€C 007 + SLf €9¢ 91T 91T T 80Tl S6p ABIENI
68S £1¢ 818 Srb 89¢ 981 OSI v 6St 6vf 881 881 T 80TU S6F OBIENI]
She 1y ¥43 9l 6cl 86 ¥S b STI €Ll 1¢ It T b1 S6F HBIENI]
134 84 61¢ €91 SL VL 1T 1 98 18 9¢ ¢ § s 08 t¢ € TET 96y VBIENIT
6vt 91 [N B A B 3 4 | B X4 S1 1 ¢ ! ST ¥ € T81 6t TZINNYA
w69 144 8 S 0T 81 1 8 S 61 LY T 6tT 661 021040
890 ¢ ¥ 11 § w 9 I vee £0C 8C10YX
P6T 1T 1T CoL 0 T [4 1 L 4 4 vy T 0Tt 6l LT10YN
6vL 0C 6 { I S S 1 $81 €81 9T10YUN
I¥1 €T 1 [44 801 08 161 091 1T 01l 86 10T LBl CT Stk OLI 4STIONUN
|84 A4 61 6L 1S 9¥1 ST 1 OL 6§ L¥bl ¢€€1 T Sby OL1 VSTIOUN
[4: TR ¥ £l L [4 Si 8 I 8T (81 pT1I0YY
§s6 1 9 l 0 £ 4 1 16 68 LSNOL
90 $ S t [/ 81 i1 o1 98 8+0YO
HLONAT yJNILL
¥NOL 140 1viOL 3JIWIL SIAAON ¥V AWIL SAAON ¥V JNIL SIAON dIN Yu Uy aweN

9 3qel

K. Hottman. M. Padberg. LP-based combinatorial problem solving 173

Computational and theoretical research on traveling salesman problems con-
tinues along the lines described here. We quote from Padberg and Grotschel [54]:

‘318 cities should not be the end of the storv. The codes we have re-
ported on here have used only some of the heuristics known to date.
Currently. new LP-based cutting plane procedures are being developed
which contain exact subroutines for the identification of subtour elimina-
tion and 2-matching constraints. as well as several new heuristics and new
implementation details to speed up various communication procedures
between subroutines and to overcome certain problems with respect to

space. These methods may lead to another jump in the range of solvable
problem sizes.’

5. The triangulation of input/output matrices

The results described in this section are summarized from papers by Grotschel
et al. [22-24]. The triangulation of input/output matrices is an interesting applica-
tion of an NP-hard combinatorial optimization problem known as the linear ordering
problem. described as follows: Following Leontief [36] . the economy of a region or
country is divided into n sectors, and an input/output matrix A with n columns
and n rows is constructed with the entry a; denoting the amount of flow of
goods from sector i to sector j in a certain year. The ‘triangulation’ problem consists
of permuting the rows and columns of 4 simultaneously such that the sum of the
entries above the main diagonal of the permuted matrix is as large as possible. As to
the problem’s economic interest and significance, Leontief writes in a 1963 article in
Scientific American [38] :

‘The triangulation of a real input/output table — that is, the discovery
of its peculiar structural properties and its interindustry dependence — is
a challenging task. It is complicated by the fact that one must take into
account not only the distinction between zero and non-zero entries. but
also the more important difference between their actual numerical magni-
tudes.’

(See also Leontief [37.39].)
Let o, denote the largest sum of the entries above the main diagonal of the
permuted matrix that can be achieved by simultaneous row and column permutations

and let « be the sum of all off-diagonal elements of the input/output matrix 4. Then
the number

Qg
ANA)Y = 100 —
«

174 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

is called the degree of lineariry of the economy represented by the input/output
matrix 4 and is used to measure the mutual dependence or circularity of the sectors
of the economy under consideration. To know a, it is necessary to solve the rriangu-
lation or linear ordering problem.

The linear ordering problem is described as follows: A linear ordering ot a
finite set ¥ with | V'| = n is a one-to-one mapping o from {1.. .. ., ntto V.Fori, jEV
we say that i precedes j if 6™! (i) < 7' (/). In economic applications. a ‘profit’ (or a
‘cost’) can be associated with a linear ordering in the following way: For every pair of
elements /, j € V, the two given values ¢;j and ¢j; are interpreted as the profit that
accrues if i precedes j or if j precedes i, respectively. in a linear ordering 0. Assuming
additivity of profits. the total profit of a linear ordering o is

€ (5.0)
(ij) € T(0)

where T(0) = {(i, /)" "' (i) < o™'(j)}. and (i, j) denotes the ordered pair i and j. In
the linear ordering problem, one is interested in finding a linear ordering o that maxi-
mizes the objective function (5.0). Of course, in the triangulation problem the profits
are given by the flow values g; of the input/output matrix 4 and an optimal linear
ordering gives the recording of the rows and columns of this matrix so as to get as
close as possible to a triangular form.

Graphically, a linear ordering o induces an acyclic orientation of the edges of
the complete graph K, having n nodes corresponding to the elements of V: an edge
connecting nodes i and j is oriented (or directed) from i to j if (i, j) € T(0). The in-
duced orientation of the edges of K, is acyclic in the sense that the resulting directed
graph does not contain any directed cycle, since in a linear ordering no element can
precede itself. On the other hand, every acyclic orientation of the edge set of K, in-
duces a linear ordering on the nodes of K,. Consider the complete directed graph
D, = (V..A,) having n nodes and arc set 4,,. A linear ordering o corresponds uniquely
to a partial graph (V, T) of D, such that (V, T) induces an acyclic orientation of the
undirected graph K, and vice versa. In the terminology of graph theory, an acyclic
orientation of K, is called an acyclic tournament in the directed graph D,. Then the
family F of sect. 2 is the following set:

-~ _ . : .
g, = {T C A4, | Tisan acyclic tournament in Dn}) .

where for notational simplicity we identify ‘tournament’ with ‘arc set of a tourna-
ment’. Since |14, | = n(n = 1), the linear ordering polytope P{'y. i.e. the convex hull
of the incidence vectors of all acyclic tournaments in D, , is the polytope

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 175

Py = conv{xr e RM""V T e ﬁFn}

over which we wish 0 maximize the linear form given by the profits ¢;; for all i # j.

Having described the combinatorial objects we are looking for as certain sub-
sets of the arc set A4, of the complete directed graph D,. we can now proceed to
formulate the linear ordering problem as a linear program in zero-one variables. Let
x; = 11t i precedes j, x;; = 0 otherwise. The linear ordering problem is the following
maximization problem:

. <
maximize 2 ¢, X (5.1)
LJ

subject to Xp ot X = 1 forall i#j (5.1a)

x.+ x, +x, . <

tJ

i Tk ki .
forall I<i<j<k<n (5.1b)
X ¥ X T X S22
; >0 (5.1¢c)
X, integer . (5.1d)

Note that variables x;; are not needed, hence are not defined. The inequalities (5.1a)
express the condition that either i preceded j or j precedes i for all i # j. Inequalities
(5.1b) exclude directed cycles (dicycles) of length 3 and are all that are needed to
exclude all directed cycles in conjunction with (5.1a). The condition (5.1d) is essential.
This of course means that additional linear inequalities are needed to describe the
linear ordering polytope P’y when condition (§.1d) is dropped.

5.1 FACETS OF THE LINEAR ORDERING POLYTOPE

The following theorem from Grotschel et al. [23] summarizes the partial
description of the linear ordering polytope P['y known to date. Related interesting
structural properties of this polytope can be found in the paper by Young [69]. who
studied this problem because of its interest to voting theory.

THEOREM

Let D, = (V. A,) be the complete directed graph having n = 6 nodes.

176

K. Hoffman, M. Padberg, LP-based combinatorial problem solving

(ii)
(ii)
(iv)

v)

The dimension of P['y is n(n = 1)/2.
The inequalities x;; = 0 for all (i, j) € A,, define (trivial) facets of Ply-
The 3-dicycle inequalities (5.1b) define facets of Pg.
Let U=1{u,,.... uk}, W=iw,,... , w,} C V be disjoint sets of nodes
of D, of cardinality 3 < k< n/2 and call the arc set

A ={w)li=1. . kb Ullw,u) 1 i# el kH
a k-fence. Then every k-fence inequality

x(A) < k¥ -k + 1 (5.2)

defines a facet of P['g that is distinct from the facets of part (ii) and (iii).
(Note that k-fences are particular orientations of the complete bipartite

graph K ;. .)
Let M C A4, be an arc set (catled Mobius-ladder) which is the union of
k> 3, k odd, dicycles C,, . . ., C, satisfying the following properties:

(1) The length of C; is three or four,/=1...., k.

(2) The cycles C;, C;,,, i=1,...,k—1,tesp. Cy, G have exactly one
arc, say ¢; resp. e, in common. No other pair of cycles hasacommon
arc.

(3) Each node u in the vertex set of M is contained in at least three arcs
of M.

(4) If two dicycles C;, C,-, 2 < i+ 1< j< k,have a node, say v, in
common, then v belongs to all dicycles C;, C;, ;.. ... Ci or to all di-
cyclesC;,....Cp., Cy, ..., C;.

(5) Given any dicycle C;, j € {1, ki, the set M\{gl i € J}con-
tains exactly one dicycle, namely C '8 where

J=AL,.. kb N dj-2 -4, wlj+ L j+3, 00,

Then the Mobius-ladder inequality

x() < 1M1 - KL (53)

defines a facet of P{ . The Mébius-ladder inequality for M =C, U G, U G5,
where the C; are dicycles of length four, is a 3-fence inequality. In all
other cases, no inequality (5.3) is equivalent to any of the inequalities of
part (ii), (iii), and (iv).

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 177

To use this theorem algorithmically. one first notes that because of the
simplicity of the constraints (5.1a). one can eliminate half the number of the
variables of the problem. One then rewrites the inequalities of the theorem accord-
ingly. To begin the calculation. one considers the problem

maximize z Cir %
1<y

subjectto 0 <xil. < 1forall 1<i<j<n.

where ¢ = ¢;; — ;. This problem can be solved trivially. _

One then adds the (transformed) 3-dicycle inequality constraints (5.1b). Con-
straints of this type. while polynomial in n. are too many to list; consequently, they
are generated as cutting planes ‘on the fly’. That is, all 3-dicycle inequalities are
enumerated. but only those that are violated by the solution to the current linear
programming relaxation are added. :

On the other hand. there is no known-to-date polynomial method to solve the
facet-identification problem (2.14) for the k-fence inequalities described in (5.2).
Heuristics for finding violated constraints can be found in the paper by Grotschel et al.
[23].

The Mobius ladders (5.3) are even more difficult to handle. and a general
approach for obtaining such constraints is unknown at present. Heuristics have been
devised for three special Mébius-ladder inequalities (again, see Grotschel et al. [23]).

5.2, COMPUTATIONAL RESULTS FOR THE TRIANGULATION OF INPUT/OUTPUT
MATRICES

Given the current state of information regarding the polyhedral structure of
the linear ordering problem. we now summarize the computational results Grétschel
et al. [22,23] obtained with an algorithm using the facet-cuts described above. All
experiments were run on the IBM 370/168 of the Rechenzentrum der Universitit
Bonn. These authors state that the range of matrices considered in their study is
representative of almost all input/output matrices that have been compiled in Europe
so far. The study. comprises three sets of input/output matrices: one set is provided by
the European Community. the second one by the West German Institut fur Wirtschafts-
forschung, and the third one by the West German Statistisches Bundesamt.

The European Community compiles (44 X 44) input/output matrices for all
members of the EC. This input/output program is of considerable importance since
here. for all countries. all sectors are defined in a (more or less) identical way. so that
structural comparisons between these countries can be made. These I/O tables can be
obtained from the Office Statistique des Communautés Europeennes (EUROSTAT.

k‘w Atd o B

178 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

B.P. No. 1907. Kirchberg, Luxembourg) on tape. free of charge. In this study. the
authors chose the (most important) matrices which are the (44 X 44) matrices of inter-
mediate consumption at current prices for the years 1959, 1965.1970. 1975. EURO-
STAT has thirty of these matrices. A list of the matrices together with their degree of
linearity (the computation of which requires the optimization of the linear ordering
problem for the given input/output matrix). and the respective running times can be
found in table 7. The running times in table 7 include the total time used including
input and output of data, paging, etc. In every cutting plane generation step. all cut-
ting planes that were found were added to the LP. In twenty-eight of the thirty
matrices, an integral solution was obtained after the initial phase. and only for the
matrices BELGIUM 59 and GERMANY 70 was it necessary to enter the branch and
bound stage. Both problems were solved with only one branching operation. Thus. the
branch and bound tree consisted of three nodes (including the root).

The second class of input/output matrices have the size 56 X 56 and are com-
piled by the Deutsche Institut fur Wirtschaftsforschung (DIW), Berlin. for the Federal
Republic of Germany during the years 1954—1972. The degrees of linearity and the
running times are listed in table 8. The version of the code used was the same as for
the EUROSTAT matrices. All nine triangulation problems could be optimized without
entering the branch and bound stage.

Thirdly, the authors ran the same version of the code on three (60 X 60) input/
output matrices compiled for the years 1970. 1974 and 1975 by the Statistisches
Bundesamt (Postfach 5528, D-6200 Wiesbaden, West Germany) for the Federal
Republic of Germany. The three tables 'Input/Output Tabeile zu Ab-Werk-Preisen-
Inlindische Produktion 70, 74, 75’ are available from this government agency. The
results can be found in table 9. The 1974 and 1975 problems could be solved using
nothing but 3-dicycle inequalities. For the 1970 matrix. only one branching operation
was necessary to obtain the optimum solution. Up to this point, the authors used a
version of the code where only 3-dicycle inequalities are generated. In a second version
of the code, other heuristics were used only if no violated 3-dicycle inequalities were
found. The only problems where the new code produces results different from the one
described above are those input/output tables for which the branch and bound phase
has to be called, i.e. for which 3-dicycle inequalities did not suffice to solve the prob-
lem.

For each of these problems, one violated Maobius-ladder constraint together
with many 3-dicycle cuts was sufficient to get tne optimal solution. Perhaps luckily.
in every real-world application of this study the authors were able to solve the linear
ordering problem purely by LP cutting plane techniques without resorting to branch
and bound. '

Thus, the linear ordering problem appears to be another class of NP-hard
problems which can be optimized in computationally reasonable times using facet-

defining linear inequalities in a linear- programming-based approach to combinatorial
problem solving.

#

——— ke

‘he

= e v
=

3 ug

[

S VR TR SR

—

[

K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Table 7

Input/Output table

Degree of linearity

CPU time in
(min : sec)
(IBM 370/168)

T59111XX.B

TS9D11XX.B
TS9F11XX.B
T59B11XX.B
TSIN11XX.B

T65L11XX.B
T65111XX.B

T65B11XX.B
T65F11XX.B
T65D11XX.B
T65W11XX.B
T65N11XX.B

TI0L11XX.B
T69R11XX.B
T70K11XX.B
T70I11XX.B
T70F11XX.B
T70B11XX.B
T70W11XX.B
T70D11XX.Ba
T70N11XX.B
T70X11XX.B
T70D11XX.Bb
T70U11XX.B

T7SE11XX.B
T75K11XX.B
T75111XX.B

T75N11XX.B
T75D11XX.B
T75U11XX.B

(Italy 59)
(Germany 59)
(France 59)
(Belgium 59)
(Netherlands 59)

(Luxemburg 65)
(Italy 65)
(Belgium 65)
(France 65)
(Germany 65)
(Eur-6 65)
(Netherlands 65)

(Luxemburg 70)
(Ireland 69)
(Denmark 70)
(Italy 70)
(France 70)
(Belgium 70)
(Eur-6 70)
(Germany 70a)
(Netherlands 70)
(Eur-9 70)
(Germany 70b)

(United Kingdom 70)

(Spain 75)
(Denmark 75)
(Italy 75)
(Netherlands 75)
(Germany 75)

(United Kingdom 75)

88.443
88.148
85.516
83.818
82991

90.805
85.812
85.030
84.395
83.007
82921
82.585

89.808
87.862
85.893
85.613 -
85.115
84.132
83.401
83.181
82.810
82.668
82.199
80.636

87.715
86.054
85.136
82.943
82.773
82.678

:02.10
:45.84
:44.02
:12.84
:51.83

S - O O

:28.95
:34.07
115.41
:10.87
:29.05
:56.78
1 15.86

—_ 0O = e e e O

:58.87
:56.85
:54.56
:13.68
:16.51
:54.96
154.72
:12.06
: 08.82
:53.76
:36.69
:36.86

© = O = = O O = = O O O

:04.01
: 0447
:10.56
152.04
:13.87
: 12.05

N S = Y SV

minimum CPU time: 0 :28.95,
maximum CPU time: 1 :36.69,

average CPU time:

1:04.09.

179

180

K. Hoffman, M. Padberg, L P-based combinatorial problem solving

Table 8

CPU time in

Input/Output table Degree of linearity {min : sec)
(IBM 370/168)
DIW56NS54 81.299 4:56.71
DIW56NS8 81.605 4:24.14
DIWS6N62 81.435 4 :56.12
DIWS6N66 81.791 4 :47.15
DIWS6N67 81.063 5:01.19
DIWS6N72 79.812 5:10.75
DIW56R54 80.785 4:47.61
DIWS6RS8 81.061 4:50.81
DIWS6R66 81.941 4:33.77
DIWS6R67 81.801 5:08.58
DIW56R72 79.966 4:57.03
minimum CPU time: 4 :24.14,
maximum CPU time: § :10.75,
average CPU time: 4 :52.16.
Table 9

CPU time in

Input/Qutput table Degree of linearity (min : sec)
(IBM 370/168)

Input/Output-Tabelle 1970 '
zu Ab-Werk-Preisen-inlindische 83.186 13:25.01
Produktion
Input/Output-Tabelle 1974
zu Ab-Werk-Preisen-inlindische 83.965 9:3295
Produktion
Input/Qutput-Tabelle 1975
zu Ab-Werk-Preisen-inlindische 83.799 9:57.76

Produktion

K. Hormman, M. Padberg, LP-based combinatorial problem solving 181

6. Large-scale zero-one linear programming problems

In this section. we describe two computational studies (Crowder et al. [11]
and Bernal et al. [4]) which apply the polvhedral theory to the solution of general
large-scale zero-one programming problems. The zero-one programming problems that
are considerad here have the following form:

(Z0OP) min fex 1 Ax < box, = Oorl forj=1....,nt,

where A is an m-by-: matrix with arbitrary rational entries. and b and c are vectors of
longth m and n. respectively. with rational entries. Historically. the interest in pure
zero-one problems appears to originate with mathematical programming models in
finance (see, for example. the paper by Lorie and Savage [41] and the work by
Weingartner [66]). It would. however. be wrong to conclude that these zero-one
problems are limited to finance models: rather. they enjoy broad applicability.

In all test problems. the costs ¢; are non-negative numbers. The problems have
a sparse constraint matrix A (i.e. the total number of non-zero elements g; of 4
divided by the product of m and n is typically less than 0.05). Furthermore, while 4
is permitted to have rows with entries equal to +1. =1 and O (e.g. special ordered set
constraints). the problems considered here primarily have a substantial number of rows
in which the non-zero elements of A have a significant variance within each row. In-
deed. if A has only +1. =1 and O entries. or if all but a few rows of A have this
property, then neither problem preprocessing nor constraint generation as done in
these studies can be expected to be very effective. This. indeed. was the case for
several of the test problems having this property.

The approach taken to solve these problems consists of a combination of
problem preprocessing, cutting planes and clever branch and bound strategies.
The preprocessing and overall flow of the procedure was discussed in sect. 3. We now
provide the details of constraint generation for this class of problem. For the various
improvements of the standard branch and bound procedure implemented by Crowder
et al. [11]. we refer to reader to the original paper. Computational results will then be
oresented. ’

6.1. A POLYHEDRAL APPROXIMATION FOR SPARSE ZERO-ONE LINEAR PROGRAMS

The zero-one problem (ZOP) with a single linear constraint (i.e. the case where
m = 1) is called the knapsack problem. The facial structure of the associated polytope
has been studied thoroughly. even though a complete list of the linear inequalities
that define the knapsack polytope remains unknown. Let (a;, b;) denote the ith row of
(4.b) and assume for simplicity that all constraints of (ZOP) are general constraints
having arbitrary rational entries. Let

i
-

182 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

P‘i = convix € R" | aix < b’,, xj=0 or 1 forj=1....,)z} (6.1)

denote the convex hull of the zero-one solutions to the single inequality a'x < b..
where i € {1,...,m}. P is the knapsack polytope associated with constraint of
problem (ZOP). Likewise, we let

P = convix€ R"| Ax<b, x; =0or | forj=l...ni (6.2)

denote the convex hull of zero-one solutions to the entire constraint set of problem
(ZOP). P, is the zero-one polytope associated with problem (ZOP) and clearly we have

p, : (6.3)

i.e. Py is contained in the intersection of all the knapsack polytopes PlLi=1,....m.
In general, equality (6.3) does not hold, but does if, for example, problem (ZOP) de-
composes totally into m knapsack problems. This is the case if every variable x;
appears in exactly one of the m constraints a'x < bfori=1,...,m lf wehavea
large-scale zero-one programming problem with a sparse matrix A and with no apparent
special structure, it is reasonable to expect that the intersection of the m knapsack
polytopes Pli provides a fairly good approximation to the zero-one polytope Py over
which we wish to minimize a linear objective function. This is a working hypothesis
and the computational results confirm that it is a reasonable assumption. Practically
speaking, this assumption permits one to concentrate on the individual rows of the
constraint set of problem (ZOP) when one derives valid inequalities for the polytope
Py. While the preceding approach is clearly valid for any zero-one problem, it can not
be expected to lead to substantial computational gains if, for instance, the matrix A
is rather dense or if almost all entries in 4 equal +1, —1 and 0. In these two cases, the

constraint generation must be done differently (see, for example, the survey by Pad-
berg [53]).

6.2. FACETS OF THE KNAPSACK POLYTOPE

Now consider a single inequality a'x < b, of the constraint system of problem
(ZOP). Using the variable substitution x; = 1 — X, where necessary, one brings the in-
equality into a form where all non-zero coefficients are positive. Dropping the index i

for notational convenience, one therefore considers (without loss of generality) a
linear inequality

z a,x; < a, , ' (64)
jEK

K. Hoftman, M. Padberg, LP-based combinarorial problem solving 183

where the coefficients a; are positive rational numbers and the variables x; assume the
values zero or one. Let S C K be such that

™M

a > a, and Z a = a < a,- forall k€ S (6.5)
j=S

i

Jj=S

hold. Then § is called a minimal cover with respect to (6.4) and obviously every zero-
one solution to (6 .4) satisfies the inequality

x, < 1SI-1, (6.6)

™M

i

isS
where |S| denotes the cardinality of the set S (see. for example. Dantzig [13] p. 520).
Suppose next that S* C K and r € (K\S™) satisfy

Z a. < a, and
JES* !

Q U {rtis a minimal cover forevery Q C S* with IQ| =k , (6.7)

where k is an integer number satisfying 2 < k& < |S™|. Due to the one-element role of
the index ¢ and because k is some integer number. the set S* U {¢} is called a (1, k)-
configuration and the following inequalities are valid for the 0-1 solutions to (6.4):

(r—k+l)x,+ z xl.<r. (6.8)
JE€ T(r)

where T(r) C S" varies over all subsets of cardinality r of $*, and r varies over all
integers from k to |S” |, inclusively. If k = iS* [holds in (6.7), then a (1. k)-configura-
tion is a minimal cover. Thus, in general, the class of inequalities associated with (1, k)-
configurations properly contains the class of inequalities associated with minimal
covers. Both inequalities (6.6) and (6.8) are best possible ones if K = S holds in the
first case. or if K = ™ U {z} holds in the second case, i.e. in these cases the respective
inequalities define facets of the associated knapsack polytope (see Padberg [53.55]).
In general, however, these inequalities must be ‘lifted’ to obtain facets of the knap-
sack polytope associated with (6.4), i.e. they must be extended appropriately to the
variables x; with index j in K'\S, or with index j in K\S* \{z}, respectively.

The extension is done over the respective variables by the following recursive
lifting procedure: Initially, one sets fi=lforalljE€S, fo =1Si = 1,0r f;=1 forall

184. K. Hoffman, M. Padberg, LP-based combinatorial problem solving

JE S*, fi=(r—k+ 1), fy=rand S=5" U r ,respectively. For the iterative step.
let k€ K\S and determine

2 =maxi 2 fx | 3 ax <a, - a.x =0orl foral /€ S}. (69)
JES JES

Define f, = fy —z, . redefine Stobe SU k ,and repeat until K\S is empty.
The resulting inequality f, < Jo defines a facet for the knapsack polytope associated
with (6.4). Obviously, the lifting procedure requires the solution of several zero-one
problems. But by relaxing (6.9) to a linear program, one can approximate the lifting
procedure and thus produce ‘almost’ facet-defining inequalities for the knapsack
polytope efficiently.

We note that the support of an inequality obtained by lifting (6.6) or (6.8) is
contained in the support of the inequality (6.4), i.e. a; = 0 implies that f; = 0 holds.
Therefore, the inequalities that are generated preserve the sparsity of the constraint
matrix. This is an additional difference between these methods and the traditional
cutting planes described in the textbooks on integer programming. The traditional
cutting planes are typically rather dense and thereby lead to explosive storage require-
ments. _

Since the number of possible minimal cover and (1, k)-configurations for (6.4)
is exponential in the number of variables of the constraint (6.4), one can not list
a priori all possible minimal covers and (1, k) configurations for each row of the prob-
lem. One must therefore generate such constraints ‘on the fly’, i.e. generate them in
the course of computation as they are needed. To this end, one starts by solving the
linear program

min{cxle_<b,0<xi<lforj=l,.:.,n} (6.10)

and obtains an optimal solution ¥. If ¥ is a zero-one solution, one can stop: X solves
the problem (ZOP). Otherwise, taking any knapsack row of A4 (i.e. a non-SOS row).
one solves the following problem in approximation to the facet-identification problem
(2.14):

Constraint identification problem: Given ¥ , find a minimal cover inequality (6.6) or
a (1, k)-configuration inequality (6.8) that chops off X, if such an inequality exists.

The constraint-identification problem is solved, in turn, for each row of the
original constraint matrix 4 that qualifies; the resulting inequalities that are identi-
fied are ‘lifted’ and appended to the linear programming problem; the augmented
problem is reoptimized; and the procedure is repeated until a zero-one solution is
found, until no more constraints are found, or until the gain in the objective function

K. Hoffman. M. Padberg, LP-based combinatorial problem solving 185

value after a number of such iterations becomes too small (e.g. is less than one unit in
terms of the vnits of the objective function). When one of the latter two possibilities
occurs. one resorts to branch and bound.

The question is then to devise a procedure that solves the constraint-identifi-
cation problem. Consider the zero-one knapsack problem

min{ 2 (1-%)s | > as, > ags; =0 or | forall JEK, (6.11)
€K €K

where the inequality is strict in the knapsack constraints. It follows that there is a
minimal cover inequality (6.6) that chops off X if and only if the optimal objective
function value of (6.11) is less than one. As can be easily verified. problem (6.11) is
constructed in such a manner that its solution finds a most violated minimum cover
inequality. A

The formulation of the constraint-identification problem for minimal cover
inequalities involves the solution of a zero-one knapsack problem for which, to date,
no technically good algorithm is known. but which can be approximated efficiently
by its linear relaxation. For (1. k)-configurations. a formulation of the constraint-
identification problem in a tractable form such as (6.11) is not known at present.
Rather. both computational studies reported here use ad hoc procedures for finding
(1. k)-configurations. For details about these procedures, see Crowder et al. [11] and
Bernal et al. [4].

We note that facets for the knapsack problem with special ordered sets were
described by Johnson and Padberg [29,30]. The study by Crowder et al. {11} does
not use these results, but rather a surrogate constraint is formed from the original
knapsack constraint and a non-overlapping subset of SOS constraints. Bernal et al.
[4] compare results of using the surrogate strategy to that of using the theoretical
results directly.

Both studies resort to branch and bound procedures when it is no longer
possible to generate constraints which cut off the current LP solution. Crowder et al.
[11] use IBM’s MIP370 package with an ad hoc upper bound procedure. Bernal et al.
[4] use Marsten’s IP83 code. an extension of XMP to integer programming (see
Marsten [42.43]). This code is an al-FORTRAN portable code which attempts to
incorporate both breadth-first and depth-first strategies (via parametric analysis).
For a complete description of the approach, see Marsten and Morin [44] and the
dissertation by Singhal [60]. Included in IP83 is the heuristic by Balas and Martin
[1] for determining a feasible integer solution to the problem.

6.3. COMPUTATIONAL RESULTS FOR SPARSE ZERO-ONE PROGRAMS

Crowder et al. [11] used a set of real-world large-scale zero-one linear program-
ming problems for their tests. Table 10 summarizes the main characteristics of the

e il .

186 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Table 10

Test problem summary

Name VARS ROWS NON-SOS VARIANCE" DENS Z1p Zip
P0033 33 16 11’ 49.6 (33.9) 17.4 25206 3 089.0
P0040 40 24 13 39.6 (92.8) 1.3 617965 62 027.0
P0201 201 134 107 0.7 (1.0 5.0 6 875.0 7615.0
P0282 282 242 44 34.3 (16.2) 2.0 1768675 2584110
P0291 291 253 14 35(2.3) 1.9 1705.1 5223.75
P0548 548 177 94 1239 (88.3) 1.8 315.3 8 691.0
P1550 1550 94 2 8.4 (8.4) 7.4 1706.5 1708.0
P1939 1939 109 2 3.5(3.5) 4.8 2 051.1 2 066.0
P2655 2655 147 2 2.32.3) 34 6 532.1 6 548.0
P2756 2756 756 386 149.2 (89.4) 0.4 2 688.7 3124.0

* After probiem preprocessing.

test problem set. The columns headed VARS. ROWS and NONSOS contain the
number of variables, the total number of constraints, and the number of those con-
straints that are not of the special ordered set type. The column headed VARIANCE
gives the mean of the intra-row standard deviations of the absolute values of the non-
zero elements of the non-SOS rows of the constraint matrix after preprocessing. the
number in parentheses is the standard deviation of this aggregate statistic. As an ex-
ample, P2756 has 756 rows, of which 386 are non-SOS rows. Computing for each
non-SOS row of P2756 the standard deviation of the absolute values of its non-zero
elements and averaging over all 386 rows yields an average intra-row variance of 149.2.
a substantial variation of the non-zero coefficients: the number 89 .4 indicates that the
variation is substantial among the non-SOS rows of the constraint matrix. but is some-
what less, on average. than the variation within each non-SOS row. In problems
P1550. P1939 and P2655. the figures indicate that only one of the two non-SOS rows
contributes to the standard deviation. the other row having identical non-zero ele-
-ments. Indeed, these problems are set partitioning problems with two additional
constraints: one requires that the sum of all variables be a certain number: the other
is a knapsack constraint with positive coefficients which, however. have little variation.
The column headed DENS specifies the density of the original constraint matrix plus
the cost row (i.e. the total number of non-zero elements of 4 and ¢ divided by the
product of m and n and multiplied by 100). Finally. Z,, denotes the optimal ob-
jective function value of the linear programming relaxanon of problem (ZOP) in
user-supplied form, while Z;, denotes the optimal zero-one objective function value.

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 187

It can be inferred from the problem characteristics that one can not expect the con-
straint generation as discussed in subsects. 6.1 and 6.2 to be equally effective on all of
the ten test problems.

Crowder et al. [11] performed all computational experiments on the IBM
370/168 computer. running the MVS operating system, at the Thomas J. Watson
Research Center in Yorktown Heights, New York. FORTRAN programs were com-
piled using the FORTRAN H extended compiler. PL1 programs were compiled using
the PLI optimizing compiler.

The zero-one preprocessor is the initial computational phase. As indicated, the
effect of the preprocessor is to tighten the user-supplied linear programming formula-
tion of the zero-one problem using the standard ‘tricks’ of integer programming to
eliminate inactive constraints, and to fix variables at either zero or one. Table 11
summarizes the results of the initial preprocessor step on the test problem set. The

Table 11

Problem preprocessor summary

Odgiﬁal problem Eliminated ' N

Name TIME
ROWS VARS ROWS VARS

P0033 16 33 0 0 0.01
P0040 24 40 0 0.02
P0201 134 201 6 © 0.01
P0282 242 282 20 0 0.02
P0291 253 291 a7 1 0.02
P0s548 177 548 20 21 0.03
P1550 ° 94 1550 0 0 0.19
P1939 109 1939 0 0 0.18
P2655 147 2655 0 o - 0.30
P2756 756 2756 17 22 0.50

*CPU minutes. IBM 370/168 MVS.

column headed Original problem specifies the number of rows and variables in the
problem before preprocessing. The column headed Eliminated gives the number of
rows and variables that the preprocessor successfully eliminated from the problem.
The time for the initial preprocessor phase, in CPU minutes, is given under the TIME
column.

Y ANLedA N DR

RN

3

188 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Table 12

Constraint generation summary

Preprocessed problem Augmented problem .

Name TIME
VARS ROWS DENS Zl'p PASS ROWS DENS Zl'p'

P0033 33 16 17.4 28194 6 36 12.1 30653 0.12
P0040 40 24 113 61829.1 4 29 13.8 618628 0.12
P0201 195 134 5.0 7 125.0 1 139 5.0 7125.0 0.16
P0282 282 222 1.5 176 867.5 14 462 1.3 255033.1 1.00
P0291 290 206 1.3 17499 6 278 2.5 5§022.7 033
P0s48 527 157 1.9 31259 9 296 1.3 8 6435 0.57
P1550 1550 94 7.4 17065 1 94 7.4 1706.5 0.81
P1939 1939 109 4.8 2051.1 1 110 4.8 2051.1 0.74
P2655 2655 147 34 6532.1 2 149 34 6535.0 .04
P2756 2734 739 04 2701.1 8 1065 0.4 31153 3.06

*CPU minutes, IBM 370/168 MVS.

The constraint-generation procedure is the second computational phase: It
operates on the preprocessed problem to produce and solve a linear programming
problem with a better (greater in the minimization case) optimal continuous objective
function value. Table 12 summarizes the resuits of the first constraint-generation step
on the test problem set. The columns headed Preprocessed problem specify the number
of constraints, the number of variables. the density of the problem. and the optimal
continuous objective function value Z {'p of the problem produced by the preprocessor.
before constraint generation. The Augmented problem section of the table indicates
the number of constraint-generation ‘passes’ (i.e. the number of intermediate linear
programming problems required). the number of constraints in the final linear program-
ming problem produced, the density of its constraint matrix including the cost row.
and its optimal continuous objective function value Z;,. The time for the initial
constraint-generation phase. in CPU minutes. is given under the heading TIME. This
time includes all linear programming calculations in the constraint-generation phase.
including the solution qf the original linear program.

The real measure of the effectiveness of the constraint-generation procedure is
the extent to which it closes the 'gap’ between the optimal value of the objective
function of the linear programiming relaxation and the optimal zero-one objective
function value. Table 13 summarizes these data for the first application of the con-
straint-generation procedure. The column headed AROWS specifies the number of

K. Hoptman, M. Padberg, LP-based combinarorial problem solving 189

Table 13

Effect of constraint generation

Name AROWS GAP RATIO
P0033 20 269.6 092
P0040 5 197.9 0.17
P0201 5 490.0 0.00
P0282 240 815435 0.96
P0291 72 34738 0.94
P0548 139 5565.1 0.99
P1550 0 1.5 0.00
P1939 1 14.9 0.00
P2655 2 15.9 0.19
P2756 : 326 4229 0.98

constraints generated by the procedure. The GAP is the difference between the opti-
mal zero-one objective function value and the optimal continuous objective function
value before constraint generation. but after problem preprocessing (i.e. the GAP is
Zp, = Z),). The figure RATIO is computed as RATIO = (Zyy = Z{)NZ, ~ Z7,).
Table 13 clearly supports the statements made earlier as to when one should expect
the constraint generation. as discussed in subsects. 6.1 and 6.2. to be effective: The
problems where this part of the overall procedure shows a significant effect are those
having a low density (with the exception of PO033), and a substantial number of
knapsack constraints having a high variance of non-zero elements in each row. In the
remaining test problems, few additional constraints were generated. and while the
authors do not include comparative bench marks. the ones that were generated prob-
ably had a positive effect upon the overall computation times. Table 14 summarizes
the time. in CPU minutes. for the entire system execution on the test problem set. The
system remains in the branch and bound procedure until an integer solution is generated.
If the integer solution is non-optimal and variables can be fixed based on reduced
costs. then control returns to the preprocessing phase (see sect. 3). PIPX passes is the
number of times the branch and bound procedure is called. The &olumns headed TIME
specify the aggregate times spent in each of the three main computational phases, and
the total time required to solve the test problem. In particular. the heading LP/con-
straint generation refers to the total time spent on solving the linear programs and
generating all of the constraints.

4

190 K. Hoffman, M. Padberg, LP-based combinatorial problem solving

Table 14

PIPX execution summary

TIME”
Name PIPX Preprocessor LP constraint Branch and Bound Total
passes generation
P0033 1 0.01 0.12 0.56 0.69
P0040 2 0.03 0.13 0.02 0.18
P0201 1 0.01 0.16 990 10.07
P0282 1 0.02 1.00 11.70 12.72
P0291 2 0.04 0.51 0.30 0.85
P0548 2 0.12 0.70 0.09 091
P1550 3 0.50 0.90 . 0.10 1.50
P1939 3 0.49 . 0.86 ' 13.64 14.99
P2655 3 0.82 323 2.70 6.75
P2756 2 1.07 4.03 49.32 54.42

*CPU minutes, IBM 370/168 MVS

All test problems considered during the course of this study were solved to
optimality. The methodology described above for the solution of large-scale zero-one
linear programming problems produced impressive — by 1983 standards — computa-
tional results, particularly on sparse problems having no apparent special structure.
The authors obtained the test problems from various sources within and outside the
IBM Corporation. The authors report no comparative data on previous solution
attempts, but claim that most problems in this set were originally considered not
amenable to exact solution in economically feasible computation times. The compu-
tational results presented in Crowder et al. [11] contradict this sentiment and strongly
confirm the hypothesis that a combination of problem preprocessing. facet-defining
cutting planes, and judicious use of branch and bound techniques permits. in reason-
able computation times, the optimization of sparse large-scale zero-one linear program-
ming problems, even when no apparent special structure is present.

Computational results from the Bernal et al. [4] study will be available the end of
1985. The authors report preliminary results that good preprocessing and the heuristic
by Balas and Martin [1] furtherimprove the results obtained by Crowderetal. [11]. The
Bernal et al. [4] study is significant in that it is the only pre-1985 study known
to these authors that attempts to use constraint generation within an all.FORTRAN
machine-portable non-proprietary code. The test effort took place on a UNIVAC 1100

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 191

series machine which allows only 262 K words of storage. Within this significant
machine memory restriction. the authors were still successful in solving the first six
problems reported by Crowder et al.. as well as a variety of other difficuit zero-one
probiems not included in the Crowder et al. study.

7. Conclusions

The computational results reported in the last three sections of this report
point to the suitability of using facet-defining cutting planes for the purpose of proving
optimality in difficult. large combinatorial optimization problems. These constraints
— generated only when needed — provide the means for reducing substantially the gap
between the linear-programming relaxation and the integer program. thereby making
large-scale combinatorial optimization problems tractable.

Codes which are LP-based and which use cutting plane methods are not re-
stricted to these three classes of problems. Facets for many other specially structured
problems are known. for example. plant location problems (see Cho et al. [7,8]); set
covering, packing and partitioning problems (see Padberg [3]): and mixed O-1 linear
programming (see Martin and Schrage [45] and the papers of the C.O.R.E. group
mentioned in the introduction). Code development for such problems will require
procedures that generate the facet-defining inequalities via polynomially-bounded
algorithms or at least generate violated inequalities which approximate the facet by
efficient procedures. The codes are likely to consist of a preprocessor. a variety of
heuristics for generating good feasible solutions. algorithms for generating facet-
inducing cutting planes. and a branch and bound algorithm, following the general
design outlines in sect. 3 of this paper. These codes will certainly be complex, but are
likely to lead to methods for solving to optimality — with reasonable computational
effort — many of the classes of difficult combinatorial problems for which only
heuristic ‘'guesses’ at the optimal solution are currently possible. The excellent com-
putational results of the most recent study by Van Roy and Wolsey [65] show that
the validity of this statement is not restricted to the (pure) zero-one combinatorial

_optimization problems considered in this survey, but extends as well to the case of
mixed zero-one linear programming problems.

References

[1] E. Balas and R. Martin, Pivot and complement - a heuristic for 0-1 programming, Manage-

ment Science 26(1980)86.

I. Baranyi, T. Van Roy and L. Wolsey, Strong formulations for multi-item capacitated lot

sizing, CORE Report No. 8313, Université Catholique, Louvain-la-Neuve, Belgium (1983a).

{3] 1. Baranyi, T. Van Roy and L. Wolsey, Uncapacitated, lot sizing: The convex hull of solu-
tions, CORE Report No. 8314, Université Catholique, Louvain-la-Neuve, Belgium (1983b).

-—
[8]

192

(8]

(9]
(10]

(11]
(12}
[13]
[14]

(15]
[16]

(17]
(18]
[19]
(19a]
[20]

[21]

K. Hoffman, M. Padberg, LP-based combinatorial problem solving

I. Bernal, K.L. Hoffman and M. Padbery, Pure zero-one linear programming problems: A
computational study, Tech. Rep., National Bureau of Standards. Gaithersburg. MD (1985).
N. Biggs, E. Lloyd and R. Wilson. Graph Theory 1736—1936 1Clurendon Press. Oxtord.
1976).

R. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methods with
FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems,
No. 184 (Springer-Verlag, Berlin, 1980).

D. Chinhyung Cho, E.L. Johnson, M. Padberg and M.R. Rao. On the uncapacitated plant
location problem I: Valid inequalities and facets. Mathematics of Operations Research 8
(1983)579. '

D. Chinhyung Cho, M. Padberg and M.R. Rao, On the uncapacitated plant location prob-
lem II: Facets and lifting theorems, Mathematics of Operations Research 8(1983)590.

V. Chvital, Edmonds polytopes and weakly Hamiltonian graphs. Math. Progr. 5(1973)29.

H. Crowder and M. Padberg, Solving large-scale symmezric traveling salesman problems to
optimality, Management Science 26(1980)495.

H. Crowder, E. Johnson and M. Padberg, Solving large-scale linear zero-one programming
problems, Oper. Res. 31(1983)803.

G. Dantzig, D.R. Fulkerson and S. Johnson, Solution of a large-scale traveling salesman
problem, Oper. Res. 2(1954)293.

G. Dantzig, Linear Programming and Extensions (Princeton University Press. New Jersey.
1963).

J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, Journal of Research,
National Bureau of Standards 69B(1965)125.

L. Euler, Commentationes Arithmeticae Collectae (St. Petersburg, 1736).

B. Fleischmann, The traveling salesman problem on a road network, Working Paper, Fach-
bereich Wirtschaftswissenschaften, Universitit Hamburg (1981), revised July 1982.

B. Fleischmann, Linear programming approaches to traveling salesman and vehicle schedul-
ing problems, paper presented at the XI Int. Symposium on Mathematical Programming,
Bonn, FRG (1982). .

R. Gomory and T.C. Hu, Multi-terminal network flows, J. SIAM 9(1961)551.)

M. Grotschel, On the symmetric TSP: Solution of a 120-city problem, Math. Progr. Studies
12(1980)61.

M. Grotschel and O. Holland. Solving matching problems with linear programming, Preprint
No. 37, Mathematisches Institut, Universitit Augsburg. FRG (1984).

M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorics 1(1981)169.

M. Grotschel and M. Padberg, Polyhedral aspects of the traveling salesman problem I:
Theory, in: The Travelling Salesman Problem, ed. E. Lawler et al. (Wiley. Chichester,
1985).

M. Grotschel, M. Jiinger and G. Reinelt, On the acyclic subgraph polytope. WP 82215-OR.
Institut fiir Operations Research, Universitit Bonn. FRG (1982a).

M. Grotschel, M. Jiinger and G. Reinelt, Facets of the linear ordering polytope, WP 82217-
OR, Institut fiir Operations Research, Universitit Bonn, FRG (1982b).

M. Grotschel, M. Jiinger and G. Reinelt, Optimal triangulation of large real-world input/
output matrices, Preprint No. 9, Mathematisches Institut, Universitit Augsburg, FRG
(1983).

T. Hankins, Sir William Rowan Hamilton (John Hopkins University Press, Baltimore, 1980).
Held and Karp, The traveling salesman and minimum spanning trees. Part [: Oper. Res. 18
(1970)1138:; Part 1I: Math. Progr, 1(1971)6.

(46]
[47]
(48]

(491
(30}

—_——
ot
1 =

K. Hoffman, M. Padberg, LP-based combinatorial problem solving 193

S. Hong. A linear programming approach for the traveling salesman problem. Ph.D. Thesis.
John Hopkins University, Baltimore (1972).

IBM. Pure Integer Programming executor program description and operations manual.
Program No. 5785-GBX. IBM SB11-5712-0. First edition, Aug. 1982.

L. Johnson and M. Pudberg, A note on the knapsack problem with special ordered sets,
Oper. Res. Lett. 1(1981)38.

L. Johnson and M. Padberg. Degree-two inequalities, clique facets and biperfect graphs.
Ann. of Disc. Math. 16(1982)169.

Karp and Papadimitriou. On linear characterizations of combinatorial optimization prob-
lems, 21st Annual Symposium on the Foundation of Computer Science. 1980.p. 1.

D. Knuth, The traveling salesman problem. illustrative example in: Frontiers of Science,
from Microcosm to Macrososm, by H. Sullivan, New York Times (February 24,1976) p. 18.
P. Krolak. W. Felts and G. Marble, A man-machine approach toward solving the traveling
salesman problem. CACM 14(1971)327.

A. Land. The solution of 100<city symmetric traveling salesman problems, Research Report,
London School of Economics, London (1979).

E. Lawier, The Traveling Salesman Problem, ed. E. Lawler. J.K. Lenstra, A. Rinooy Kan and
D. Shmoys (Wiley, Chichester. 1985).

W. Leontief. Quantitative input and output relations in the economic system of the United
States, Review of Economic Systems 18(1936)105.

W. Leontief, The Structure of the American Economy 1919-1939 (Oxford University Press,
New York, 1951).

W. Leontief. The structure of development, Scientific American (1963).

W. Leontief. Input-Output Economics (Oxford University Press. New York, 1966).

- S. Lin and B. Kerningham. An effective heuristic algorithm for the traveling salesman, Oper.

Res. 21(1973)498.

J. Lorie and L.J. Savage, Three problems in capital rationing, Journal of Business 28(1955)
229.

R.E. Marsten, XMP: A structured library of subroutines for experimental mathematical
programming, ACM Trans. on Mathematical Software 7(1981)481.

R.E. Marsten, User's guide to P83, Tech. Report, Department of Management Information
Svstems, University of Arizona (1983).

R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming,
Math. Progr. 14(1978)21.

R.K. Martin and L. Schrage, Subset coefficient reduction cuts for 0-1 mixed integer
programming, Tech. Report, Graduate School of Business, University of Chocago, lllinois
(1983).

K. Menger. Botenproblem, in: Ergebnisse eines Mathematischen KoIquuxums Wien, 1930,
Heft 2. ed. K. Menger (Leipzig. 1932) p. 11.

T. Miliotis. Integer programming approaches to the traveling salesman problem. Math. Progr.
10(19761367.

T. Miliotis. Using cutting planes to soive the symmetric traveling salesman problem, Math.
Progr. 15(1979)177.

M. Padberg. On the facial structure of set packing polyvhedra. Math. Progr. 5(1973)199.

M. Padberg. Characterizations of totally unimodular, balanced and perfect matrices, in:
Combinatorial Programming: Methods and Applications, ed. B. Roy (Reidel. Dordrecht,
1975y p. 275.

M. Padberg. A note on zero-one programming. Oper. Res. 23(1975)833.

M. Padberg. On the complexity of set packing polvhedra. Ann. Discr. Math. 1(1977)421.

194

(53]
[54]

(551

(6]

(571

(58]

(591

(60]
(61]

[62]
(631

{641

(65]
(66]
(671

(68]
(691

K. Hoffman, M. Padberg, LP-based combinatorial problem solving

M. Padberg, Covering, packing and knapsack problems, Ann. Discr. Math. 4(1979)265.

M. Padberg and S. Hong, On the symmetric traveling salesman problem: A computational
study, Math. Progr. Studies 12(1980)78. .

M. Padberg, (1,k)-configurations and facets for packing problems. Math. Progr. 18(1980)
94.

M. Padberg and M.R. Rao, The Russian Method for linear inequalities I1I: Bounded integer
programming, INRIA, Rapport de recherche. Rocquencourt, revised May 1981, to appear
in Math. Progr. Studies.

M. Padberg and M.R. Rao, Odd minimum cut-sets and b-matchings, Math. Oper. Res. 7
(1982)67.

M. Padberg, T. Van Roy and L. Wolsey, Valid linear inequalities for fixed charge problems,
CORE Report No. 8232, Université Catholique, Louvain-la-Neuve, Belgium (1982), 10
appear in Oper. Res. (1985).

M. Padberg and M. Grotschel, Polyhedral aspects of the traveling salesman problem 1I:
Computation, in: The Traveling Salesman Problem, ed. E. Lawler et al. Wiley, Chichester,
19895).

1. Singhal, Fixed order branch and bound methods for mixed integer programming, Disserta-
tion, Department of Management Information Systems, University of Arizona (1982).

G.L. Thompson and R.L. Karp, A heuristic approach to solving traveling salesman prob-
lems, Management Science 10(1964)225.

L. Trotter, A class of facets for vertex-packing polyhedra, Discr. Math. 12(1975)373.

T. Van Roy and L. Wolsey, Valid inequalities for mixed 0-1 programs, CORE Report No.
8316, Université Catholique, Louvain-la-Neuve, Belgium (1983).

T. Van Roy and L. Wolsey, Valid inequalities and separation for uncapacitated fixed charge
networks, CORE Report No. 8410, Université Catholique, Louvain-la-Neuve, Belgium
(1984a). ~

T. Van Roy and L. Wolsey, Solving mixed integer programs by automatic reformulation,
CORE Report No. 8432, Université Catholique, Louvain-la-Neuve. Belgium (1984b).

H.M. Weingartner, Mathematical Programming and the Analysis of Capital Budgeting
(Prentice-Hall, Englewood Cliffs, NJ, 1963).

H. Weyl, Elementare Theorie der konvexen Polyheder, Comm. Math. Helv. 7(1935)290,
translated in: Contributions to the Theory of Games, Vel. | (Annalsof Mathematics Studies,
No. 24, Princeton, 1950) p. 3.

L. Wolsey, Faces for a linear inequality in 0-1 variables, Math. Progr. 8(1975)165.

H.P. Young, On permutations and permutation polytopes, Math. Progr. Studies 8(1978)128.

