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The crew scheduling problem is one that has been studied almost continually for the past
40 years but all prior approaches have always approximated the problem of finding an
optimal schedule for even the smallest of an airline’s fleets, The problem is especially important
today since costs for flying personnel of major U.S. carriers have grown and now often exceed
$1.3 billion a year and are the second largest item (next to fuel cost) of the total operating cost
of major U.S. carriers. Thus even small percentage savings amount to substantial dollar amounts.
We present a branch-and-cut approach to solving fo proven optimality large set partitioning
problems arising within the airline industry. We first provide some background related to this
important application and then describe the approach for solving representative problems in
this problem class. The branch-and-cut solver generates cutting planes based on the underlying
structure of the polytope defined by the convex hull of the feasible integer points and incorporates
these cuts into a tree-search algorithm that uses automatic reformulation procedures, heuristics
and linear programming technology to assist in the solution. Numerical experiments are reported
for a sample of 68 large-scale real-world crew scheduling problems. These problems include
both pure set partitioning Problems and set partitioning problems with side constraints. These
“base constraints” represent contractual labor requirements and have heretofore not been rep-
resented explicitly in the construction of crew schedules thus making it impossible to provide
any measure of how far the obtained solution was from optimality. An interesting result of
obtaining less costly schedules is that the crews themselves are happier with the schedules
because they spend more of their duty time flying than waiting on the ground.
(Zero-one Programming; Set Partitioning; Crew Scheduling; Polyhedral Cuts; Preprocessing; Heu-
ristics; Automatic Reformulation; Branch-and-Cut; Scientific Computation)

1. Introduction :
For many years, almost all of the major U.S. airline
companies (as well as many non-U.S. companies ) have

" used a common mathematical modeling technique for

assigning crews to flights. The goal is to minimize crew
costs while satisfying the many constraints imposed by
governmental and labor work rules. The starting point
for formulating these problems is the airline’s published
flight schedule, which includes departure and arrival
locations and times, and equipment type for each flight
segment during a specific month. Flight segments are
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nonstop flights between pairs of cities. Crew schedules
are deterinined separately for each of the company’s
“fleets” of particular aircraft types,

In a first step one identifies flight “‘rotations”, ie.,
sequenoaofﬂightugmmtsforeachﬂeetﬂntbgin

and end at individual base locations and that conform .

to all applicable work rules. Rotations typically last two
to five days depending on the work rules of the airlines
and the fleet type; overseas flights require a longer ro-
tation period. For a rotation to be considered feasible,
it must conform to FAA regulations, union contract re-
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quirements and certain company restrictions imposed
by the carrier to assure the smooth transition of crews
to flights. At the same time, a cost figure is assigned to
each rotation. This figure represents all incremental costs
associated with the rotation and can include costs as-
sociated with the length of time a crew is away from
home, per diem and lodging expenses, the amount of
flying time of the crew member, and possible ““dead-
heading”, i.e., transporting a crew on a flight where
they are not serving passengers.

Given a set of feasible rotations, one can formulate
the problem of finding the ““best” collection of rotations
such that each flight is covered by exactly one rotation
as a set partitioning problem (SPP):

n
min Z CiX;
j=1

subject to: Ax =¢,, (SPP)
x;€{0,1} for j=1,...,n,

where e¢,, is the vector having m entries equal to one
and n is the number of rotations considered. Each row
of the m X n matrix A represents a flight leg, and one
introduces zero-one variables x;, associated with each
rotation j, such that x; = 1 if rotation j is selected and
zero otherwise. ¢; is the cost associated with the jth
rotation. The matrix A is constructed one column at a
time, where

{1 if flight leg i is covered by rotation j,
a,"' =

0 otherwise.

Billions of feasible rotations exist for as few as 1,000
flight segments in a given period. Therefore, the airlines
usually generate a far smaller, though still large, col-
lection of rotations which is intended to be represen-
tative. The final crew schedule consists of a small se-
lection of rotations from this large group (typically less
than 150 to cover 1,000 flight segments). To getanidea
of the complexity of the task of crew schedulers, we
have asked a major U.S. airline to provide us with the
dimensions of the problem they are facing. They told
us that roughly 2,700 flights using over 10 different
aircraft types, approximately 5,700 cockpit crew and
9,000 flight attendants need to be scheduled per day.
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There are two major components to the crew sched-
uling problem. The first is the generation of feasible
rotations (often called column or matrix generation) and
the second, the optimization of set partitioning prob-
lems. The software currently in use by most U.S. carriers
to generate the set of rotations and derive the final
schedule was developed almost thirty years ago (Rubin
1973) and is available from a number of vendors. In
order to develop schedules for groups of 1,000 flight
segments, typical of present industry practice, the ex-
isting software solves a series of subproblems, gener-
ating optimal schedules for a large number of combi-
nations of relatively small problems having a few
hundred rotations, and 50 or fewer flight segments, and
combining the solutions. While this method does yield
usable results, there is no way of measuring how close
the schedules obtained in this manner are to optimality.
On the other hand, operating costs for flying personnel
of major U.S. carriers often are in excess of $1.3 billion
every year (Anbil et al. 1991) and are the second largest
item (next to fuel cost) of the total operating cost for a
major U.S. carrier. Thus even small percentage savings
amount to substantial dollar amounts.

Historically, there are two general approaches for
generating subsets of the feasible schedules. The first
approach, one used by the ALPPS software package
(Gerbracht 1978), begins by assigning a unique crew
for each flight leg, thereby starting with a feasible, ex-
traordinarily expensive schedule since each crew covers
only one flight leg. The algorithm chooses columns from
this set randomly until a certain number of flight legs
are covered. For these flight legs, all feasible rotations
are generated and a new set partitioning problem (con-
sisting of only a small subset of the total flight legs but
all possible columns for that subset) is sent to an op-
timizer to solve. If the solution to this optimization
problem has a better objective function value than the
value for the subset of columns from which the problem
was generated, the optimal columns replace the previous
columns. The random selection of columns begins the
next iteration which creates a new subproblem for the
optimizer to solve. This iterative process of choosing a
subset of flight legs, the generation of feasible columns
and the associated solution of an optimization problem
continues until either one has exhausted the available
machine-time or the subproblems solved have not im-
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proved the solution for the last several iterations. See
Bornemann (1982), Gerbracht (1978) and Anbil et al.
(1991) for details on these procedures.

The alternative approach to subproblem selection has
been that of considering all of the flight legs. Since the
number of columns of the matrix A that would result
from an exhaustive generation of all feasible rotations
to this set of flight legs could easily number in the bil-
lions, these packages use heuristic procedures to gen-
erate columns that are representative of the entire set,
ie, they randomly generate feasible rotations using
sampling rules that bias in favor of “low-cost”’ pairings.
When a representative number of such rotations has
been generated, an optimization procedure is called to
solve this subproblem. One iterates through pairing
generation and optimization until convergence is per-
ceived or time limits are violated. This is apparently the
way the software package TRIP, marketed by American
Airlines Decision Technologies, treats crew scheduling
problems for American Airlines.

A more recent approach to the generation of rotations
is based on a graph theoretic approach whereby one
presents allowable routes by a time-staged network and
generates columns based on shortest path calculations
(Lavoie et al. 1988, Desroschers and Soumis 1989,
Barnhart et al. 1991). Since the airline industry uses
the earlier methods based on the work of Rubin (1973),
and there were no pertaining data on this newer
method, we did not consider this recent work in our
code development or testing. This approach constitutes
an interesting alternative to solving the crew scheduling
problem. But, like every dynamic column generation
scheme, it requires special provisions in the code de-
velopment and we left such development to possible
future work when data become available.

Regardless of the approach to column generation, all
of these approaches require the solution of a large num-
ber of set partitioning problems. It has been shown that
as long as the subproblems to be solved are relatively
small, linear programming (or linear programming
coupled with branch-and-bound) is likely to provide
integer solutions quickly; see Marsten and Shepardson
(1981) and Gershkoff (1989). However, as the sub-
problem size increases (e.g., when a subproblem has
more than 100 rows) the nonintegrality of the linear
programming solution increases dramatically as does
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the length and size of the branching tree. This paper
discusses an alternative approach to the solution of large
set partitioning problems that we have tried out on
problems having up to 825 rows and up to 1.05 million
variables. Problems of this size are in most cases not
tractable by the traditional methods.

All but two of the problems in this test set come from
U.S. airline carriers; the remaining two were provided
by a European carrier. They are representative of prob-
lems arising in industrial practice. Some of the largest
problems in this test set were generated specifically to
test the effect that using larger subproblems might have
on the overall quality of the crew schedules obtained
this way. Northwest Airlines (Barutt and Hull 1990),
USAir and American Airlines (Anbil et al. 1991) have
each reported that as one moves to larger subproblems,
the quality of the solution improves substantially. In-
deed, the largest problem in this test set was created by
generating all feasible rotations for the smallest fleet of
a major carrier in order to test the proposition. The
problem involved only 145 flight legs (rows of the ma-
trix A) and 1,053,137 rotations (columns of A). For this
smallest problem of the airline, the optimal solution was
0.5% better than the solution found by the ALPPS soft-
ware package which was obtained by solving a myriad
of small problems. The optimal solution was obtained
in less than 37 minutes of computation time! So not
only is it possible to obtain a correct solution to the
problem, but also the computation time was entirely
within “reasonable” time limits. The fact that the so-
lution was known to be optimal provided an additional
benefit—a tool to measure the value of changing a flight
leg time and its effect on crew costs.

A unique feature of our software package is the fact
that it can solve problems having any number of “base
constraints”, i.e., constraints of the form

°< 3 agx;<a’
jeB
where Bc {1,2,...,n},4;>0forjEBand 0 < a°
< a'. Such constraints assure that an airline complies
with work rules of the following kind: the aggregate
number of hours that crews located at some base spend
away from their crew base must be within specified
limits during each duty period. These restrictions sig-
nificantly constrain the allocation of available crews
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among flights and are thus a major determinant of the
total operating cost for the flying personnel. In a typical
situation there may be as many as ten different ““crew
groupings” according to different aircraft types and each
grouping may have as many as seven to ten different
crew bases where a “‘base’” refers to the home airports
for the crew. Other available software is incapable of
incorporating base constraints in the generation of
schedules but must repetitively re-solve successive re-
formulations of the problem until some feasible schedule
is obtained. American Airlines reports ‘“‘rather than ex-
plicitly including the base constraints in the LP matrix,
we have used a heuristic set of weighting factors to
dynamically move the solution toward one that satisfies
the base constraints” (see Gershkoff 1989). Such a pro-
cedure requires a lot of skill on the part of the analyst(s),
exorbitant amounts of computer time, and—worst of
all—it yields schedules of indeterminate quality. By in-
corporating base constraints directly in the solution
process, our software package yields schedules satis-
fying all specified work rule restrictions at provably
minimum cost. Moreover, it has been observed else-
where that minimum cost crew schedules are more “ef-
ficient” in the sense that the crew working time is better
utilized. This leads to a greater satisfaction on the part
of all crew members involved.

There are four components to our branch-and-cut op-
timizer: a preprocessor that tightens the user-supplied
formulation; a heuristic that yields “good” integer-fea-
sible solutions quickly; a cut generation procedure—the
engine of this overall approach—that tightens the linear
programming relaxation, and a branching strategy that
selects the “next” branching variable and determines
the search-tree. Prior research has shown that incor-
porating these components into one solver has suc-
cessfully solved classes of hard combinatorial optimi-
zation problems that were previously believed to be in-
tractable. See Hoffman and Padberg (1990) for large
unstructured zero-one problems; Padberg and Rinaldi
(1991) for an algorithm for large-scale symmetric trav-
eling salesman problems; Barahona et al. (1988) and
Grétschel et al. (1989) for the optimization of problems
related to VLSI design; Grétschel and Monma (1990)
for solution procedures to network survivability prob-
lems, etc. This paper describes a successful application
of this general framework to the class of problems
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known as set partitioning problems with or without base
constraints.

Section 2 discusses most of the mathematical back-
ground used throughout the paper. Section 3 presents
an overall description of the branch-and-cut optimizer.
Section 4 details the major components of the prepro-
cessor. Section 5 then describes a linear programming
based heuristic designed to find quickly “good"” feasible
solutions to set partitioning problems with and without
base constraints. Section 6 contains a description of the
constraint generation procedures, the most important
component of this solver since these are the procedures
by which we effectively tighten the lower bound on the
problem and often obtain integer solutions without any
tree-search related enumeration. Finally, § 7 presents
computational results illustrating numerical experiments
on a sample of 68 real-world airline crew scheduling
problems and in § 8 we draw some conclusions from
our results. All problems in this test set are available to
researchers and can be obtained by contacting Karla
Hoffman at KHOFFMAN@GMUVAX . GMU . EDU .

2. Mathematical Background
Mathematically, the airline crew scheduling problem
with base constraints is formulated as the following
Zero-one programming problem:

min 2": CjX;
j=1

subject to: Ax = e, (SPB)
d, < Dx < d,,
x€ {0,1}",

where A is an m X n matrix of zeros and ones, D is a d
X n matrix of (typically) nonnegative rational numbers
and the vectors d,, d, have d rational numbers each. As
previously, e, is the vector of m ones. We denote by

P = {xE!R"IAx=e,,.,d,sstdz,Osxse,.}

the linear programming relaxation of the constraint set
of (SPB). The associated integer polytope is the convex
hull of integer points of Py, i.e.,

P, = conv{x € P : x integer}

and we wish to minimize the linear objective function
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over the polytope P;. Clearly, we have P, € P, and
only in very rare cases do we have equality in this re-
lation. P; can, however, be described by a finite system
of linear inequalities. Among all such linear descriptions
of P, there exists one that is essentially unique. This
system is necessarily a minimal one in the sense that
each of its members defines a facet of P,. Of course, P,
may be empty as well—but in practical problems this
is hardly ever the case.

The study of facet defining inequalities for the poly-
tope P, is naturally an arduous one and only few general
results about the facial structure of P, are known (see,
e.g., Balas and Padberg 1976) for the case where D is
vacuous. We are thus lead to consider a polyhedral re-
laxation of P, that, however, comes as “close” as possible
to the polytope P;. The way that we do this is to separate
the constraint set of (SPB) into its two components and
look at polyhedral relaxations within each one of the
components. Evidently, from a theoretical point of view
one could do better, but ex post our numerical experi-
ments justify our approximation. The first components
of the constraint set is the set partitioning structure and
the polyhedral relaxation that we use is the associated
set packing polytope

P;‘=conv{x€§)’t":Axse,,,,xe{0, 1}7}.

Another relaxation of the set partitioning part of (SPB)
that we consider is the set covering polyhedron where
the inequalities < in the definition of P4 are replaced
by 2. We use some of the polyhedral theory developed
for set covering in our software package as well. The
second component of (SPB) is given by the base con-
straints, i.e., here we use as the polyhedral relaxation
of P, the polytope

PP =conv{xER": dy <Dx<d, x€ {0, 1}"}.

Clearly, we have P, < PA N PP N Pip and thus all
inequalities that are valid with respect to P# or to PP
are valid inequalities for the polytope P;. The term ““valid
inequality for P,” simply denotes any linear inequality,
€.8., 4x < 4, such that ax < 4, holds for all x € P,. Of
course, we are interested only in “cuts” or cutting planes
for the LP relaxation P, i.e., valid inequalities ax < q,
for Py such that ax > a, for at least some x € Pip. Among
all valid inequalities for P; we are interested in those
that are as good as possible. In particular, since we are
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approximating the polytope already, we are interested
in facet defining inequalities for P{ and PP. Without
going into unnecessary technical detail, facet defining
inequalities for P{ and a relative of the polytope P?
have been the subject of much theoretical research in
the 1970s beginning with the papers of Padberg (1971,
1973, 1975). To distinguish the resulting valid inequal-
ities for P; from the traditional “‘cuts” of integer pro-
gramming we call valid inequalities that are derived
from polyhedral considerations “polyhedral cuts”. By
their mathematical properties, polyhedral cuts are the
best possible cuts for the polytope or polyhedron from
which they are derived. To use them in numerical com-
putation one needs to (a) descriptively identify and ( b)
algorithmicaily find violated ones or show that a violated
one does not exist. See, e.g., Padberg (1979) for more
detail.

To study the facial structure of the set packing poly-
tope P one associates with the given matrix A its in-
tersection graph G, = (N, E) as follows, see Figure 1 for
an illustration. We define a node JEN={1,2,...,n}
for each column a’ of A and join two nodes i # j
€ N by an edge (i, j) € E if the columns a' and 2/ of A
have at least one entry equal to +1 in common in some
row of 4, i.e., if the columns a' and 4/ are nonorthog-
onal. The data for the graph of Figure 1 are given in
the appendix. The numbers in the circles of Figure 1
correspond to nodes of G,, while the fractions next to
each node give a feasible fractional solution to the as-
sociated problem (SPP). To every feasible zero-one
vector x € Pf there corresponds a node set § = {JEN
: X = 1} of G,. Evidently, no two nodes of S are joined
by an edge of G, and such node sets are called stable
or independent node sets of G,. It is not difficult to prove
the converse: to every stable node set S of G, there
corresponds a zero-one vector x of length n that belongs
to P if we define x ER" by x; = 1 foralljE€S,x; =0
for all j € S. Now let, on the other hand, K< Nbea
node set in G, such that every pair of nodes i, j € K
defines an edge (i, j) € E, ie., the node set K &N
induces a complete subgraph'in G,. Then clearly every
stable set S c N meets K in at most one element, i.e.,
SN K| <1, and thus all x € P4 satisfy the inequality

Tan=1, (1)
kEK
Le. (1) is a valid inequality for P#. If K is not maximal
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with respect to its defining property, i.e., if there exists
J € N = K such that node j is joined to every k € K by
an edge of G,, then we can replace K by KU {j}in (1)
and the resulting inequality is valid for P# as well and
“‘stronger’’ since it cuts off more real points of P;p than
the inequality (1). Thus one is led to consider maximal
complete subgraphs or cligues in G, and one of the old-
est results about the facial structure of the polytope
P due to Padberg (1971, 1973) says:

An inequality Z,ex x; < 1 defines a facet of P{ if and
only if K is the node set of a clique of Ga.

Cliques are not the only configurations of the inter-
section graph G, of the zero-one matrix A that give rise

Figure 1 Intersection Graph G, for Sampie Data
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to facet defining inequalities of the polytope P7. Rather
we know from the pertaining theoretical work of the
1970s that odd cycles, their complements, so-called
webs, etc., all give rise to facets of P# and we will discuss
this in more detail in the section on the constraint gen-
eration procedures. The important advantage—from a
computational point of view as well as from a theoretical
one—that one gains by studying the set packing poly-
tope on the intersection graph is the fact that this pro-
ceeding permits an algorithmic approach to finding facet
defining inequalities of P# as well. And, of course, al-
gorithms are the prerequisite for a computer imple-
mentation.

13

23
(19

O
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The second component of the problem (SPB) involves
the polytope PP. The elements of D are typically non-
negative rationals and thus if d, = 0 in the definition of
P? then PP is simply a multidimensional knapsack
problem. The fadial structure of the associated knapsack
polytope has been studied in the 1970s as well, begin-
ning with Padberg (1975), a paper that was written
and distributed in early 1973. The way we utilize the
pertaining theoretical results in our present software
system is along the lines of the earlier work by Crowder
et al. (1983) with several extensions to the basic idea
that we have briefly described in Hoffman and Padberg
(1990). Indeed all of the routines that we have described
in the last mentioned Paper have been incorporated into
the present software system and we refer the reader to
it for more detail on PP,

3. A Branch-and-Cut Optimizer:

Overview

The Branch-and-Cut Optimizer described here is designed
to solve to optimality large set partitioning problems with
base constraints having thousands of zero-one variables.
It can alternatively be used as a heuristic procedure for
obtaining “‘reasonable’”’ feasible solutions and at the
same time, a true lower bound on the optimal solution
value. The latter is, of course, a yardstick to measure
the quality of the solutions found. The program is writ-
ten in Standard (1977 Ansi) FORTRAN which assures
its portability. Not counting the LP solver, and after
eliminating all comment statements, the software pack-
age has currently 19,022 lines of code. The two most
code intensive pieces of this package are the cutting
plane and Preprocessing procedures for which there are
7,506 and 4,516 lines of code, respectively. Figure 2
provides a flow-chart of the major modules in the overall
branch-and-cut approach; see also Hoffman and Pad-
berg (1985). In this figure, Z* is the best known integer
and Z,» the linear programming solution value. Gain is
the increment in Z,,.

In this software system, we begin by preprocessing
the user-supplied formulation of the problem. Within
the branch-and-cut context, “preprocessing” refers to
reformulation techniques that can be performed auto-
matically at any point within the branch-and-cut al-
gorithm to improve or simplify a given formulation.
These procedures transform a given formulation auto-
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Figure 2

Flowchart of a Branch-and-Cut Optimizer

matically into a “tighter” equivalent representation—
i.e., one with variables fixed to either zero or one, re-
dundant or inactive rows removed, and one where the
difference in the objective function values between the
solutions of the linear programming relaxation and the
integer program, respectively, is as small as possible,
while guaranteeing that an optimal solution to the orig-
inal problem is not lost.

After preprocessing the user-supplied problem, a
lower bound on the problem is determined by optimiz-
ing the linear programming relaxation. We have chosen
to use CPLEX as our linear programming (LP) solver;
see Bixby (1991). CPLEX has both a steepest-edge pri-
mal and steepest-edge dual simplex algorithm. The use
of these procedures has significantly reduced the overall
time required to solve the difficult, highly-degenerate
linear programming subproblems arising from set par-
titioning problems when compared to our experience
with earlier versions of this LP solver which did not
have these features. Our software package is, however,
sufficiently modular to permit the interfacing with other
LP solvers, such as IBM’s OSL.

An upper bound for the problem is obtained by calling
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a linear programming based heuristic that iteratively
reduces the size of the problem by setting variables to
zero or one and examining the “logical” implications
of such setting on other variables. It sends successively
smaller problems (in terms of the number of “active”
variables) to the linear programming solver which, in
turn, directs the next round of setting. Typically, the
heuristic finds “good” integer feasible solutions to the
problem with or without base constraints quickly, but
it is possible for it to fail in which case the upper bound
is set equal to +o0.

Given an upper and lower bound, we use reduced
cost fixing to permanently fix variables; see Crowder et
al. (1983) or Padberg and Rinaldi (1991 ) for more detail.
If the reduced cost procedure fixes even a small pro-
portion of the variables, such fixing can have logical
implications for many other variables within the prob-
lem. We therefore return to the preprocessor whenever
a specified percentage of the remaining variables are
fixed by reduced cost fixing.

Once no more variables can be fixed, we have a
“good” formulation of the problem and after solving
the linear program, we begin the most important phase
of the solver—the constraint generation phase. These
constraints are based on polyhedral theory and are
called polyhedral cuts. Section 6 briefly describes our
constraint generation procedures for these polyhedral
cuts. In particular, cligue and odd cycle inequalities are
generated and lifted in a manner that guarantees their
validity for all feasible points to the integer set parti-
tioning problem. For the base constraints we generate
automatically constraints based on the polyhedral the-
ory that we have described in Hoffman and Padberg
(1990).

The violated constraints are appended to the original
problem and the LP solver is called again. We iterate
through this loop until one of the following cases pre-
vails: (1) the solution is integer; (2) the LP is infeasible;
(3) no additional cuts are generated (either because of
our incomplete knowledge of the polyhedral structure
or because of the incompleteness of our constraint gen-
eration procedures); (4) although cuts are generated,
the objective function is not increasing sufficiently, i.e.,
we detect a “tailing off * of the procedure; or (5) the
objective function has improved substantially relative
to the bounds on other nodes of the search tree; we
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“pause this node”, i.e., postpone its further development
and look at more promising nodes.

If the first situation occurs and we are at the root
node, i.e., at the top of the search tree, the solution
obtained is optimal and the algorithm terminates. If this
situation occurs within the search tree, we fathom the
node, update the upper bound and continue the tree-
search. If the second situation occurs at the root node
of the tree, the overall problem is infeasible; if within
the tree, we fathom the node and continue. If the third
or fourth case occurs, we expand the tree. However,
before expanding the tree we call the heuristic again in
an attempt to update the upper bound information. If
the heuristic finds a better feasible solution, the reduced
cost fixing and logical fixing routines are called. If suf-
ficiently many variables are fixed, the preprocessor is
called again to tighten the problem formulation. The
fifth case is similar to the third and fourth cases, except
that the node is not expanded, but paused for further
examination at some later time; see Padberg and Rinaldi
(1991) for a more detailed discussion of these features
of a branch-and-cut algorithm in the context of the
symmetric traveling salesman problem.

In order to assure small search trees, our branching
strategy changes depending on a variety of character-
istics of the current LP solution. The strategy for
branching is dependent upon the density of the matrix
A, the number of fractional variables occurring in a
specific row, whether any variable is sufficiently close
to one, and whether there are any “‘outliers”, i.e., vari-
ables whose objective function values are sufficiently
different (statisticaily) from the average and that are
thus likely to “move” the objective function at least on
one branch of the search tree substantially away from
its current value.

Thus, at every node of the branch-and-cut algorithm,
the problem is reformulated, linear programs are solved,
polyhedral cuts are generated, and a heuristic is called.
Normally, the only reformulation done within the
branching tree is the implied ““setting’” of variables based
on the setting of the branching variables. At the root
node or, if an improved upper bound has been obtained
within the tree, permanent fixing is performed on the
basis of the LP-reduced costs at the root node and the
matrix is permanently altered, i.e., the preprocessor is
called. We note that because the polyhedral cuts are
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valid throughout the search tree inequalities that are
generated in any part of the search tree are valid “glob-
ally”, i.e., across the entire search tree, and the data
structures for the constraint set remain unchanged when
we move from one branch of the search tree to another
unless the preprocessor is invoked. To share the set of
generated constraints across different branches of the
search tree is mathematically simply not correct when
traditional cutting planes of integer programming, such

as Gomory cuts or “intersection”’ Cuts, are used.

4. Preprocessing

Preprocessing techniques fix variables permanently, re-
move rows and check for inconsistencies among con-
straints, Preprocessing is an effective and computation-
ally inexpensive way of complementing the generation
of “polyhedral cuts” which is, of course, the most ef-
fective way to tighten the linear programming relaxation
of an integer program.

The preprocessing component of our branch-and-cut
solver has two parts. In the first part it takes a given m
X n zero-one matrix, the “‘user-supplied” set partitioning
structure, and automatically and iteratively reformulates
the problem so that both the linear programming re-
laxation of problem (SPB) and the zero-one problem
itself become more tractable. Our computational results
show that these techniques are highly effective in re-
ducing the solution times of the linear programming
subproblems and assist in the exact solution of integer
set partitioning problems within a branch-and-cut
framework. The second part takes the d X n matrix D
of the base constraints and subjects it to all of the pre-
processing that we have described in Hoffman and
Padberg (1990) as well as additional preprocessing
which we discuss below. For further discussion and a
historical perspective on general Preprocessing and for-
mulation techniques we refer the reader to that paper.

Before the two major components of our preprocess-
ing routines are invoked, the program “inspects” the
user-supplied data and automatically permutes the rows
and columns of the original problem. Columns that ap-
pear in the set partitioning structure are indexed ...,
NSPAR, while the remaining columns get the indices
NSPAR+1, ..., NSTRUC where NSTRUC = 7 is the total
number of the variables of the problem. Likewise, the
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rows that appear in the set partitioning structure are
put “on top” and the remaining ones thereafter. Each
row of the set partitioning structure is stored as an or-
dered list of increasing column indices and likewise each
column of A as an ordered list of increasing row indices.
In doing this extra work, we create data structures that
are standardized and thus easier to work with regardless
of the user’s indexing of the rows and columns of the
problem. Because we have an ordered list representation
of A we can perform most necessary operations, e.g.,
finding the intersection of several rows and / or several
columns, rather rapidly using list processing techniques.
Moreover, if NSPAR = 0 then the software system be-
comes exactly the software system ABC_OPT for the
solution of general unstructured zero-one linear pro-
grams that we have described in Hoffman and Padberg
(1990). ABC_OPT is thus a small, proper subset of the
software system described here. In what follows we de-
scribe the preprocessor that is specific to the solution
of (SPB).

4.1. Removing Duplicate Columns

Since the number of feasible rotations is astronomically
large, the airline industry generates a very large number
of “good"” pairings according to appropriate heuristic
criteria and then attempts to find good feasible solutions
satisfying the set partitioning problem given by the col-
lection of these pairings. Since the process of generating
such subproblems is both random and heuristic, the
same column may be generated more than once. In ad-
dition, rotations are generated for each crew base sep-
arately and the rotations are then combined to create a
subproblem. Indeed, if there is no base constraint re-
striction on the problem, then two crews located at dif-
ferent bases or hubs could cover the same flight legs
but have different associated costs. From an optimiza-
tion perspective, only one of these columns needs to be
considered (the one with the smaller cost). From a
computational point of view duplicate columns increase
the effort required to solve the overall problem and thus
it is better to remove them from the data. Our procedure
for identifying duplicate columns uses a hash-code
based on the sum of the row indices, the first row index
and the last row index. For all columns with the same
hash-code a pair-wise check of the entries is performed.
This procedure can be used also after rows have been
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eliminated and columns have been merged which may
cause two columns that were different originaily to be-
come identical.

4.2. Removing Dominated Rows

A second step in our preprocessing searches for rows
that are properly contained in other rows. Let Jand K
be the sets of column indices associated with nonzero
entries in rows j and k, respectively. If JUK = J and |
A K = K, then every variable I € J\K must be zero in
every feasible zero-one solution. (To show this, subtract
row j from row k.) We therefore permanently fix all
variables | € |\K to zero and remove row J, since it is
now redundant. A similar result is obtained when there
exist rows differing in exactly two elements and where
there is one unique index in each of the rows. Subtract-
ing one such row from the other, yields x, = x, where
P and g are the respective unique column indices. We
examine the columns p and g: if the two columns are
orthogonal then columns p and g are merged into a
single column having a cost of ¢y + ¢4. Otherwise, x,
and x, must equal zero in every feasible zero-one so-
lution and they are both permanently fixed to zero. After
such fixing or merging, we remove one of the two rows
since it is now redundant.

4.3. Creating a Clique Matrix

Let G4 be the intersection graph associated with the
zero-one matrix A and let M; = {j € N| a; = 1} be the
set of columns of A that have an entry equal to +1 in
row i of A. If there exists a clique in G, with node set
K'such that M; is a proper subset of K, then it follows
that x; = 0 for all j € K\ M; since 2jex X < 1is a valid
inequality for P,. Given the node set M;, it is not difficult
to determine the existence of a clique K that properly
contains M;. One simply scans all columns of A and
determines those that are nonorthogonal to all columns
in M;. Either this set is empty and a “next” row is se-
lected, or variables that can be fixed to zero are detected.
In the latter case the zero-one matrix—and thus its as-
sociated intersection graph—are altered permanently.
After having examined each row individually, a second
Pass through the resulting smaller matrix is initiated if
any variables were fixed in order to benefit (possibly)
from the changes that have occurred and to reduce the
problem even further. It is clear that an iterative appli-
cation of this procedure produces a zero-one matrix A
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such that every row of A corresponds to a clique in its
associated intersection graph G,. However, it is far from
true that every clique in G, is already a row of A. Rather
additional cliques of G, are generated “on the fly”, see
§ 6. A discussion of the fixing of variables based on the
clique structure for the set partitioning problem can be
found already in Padberg (1973, Remarks 2.8 and 2.9)
although we know of no prior implementation of this
idea. When applied to the real-world problems of our
computational study the ““clique-detection” considera-
bly reduces the number of variables of the original
problem and, in addition, leads to a significant speed-
up of the linear programming calculations, see § 7.

4.4. Reducing Base Constraints

The base constraints specify that the number of hours
assigned to each crew base must be within specific min-
imum and maximum limits in accordance with the air-
line’s manpower plan. These restrictions are constraints
of the form

0 1
°< Y axi<a
JEB

where B < N is typically a proper subset of N, 4; > 0
forjEBand 0 <a® < a’'. Since every base constraint
is a (two-sided) knapsack constraint all of the prepro-
cessing procedures discussed in Hoffman and Padberg
(1991) can be applied to the constraints of this type
and all of the preprocessing procedures described there
form a subset of the routines of our present software
package. In addition, we exploit the fact that the con-
straints of the set partitioning matrix A provide us with
a set of SOS-constraints that can be used to strengthen
the coefficient reduction. Specifically, let r be any
row of the zero-one matrix A and let, as above, M,
={jEN:a,;=1}.1f M, < B for some base constraint,
then we can replace the corresponding constraint by
the constraint

=ty < 3 (4= tmn)t;+ 3T axi<a'—a,,,
JEM, JEB\M,

where i, = min{g;:jEM, ], Evidently, such support
reduction alters the knapsack constraint and if B\M,
# &, then it is entirely possible that 4, > a' — a,,,, for
some j € B\M, implying that x; = 0 in every feasible
solution to (SPB). Consequently the iterative application

MANAGEMENT SCIENCE/Vol. 39, No. 6, june 1993



HOFFMAN AND PADBERG
Airline Crew Scheduling

of such preprocessing may substantially improve the
user-supplied formulation of (SPB).

The basic ideas for this kind of automatic prepro-
cessing of the set partitioning problems with and with-
out base constraints may be quite old, but to the best
of our knowledge they have not been implemented until
now for the solution of large-scale problems. These
procedures can also be used as a stand-alone algorithm
to preprocess and improve a user-supplied formulation.
Section 7 of this paper shows that the preprocessing
substantially reduces the effort required to solve the
linear programming (LP) relaxation of set partitioning
problems and that repeated use of this procedure in a
tree-search / LP-based zero-one problem solver reduces
the time required to solve the integer problem substan-
tially.

5. An LP-Based Heuristic

Our heuristic is based on the repeated solution of linear
programs and exploits the well-known empirical fact
that linear programming solutions to small set parti-
tioning problems often have integer solutions while
larger problems of the same general structure are highly
fractional, i.e., the LP solutions have relatively many
components that are strictly between zero and one. In
our heuristic, we therefore attempt to sequentially break
down the large problem into smaller problems. To ac-
complish this, we round a subset of the variables and
use the preprocessing routines to detect further impli-
cations of such rounding. The linear programming
solver is called iteratively to solve successively smaller
problems and the resulting solution vector directs the
next stage of the rounding, feasibility checking and log-
ical implication setting,

The outer-loop of the heuristic algorithm consists of
solving a linear programming problem and determining
if the problem is infeasible, integer feasible or fractional.
If either one of the first two cases is true, the heuristic
terminates and updates the upper bound information
if a better integer solution than any previously known
was obtained. If the solution is fractional, the heuristic
fixes first variables based on reduced cost information.
Let GAP = ZSTAR-ZLP, where ZLP is the linear pro-
gramming solution value and ZSTAR is some known
upper-bound for the problem. Every variable at its lower
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bound whose reduced cost is greater than GAP is “‘set”
to zero. “Setting to zero” within the heuristic means
that during the current call to the procedure these vari-
ables will remain at that value. If no upper bound is
known, i.e., if ZSTAR = +, then the fixing procedure
is bypassed. Next, all basic variables with value one
and all variables at their upper bounds are set to one.
Whenever a variable is set to one, all rows covered by
that variable are removed and all other variables in any
such rows are set to zero. Once these variables are re-
moved, we check if there are any rows with a single
column index. If so, those are fixed to one and the “rip-
ple effects” on the rest of the problem of that setting
are investigated and carried out.

The “inner-loop” examines the reduced problem ob-
tained this way and continues to set variables until some
specified proportion of the initial number of variables
are fixed, until the problem decomposes into smaller
disjoint blocks, or until the problem has been found to
be infeasible because of a prior incorrect guess at the

. setting of variables. If infeasibility occurs, the heuristic

terminates without providing an integer solution. Hav-
ing created a typically much smaller subproblem, we
call the linear programming solver again to direct our
search and to determine the collection of variables to
be set in the next round. There are three main com-
ponents to the inner loop of this heuristic. First, the
clique identification and row-inclusion routines de-
scribed in the preprocessor are called. (We note that in
our code the row inclusion routine does not merge col-
umns but that it only identifies rows that can be removed
and variables that can be fixed to zero. The merging is
done in a separate routine, i.e., the package is modular
by design.) A “block decomposition” routine then de-
termines the number of disjoint components of the LP
basis of the reduced problem. Finally, we attempt to
split the matrix further into blocks by the controlled
setting of fractional variables. The splitting routine
works on each block separately. First, it finds the frac-
tional variable in the block with a value closest to one;
if there is a tie, then the one with the smallest cost is
chosen. It sets that variable to one and calls routines
that determine the ripple effects of that setting. The
setting of variables within this block continues (always
choosing the variable among the unset variables with
value closest to one) until either the total number of
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variables set (both to zero or one) is larger than some
specified percentage of the total number of variables in
the problem, or until the number of basic variables set
to one within this block exceeds some percentage of the
number of variables in that block. Of course, the setting
of variables is somewhat “heuristic”” and the exact de-
cision rules were obtained after considerable experi-
mentation. When we are done with a block, the routine
examines the next block. However, as soon as the first
of the two exiting criteria is met, only one basic variable
in each of the remaining blocks is set to one. Before
leaving the inner loop, the preprocessing routines are
called again to examine the implications of the setting.
Having determined all of the implications of the setting
of the variables, the LP solver is called to solve the re-
duced problem. If the solution is integer, we update the
upper bound information and exit. If not, the outer and
inner loop of the heuristic are repeated.

Clearly, the linear program that must be solved in
€very major iteration of the heuristic becomes smailer
and smaller and thus the heuristic converges rather
rapidly. In § 7, we give numerical results for the heuristic
on our sample data.

6. Constraint Generation

As we have outlined in § 2, we use three different re-
laxations of the underlying polytope P; to generate
polyhedral cuts in our branch-and-cut optimizer for the
problem (SPB). The constraint generation procedures
for the base constraint component of the overall problem
have been described by us in sufficient detail in an earlier
Paper. So we will not review them here. The reader
interested in replicating our experiments should refer
to Hoffman and Padberg (1990) and the references in
that paper. Here we concentrate solely on constraint
generation as it relates to the set packing and set cov-
ering relaxations of (SPB) mentioned above, We begin
with the set Ppacking relaxation, though some of the
following generalities apply to the set covering relaxa-
tion as well.

To derive theoretical results about the facial structure
of the set packing polytope, one starts with configura-
tions such as cliques, odd cycles, etc. in the intersection
graph G, defined by the m X n zero-one matrix A. If m
=500 and n = 10,000, say, this results in an unwieldy
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large graph—even if the density of A is very small. The
density of A is the number of nonzeroes in the A matrix
divided by the product of m and n and it is typically
small (for problems having less than 5,000 variables,
the densities range between 209 and 30%, while for
larger problems, the density decreases to an average of
less than 10%); see Tables 1 and 2 in § 7 where we
have summarized the characteristics of our data set, The
density of A clearly determines the number of edges of
G4 and thus for m = 500 and n = 10,000 the number
of edges of G, could be in the tens of millions. Forty-
nately though there is no need to construct the entire
graph G, in order to utilize the theoretical results.

6.1. Size Reduction

At any point during the execution of a run that the
constraint generator is called we have a solution vector
X € R" to the current linear program that consists of the
LP relaxation of (SPB) Plus the previously added poly-
hedral cuts. Denote by

L={jeN:z =0}, F={jEN:0<% <1},
U={jEN:% =1

the index sets of variables that are at their lower bounds,
that are strictly between zero and one and that are at
their upper bounds, respectively, in the given solution
vector X € R". As we are looking for a polyhedral cut,
ie., a facet defining inequality ax < a, of P4 such that
ax > ao, we can, first of all, ignore all variables with
index in L in the “identification” phase. Typically, L
contains the bulk of all variables and we can simply
ignore them. Second, keeping the graph theoretic in-
terpretation of the set Packing problem in mind, we can
forget as well all variables within the index set U since
every “neighbor” k of a node of U in the graph G,
necessarily satisfies %, = 0. This leaves us with the set
F of fractional values of . To decide whether or not
there exists a polyhedral cut that is violated by 7 it suf-
fices thus to “inspect” the subgraph G; = (F, E;) of G,
that is induced by the nodes of G that are in F. E; are
those edges of G, that join nodes in F to other nodes in
F. The definition of F involves strict inequalities and
the comparison with 0 and 1. In a computer implemen-
tation this means, of course, that we have to work with
tolerances. Depending upon what tolerances we use,
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We can make Gy larger or smaller. We take care of this
ambiguity by setting our tolerances for the zero /one
check dynamically inside the constraint generator. In
any case, the graph G; is considerably smaller than G4
and thus a lot more manageable. Of course, we cannot
totally neglect the nodes of G4 in N\F and we will come
back to them,

Working with the subgraph G;, that depends upon
the ““current” solution vector ¥ which changes between
Successive calls to the constraint generation procedures,
requires a procedure to set up the related data structures
to represent the “current’” graph on the computer “on
the fly”. The overhead in doing so is very low, however,
compared to the benefits to be derived from working
with a typically small graph having a couple of
hundred—rather than several thousands—nodes and
correspondingly fewer edges. The way we construct the
subgraph G; is clear from the construction of G, (see
§ 2) since all one has to do is replace N in the definition
with F. The data structures used to represent the graph
on the computer are standard and are described in Pad-

graph Gp = (P, Ep)

To reduce the graph on which we will have to work
even further we split Gr into its connected components.
This is done by a simple coloring routine. Every con-
nected component can be split up even further into its

end we need to identify the cutnodes of every connected
component of Gy, i.e., those nodes of Gr whose deletion
increases the number of connected components of the
remaining graph by at least one. This decomposition of
Gr can be carried out rapidly and adds little in terms of
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6.2. Lifting Valid Inequalities

In the graph G one now looks for a violated polyhedral
cut arxr < a, such that X > g, where ar and X, re-
spectively, are vectors with components indexed by the
nodes in F, e.g,, 7, = (%;: j € F). How this is done we
will describe below:. First let us discuss what to do about
the nodes of G, that are in N\F. While “extending” the
violated inequality rXr < ao “trivially” by setting a; = 0
for all j € N\F produces a valid inequality for the
polytope P{ (because of the nonnegativity of the con-
straint matrix A), it is not advisable to do so because
We want an inequality that js as close as possible to a
facet defining inequality for P#. To this end we need
to “lift” the inequality in a more meaningful way into
the remaining variables with index in N\F. “Lifting”
of inequalities to obtain facets of polyhedra may be an
old idea, but to the best of our knowledge it was first
done in the dissertation of Padberg (1971) and later
developed more generally in Padberg (1973, 1975)—
with many other researchers joining the effort of de-
scribing polyhedra related to hard combinatoria] opti-
mization by way of facets in a similar vein. What is the
problem that has to be solved? We are given an in-
equality a;x; < 4o that we will assume to be a facet
defining inequality for the Polytope that we get from
P} if we restrict the problem to the variables in the
index set F, i.e., the polytope that we get if we drop all
variables in N\F. We want to determine a coefficient
a, for some k € N \F such that ArXr + & X < ay is valid
and facet defining for the restricted problem that results
if F is replaced by FU {k}. Clearly, we need to solve
the “lifting problem"’

max QrXxp
subject to: Arxp <e, — a*,
%L E€{0,1} forall JEF,

where Ay is the submatrix of the m X n zero-one matrix
of A with columns in the set Fand a* is column k of 4
In this notation the polytope that we get by restricting
N to F is thus given by

Pf = conv{x; € R'F! . Arxr < e, 2: € {0, 1}1F1y

and we have evidently Pf < P4, How we solve (LIFT),
we discuss later. So let z, be the optimal objective func-
tion value of (LIFT). Since g* 2 0, we have z, < g, by

(LIFT)
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the validity of arx; < a,. Thus setting a, = g, — z, we
get a valid inequality for the enlarged polytope Pfvixi
that is also facet defining. Replacing F by FU {k} we
can thus iterate until the original set N\ F is exhausted
and obtain a facet defining inequality for P4 this way.
This approach—in terms of the underlying polyhedral
theory—applies equally well to general bounded integer
and mixed-integer programming problems when suit-
ably modified for those problems.

At first sight, problem (LIFT) is a zero-one problem
that grows in size as we “lift” more and more variables
into the original inequality. Moreover, the outcome of
the lifting process depends evidently upon the order in
which we lift the variables x, with k € N \F, see Padberg
(1973) for a pertinent small example. For a computer
implementation two issues arise: first, how does one
solve (LIFT) as the number of variables grows in size
and second, which “lifting order” does one use? If | F|
=500, say, and [N\F| = 9,500, it is clearly out of the
question to consider all possible lifting sequences and
50 we simply randomize the lifting order over the | N\ F|
variables. Simple as it sounds it rids us of a problem
that we must resolve otherwise at an enormous com-
putational cost. So we will have to “correct” or at least
try to correct our shortcut later on. This leaves us with
the problem of solving the problem (LIFT) for some
fixed lifting sequence of the variables in N\F. In our
implementation, we lift first all of the zero-valued vari-
ables that correspond to the basic variables and then
randomize the order of the remaining nonbasic variables
to be lifted. By “randomization” we mean, of course,
the use of pseudo-random numbers so that runs of the
same data set can be reproduced exactly.

Let us consider, more generally, the solution of a
problem of the type (LIFT) where F c{/JEN:0<x
<1} and k EN\Fare arbitrary. Clearly, the size of the
set F determines the computational effort required to
solve (LIFT). Now if a; = 0 for some variable J € F then
that variable does not influence the objective function
value z; of (LIFT) and thus can be dropped from the
problem. For the iterative application of “lifting” this
means that only those variables for which the lifting
coefficient a;, = g, — Z > 0 augment the set F. This is
one way of controlling the size of F. On the other hand,
in (LIFT) we are effectively ““forcing” variable X, to equal
*+1 and thus all “neighbors” of node k in the graph G;
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must assume a value of zero in every feasible solution
to (LIFT). Denote F* the set of columns that remains.
So we have 4; > 0 for all j &€ F* and every column a/
with j € F* is orthogonal to column a*. If the cardinality
of F* is small, i.e., | F*| < 16 in our computer imple-
mentation, then it makes sense to find the optimum
objective function value z, by complete enumeration and
one of the many procedures in our constraint generator
is an enumeration routine. The exact determination of
the lifting coefficient 4, = 2 — 4y is of crucial importance
in the first part of the constraint identification, i.e., when
we are “finding”’ the set F as defined above, and as we
shall see below, in this phase of the constraint gener-
ation, | F*| is indeed typically relatively small.

6.3. Approximate Lifting and Constraint Revision
If in the lifting problem | F| and thus | F*| become rel-
atively large, i.e., |F*| > 16 in our computer imple-
mentation, then enumeration is out of the question and
we need a different, rapid way of either calculating z,
exactly—or of approximating z; from above. To see that
the latter suffices suppose that z, is replaced by an upper
bound z;, say. Then we have 4y — 2y < @y — z, and thus
setting 4, = max{0, ao - z; } gives a valid inequality for
the enlarged problem as well. We do commit an error
though, in so far as the resulting valid inequality may
no longer be facet defining. So we are sacrificing theory
for the sake of computational speed and again our com-
putational results justify the approximation. The ques-
tion thus becomes: how does one find z; quickly? Now
consider the linear programming relaxation of the
problem (LIFT). Then we get from duality theory:

max{arxr: Apxp < e — ¥, 5 E€{0,1} VjEF}
< max{arxr: Arxr s e — at, xp = 0}
=min{u’(e - a*): uTA; > a;, u =0}

< minf{uT(e - a*): uTAr 2 a5, u= 0, integer } .

The last problem is a very simple problem that we
can solve approximately by a greedy algorithm to get an
upper bound z;’ on the true optimum value z, rather
rapidly—which is important as we will have to solve
this problem many times, especially when we lift the
variables in N\F as defined in § 6.1. So the constraint
generator contains a greedy routine as well. Remember
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simply “purged” from the constraint set and “forgot-
ten”. The alternative of Placing “old” cuts that have
become inactive at Some point in the calculation into a
“memory pool” for possible reactivation later on has

MaNAGEMENT SCIENCE/ Vo, 39, No. 6, June 1993

for the software System ABC_OPT and those of Padberg
and Rinaldi (1991 ) for the traveling salesman problem.
So at any point of the calculation after the first call to
the constraint generator there are active constraints in
the current optimal LP basis that correspond to cuts
that were previously found by the constraint generator
and the lifting of which was done in random order. So
evidently we may have missed variables that have be-
come basic in the new Lp solution. More Precisely de-
note by a;x; < g, any such actjpe polyhedral cut when
restricted to the index F as defined in § 6.1 that is valid
for P?. Denote i = {JEF: 4;> 0} and ayx, < ap the
corresponding inequality obtained by restricting ax,

= 4o and thus lifting variabjes k € F\H into the inequality
uXy < av—which i valid for Pf—produces a violated

We can no longer claim that the Inequality that we gen-
erate this way defines 3 facet of P{, but given the way
it was generated in the first place it cannot be very far
from it either—just look up the computational record!
So the constraint 8Enerator contains a repise routine

64. Clique Identification
Having discussed the major general procedures of the

Procedures utilize the fact that the 4 matrix is stored
both row-wise and column-wise as ordered lists which
permits us to find the inte ion of rows and / or col-
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tation; see also Padberg and Rinaldi (1990) on this point.
There are essentially three parts to clique identification.

In the first procedure we scan every row of A that has
a nonempty intersection with the columns in F, i.e.,
as in § 6.1 F is the set of all fractionally valued vari-
ables of the current solution vector ¥ € R". So let MF
= {j € F: a,; = 1} for the current row r and find the
set K & F\MY of columns in F that are nonorthogonal
to all columns in M?. K can be found rapidly since the
rows of A are ordered lists. If the set K is nonempty,
then some or all of the columns in K form cliques with
the columns of Mf in G; that are necessarily violated.
We identify a most-violated one and lift it into the re-
maining variables of the problem. Lifting of clique con-
straints is particularly easy since it can again be done
using the ordered list structure of the constraint matrix.

The second procedure for clique detection uses again
the fact that small problems can be solved quickly by
enumeration. So let d(v) denote the degree of node v
€ F and select a node v, say, of minimum degree of Gr.
Every clique of Gr that contains v is itself a subset of
the neighbors of v. Let star(v) denote that set and note
that d(v) = |star(v)]|. If vis a pending node, i.e., d(v)
= 1, then we delete the node v from the graph and
repeat by selecting a next node. If vis a simplicial node,
i.e., {v} U star(v) forms a clique, we check if the cor-
responding clique constraint is violated. If so we lift and
store it. In either case, we delete node v and repeat. If
d(v) < 16, then we simply enumerate all possibilities.
To do so we create, on the fly, data structures for the
complement graph of the subgraph induced by the nodes
in star(v). For any graph G = (V, E), the complement
graph G is the graph having all nodes of G and all of
the |V[(IV] -1)/2 possible edges on the node set V
that are not in G. Any clique in G defines a stable set
in G and vice versa. So we create the complement graph
and enumerate all stable sets in the complement graph
of star(v). Prior to enumerating, however, we call a
greedy routine on the complement graph to find a vi-
olated clique quickly. If we find one, we do not enu-
merate. Otherwise, we do. Consequently, we either find
a violated clique constraint that contains v or we have
proven that no such clique constraint exists. In the first
case we lift the corresponding constraint and store it.
In either case, we delete the node from the data structure
and repeat. The smaller graph that results from the node
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deletion may decompose into several 2-connected com-
ponents and so we update the block decomposition of
the resulting smailer graph in order to keep the graph
as small as possible. If the minimum degree node of the
graph has a degree greater than 16, then we determine
a most violated clique constraint in star(v) greedily as
before, lift and store it if applicable, and delete the node
and repeat. In the latter case, we may miss violated
clique constraints. However, for large-scale problems
and after the various graph reductions have been carried
out, the minimum degree node frequently has a degree
of 16 or less and deleting nodes successively from the
graph creates graphs with smaller degrees. If all degrees
of the input graph are less than or equal to 16, then our
procedure is exact: it is guaranteed to find a violated
clique constraint if one exists. Otherwise, it may or may
not be exact. If the procedure is applied to the example
given in Figure 1 with the node weights as specified,
one shows that solution vector ¥ € R satisfies all clique
constraints that can be derived from this graph. Note
that we destroy the data structures for the graph by
deleting nodes. This does not bother us since the setup
of this data structure can be performed in linear time
and is therefore no bottleneck for the overall compu-
tation.

The third procedure for clique detection is invoked
only if the graph Gy used as an input for the second
procedure is dense, i.e., if its total number of edges ex-
ceeds 50% of the number of possible edges of G;. In
this case we invoke the second procedure nevertheless
and then we set up the complement graph. For every
node of the complement graph we determine a maxi-
mum weight stable set containing that node greedily
where, of course, the weights are given by the values
X; for j € F. If the total weight exceeds one then we
have found a violated clique in the original graph which
is lifted and stored. Of course, it is entirely possible that
the three procedures find the same violated clique con-
straint. However, due to our randomization of the lifting
sequence we tend to identify distinct clique constraints
even if the original “kernel” of the clique may be the
same, where the kernel is the complete subgraph from
which we start in order to produce a clique in G, via
randomized lifting. Nevertheless, because we do not
want to have duplicate rows in the constraint matrix—
for numerical reasons—the subroutine that manages the
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storage of constraints checks for duplicate rows and re-
jects them.

6.5.  Odd Cycle Identification

An o0dd cycle without chords in Gr is a set of nodes C
={u, uy, ..., Uz } for k = 2 such that node u;_, is
joined by an edge to node u; fori & {1, ..., 2+ 1},
where u, = Uzx+1, and no other pair of nodes of C is
joined by an edge. The inequality

2 n<(Cl -1)/2 (2)

ueC

is called an odd cycle inequality. 1t is evidently valid for
P and defines a facet if we restrict P{ to the node set
C. Thus it can be lifted to a facet of the polytope P by
solving a sequence of lifting problems (LIFT ) for all
nodes, i.e., variables, in N\C, see Padberg (1971, 1973).
The lifting order matters and different orders frequently
produce different facets of P{. The problem that we
face in a computer implementation of the theoretical
result is simply: how do we find violated odd cycle in-
equalities? The textbook solution to this question goes
as follows: from the graph G = (F, E;) and the weight
Vvector % create a bipartite graph Ky = (F,, F,, E¥), say,
where F, = F, = F_For every edge (u, v) € E;, introduce
a pair of edges (u, v'), (v, u') € E* where u, v EF,
are the duplicates of u, p € F,, respectively, and assign
to them identical edge-weights 1 -x, — %, Now find
for every node u € F, the shortest path from u to its
duplicate u’ € F,, and pick the minimum minimorum_ 1¢
there exists a violated odd cycle constraint, this algo-
rithm will find it. As with most textbook solutions, it
works on textbook examples. The trouble is that—while
it is as easy to Program as it is to state—this method
will not produce the desired results. If there is no violated
odd cycle in Gy it may return an odd circuit (i.e., some-
thing odd with repetition of nodes and edges!). Typi-

~ cally, after a few rounds of generating odd cycle con-

straints, none of the odd cycles as such give rise to vi-
olated inequalities of type (2). But we need an odd
cycle C with |C| = 5 to start the lifting so that we can,
hopefully, produce a violated lifted odd cycle inequality.
So what do you do? In our computer implementation
we have not incorporated the textbook approach. In-
deed, we experimented with it and dropped it cold. (As
one of the referees of this Paper pointed out correctly,
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an odd circuit always containg some odd cycle without
chords and the textbook approach can be modified to
identify such an odd cycle having minimal slack in (2)
from the odd circuit found by the algorithm. However,
a triangle is also an odd cycle without chords. So if any
three nodes u, v, w in a triangle of G; satisfy ¥, + ¥,
+ X, = 1 and no odd cycle of length 5 or more is violated
then the odd cycle returned by the textbook approach
will typically be a triangle which gives rise to a cligue
constraint, but which is of no use for our purposes and
which is why we have ruled out triangles by definition.
Actually, this outcome is precisely what we observed
in our experiments and given the facts that the con-
straints Ax = ¢,,, x > 0 are always satisfied and that the
clique constraint identification is very effective it is not
surprising that triangles are Produced this way.)

We use instead the following procedure: pick a node
v EF, call it the root, and build a “layered” graph start-
ing from it. Each level of the layered graph is defined
by the edge distance that its nodes have from the root.
Thus all neighbors of v are on level 1, the neighbors of
the neighbors except v and those nodes that have al-
ready been assigned to leve] 1 form level 2, and so forth.
More generally, the shortest path from level & to the
root v contains exactly k edges. Any two nodes on level
k that are joined by an edge and for which there exist
two node disjoint paths to the root form an odd cycle
that contains v. Now it is clear how to proceed: one
iteratively constructs the layered graph level by level
and assigns edgeweights of 1 — X, — X, to all edges (u,
w) € Ef that are in the layered graph. Suppose we are
at level k = 2 in the construction and let ¥ and w be
any two nodes on level k such that (4, w) EE;. Find a
shortest path from u to the root, and “block” in the
graph all neighbors of the nodes in the path except v,
e.g., by assigning the corresponding edges a very large
weight M. In the remaining graph find a shortest path
from w to v that uses only nodes on the levels that are
smaller than k. If a shortest path of length less than M
exists, we have an odd cycle without chords containing
4, v and w and thus the “kernel” of a facet of type (2)
for our problem. If none exists, we take another edge
on level k until they are exhausted. Then we construct
the next level of the layered graph and repeat. The
“blocking” of the neighbors of the nodes in the path
from u to v assures that the resulting odd cycle has no
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chords, i.e., no edges that connect any two nonconse-
cutive nodes of the cycle. Since the root node v is per-
fectly arbitrary, we can now pick a different one and
repeat the process. To assure that we “touch” upon
different parts of the graph G;, we fixa randomly selected
set of possible roots at the beginning. There is no need
to run the procedure for all nodes of Gr. Also, while
the procedure clearly has some polynomial bound on
the number of operations, it would be too costly to ex-
ecute it for all nodes. We limit ourselves to 20%-50%
of all nodes in the iterative application depending upon
the density of the graph G¢.

This construction of the layered graph translates into
a nifty procedure for odd cycle detection. If the pro-
cedure finds an odd cycle then because of the definition
of the edgeweights we find violated odd cycles—if they
exist. Otherwise we get an odd cycle without chords
such that the slack in constraint (2) is as small as pos-
sible. This constraint is then lifted into the remaining
variables in F\C as accurately as possible to find violated
constraints as follows: having obtained an odd cycle we
determine up to five lifting coefficients exactly so as to
produce a most violated lifted odd cycle inequality. More
precisely, for every node in F\C we compute not only
the exact lifting coefficient—since C is a cycle that can
be done fast. However, we pick among all k € F\C the
one with maximum a,%, where g, is the lifting coefficient.
Ties are broken arbitrarily and we repeat this until we
have augmented the original cycle inequality by up to
five nodes from F\C. Careful utilization of the data
structures and the sparsity of the graphs involved permit
substantial speed-ups of these exact lifting procedures.
If we obtain a violated constraint then the remaining
variables in F\C are lifted exactly into the inequality,
whereas for the remaining basic (zero-valued) variables
we may default to an approximate calculation of the
lifting coefficients depending on the cardinality of the
support of the inequality to be lifted. If the first part of
the lifting did not produce a violated constraint, then
we return to the layered graph routine and find another
odd cycle from which the lifting is started again until
the layered graph routine stops. If this cycle detection
routine is applied to the example shown in Figure 1 one
finds six lifted odd cycle constraints that are violated
by the solution vector ¥ € %2 given there. While the
routine has proven to be very effective in computational
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practice it is not an exact algorithm for finding a violated
odd cycle constraint in arbitrary weighted graphs.

6.6. Identification of Other Constraints

Besides cliques and odd cycles our constraint generator
also finds violated polyhedral cuts from other facet-
producing configurations of the intersection graph.
Among these are, in particular, the complements of odd
cycles. So let C be the node set of the complement of
an odd cycle in G;. The node set of every odd cycle in
the complement graph G; of the Gr defines such a node
set C and vice versa. How we find C should be clear:
we produce the complement graph and run on it the
cycle detection routine described above. The corre-
sponding “kernel” of the inequality to be lifted has the
form

2 X <2 (3)

ueC
and when lifted into the variables N\C, the resulting
inequality defines a facet of P?. Because the right-hand
side of the inequality (3) has a value of two, one can
again tailor the lifting procedure so as to produce exact
lifting coefficients efficiently. It is not difficult to figure
out the mathematics of such a procedure and so we
leave it as an exercise to the reader.

As far as the set covering relaxation of P, is concerned,
we have implemented constraint generation based on
odd cycles as well. In this case, the inequality for an
odd cycle C

Z x52(Cl+1)/2 (4)

jec
defines under certain conditions a facet of the subpoly-
tope that one obtains by projecting the remaining vari-
ables out of the problem at value one. We refer the
reader to Sassano (1989) and Cornuejols and Sassano
(1989) for the underlying mathematics of the constraint
generation for the set covering relaxation of P;. The
details of the implementation have the same flavor as
those described above.

As is the case almost always in scientific computation,
code development requires a great deal of love and at-
tention to detail. We believe to have given sufficient
detail in this section so that our experiments can be
replicated by anyone with some mathematical and com-
putational training,
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7. Computational Results

This is the ““show and tell"” section of our paper in which
We present the empirical results that were produced by
our experimental computer software system CREW_OPT
which implements each of the components described
in this paper. CREW_OPT js written entirely in FORTRAN
and has been tested on a CONVEX C-220 mini-super-
computer, an IBM RISC6000 workstation, an Hp
Workstation and a variety of DEC hardware platforms,
on which most of the development was done, Besides

gramming packages can be used in lieu of CPLEX. The
test set consists of 55 pure set partitioning problems
provided by four different airline corporations and 13

allowed for that base.)
Table 1 provides a description of the pure set parti-
tioning problems and Table 4 provides comparable in-

In Tables 1 and 4, the headings Cols, Rows and Dens
provide the number of columns, the number of rows
and the density of the original problem, where density
refers to the percentage of nonzeroes in the A-matrix.
The headings PCols, PRows and PDens provide com-
Parable information after the initial Preprocessing, Ex-
amination of the data in Tables 1 and 4, show that the
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Table 1 Pure Sel-Parminning Problems: Problem Characteristics

Cols Rows PCols PRows Dens PDens
197 17 177 17 22.10 22.27
294 19 251 18 24.30 25.81
404 19 336 19 26.95 26.83
434 24 356 24 22.39 22.36
467 31 463 29 19.55 21.00
577 25 426 25 24.89 24.33
619 23 531 23 23.87 24.10
626 27 454 27 20.00 19.06
677 25 567 25 26.55 26.25
685 22 566 22 24.70 25.00
711 19 473 18 24.80 24.87
770 19 639 19 25.83 25.89
77 23 473 18 23.77 23.12
853 24 659 24 21.18 21.25
899 20 750 20 28.06 28.16
1072 18 982 17 25.18 26.43
1079 23 895 23 26.33 26.05
1210 18 825 18 39.27 38.43
1217 20 844 20 30.16 30.15
1220 23 911 23 32.33 31.44
1355 22 926 22 31.52 30.76
1366 19 925 19 33.20 33.19
1709 23 1403 23 26.70 27.02
1783 20 1408 20 36.90 36.14
2540 18 2034 18 31.04 30.99
2653 26 1884 26 29.63 29.80
2662 26 1823 26 28.86 29.21
2879 40 2145 40 21.88 21.59
3068 23 2415 23 30.76 30.75
3103 40 2305 40 16.20 16.05
5172 36 3108 36 22.12 21.86
5198 531 3846 360 1.32 1.54
6774 50 5977 50 18.17 18.27
7292 646 5862 488 1.10 1.21
7479 55 5957 50 13.67 13.47
8308 801 6235 521 99 1.12
8627 825 6694 §37 1.00 1.32
8820 39 6488 39 16.64 16.81
10757 124 8460 124 6.82 6.83
13635 100 9022 45 14.13 16.57
16043 51 10950 51 12.78 12.57
28016 163 6564 112 6.52 7.48
36699 14} 16542 69 8.16 8.34
43749 59 38964 59 14.13 14,12
§1975 135 50069 135 5.86 5.87
85552 77 27084 53 18.40 21.42
87879 145 85258 145 5.66 5.68
118607 61 78186 61 13.96 13.96
123409 73 95178 73 10.04 10.11
148633 139 138951 139 1727 7.23
288507 I 202603 14| 10.06 10.07

1083137 145 370642 90 9.1 98
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Table 2 Pure Set-Partitioning Problems: LP, IP and Heuristic
Solution Values
Cols Rows Zp Zugn Zp
197 17 10972.5 failed 11307
294 19 14570.0 15600 14877
404 19 10658.3 11070 10809
434 24 35694.0 35894
467 3 67743.0 67743
577 25 7380.0 7676 7408
619 23 6942.0 6984 6984
626 27 14118.0 14118
677 25 9868.5 failed 10080
685 22 16626.0 16812 16812
m 19 12317.0 13702 12534
770 19 9961.5 10377 10068
71 23 6743.0 7452 6796
853 24 68271.0 68271
899 20 10453.5 11613 10488
1072 18 8897.0 8904 8904
1079 23 7485.0 7846 7656
1210 18 8169.0 failed 8298
1217 20 5852.0 6610 5960
1220 23 5552.0 §712 5558
1355 22 9877.0 failed 9933
1366 19 5843.0 6568 6314
1709 23 7206.0 7340 7216
1783 20 7260.0 7634 7314
2540 18 4185.3 4378 4274
2653 26 3726.8 3942 3942
2662 26 7980.0 9754 8038
2879 40 10898.0 10898
3068 23 6484.0 7536 6678
3103 40 67760.0 67760
5172 36 5476.0 5476
5198 531 30494.0 30494
6774 50 7640.0 9616 7810
7292 646 26977.2 27040 27040
7479 §5 1084.0 1096 1086
8308 801 53735.9 54060 53839
8627 825 49616.4 49713 49649
8820 39 116254.5 116259 116256
10757 124 338864.3 392090 340160
13635 100 5965.0 5965
16043 51 §0132.0 §0240 50146
28016 163 17731.7 17854 17854
36699 " 2153 221 219
43749 59 244470 25086 24492
51975 135 114852.0 114852
85552 77 §338.0 5338
87879 145 1054440 105444
118607 61 10875.8 11907 11115
123409 73 61844.0 61844
148633 139 1181590.0 1181590
288507 n 132878.0 132878
1053137 145 9949.5 10075 10022
676

initial preprocessing has a proportionally greater effect
on the larger problems. We wish to reemphasize, how-
ever, that preprocessing is employed as a tool that is
used repeatedly within the overall branch-and-cut al-
gorithm, and not merely as a one-time procedure for
tightening the formulation. It is interesting to note that,
for most problems, the initial preprocessing did not sig-
nificantly alter the density of the matrix and that, in
general, density decreases as the problem size increases.
Tables 2 and 5 provide information regarding the
quality of the linear programming relaxation as a bound
on the integer solution and the quality of the heuristic
routine used as a “stand-alone” routine, i.e., Zygyp is
the first integer feasible solution obtained by the heu-
ristic, provided it did not “fail” to find one. Zp is the
solution value of the LP problem after preprocessing
and Z;; is the optimal 0-1 solution value. If no number
appears in the Zygr column, it is because the linear
programming solver provided the optimal integer so-
lution and the heuristic procedure was not invoked.
Tables 3 and 6 provide a comprehensive picture of
the effort expended overall by CREW_OPT and the pro-
portion of effort expended in each of its major com-
ponents. The headings Prep Calls, Lp Calls, and CG
Calls refer to the number of times the preprocessing
routines, the linear programming solver, and the con-
straint generation routines were called, respectively. The
number of calls to the LP routine does not, however,
include the calls to this routine within the heuristic pro-
cedure which we simply did not count. The number of
cuts reported is the total number of polyhedral cuts
generated during the entire solution process, and the
number of nodes is the total number of nodes on the
branching tree. The times reported for all but the four
largest pure set partitioning problems are in CPU sec-
onds on a RISC6000 model 550 machine, The times for
the four largest pure set partitioning problems were ob-
tained on a CONVEX model C-220 machine using one
of its two processors because due to memory limitations
we were unable to solve them on the RISC6000 ma-
chine; these problems are marked with an asterisk in
Table 3. The largest problem in the table was solved in
two stages. First duplicate columns were removed and
the problem rewritten to a file. The total time for this
duplicate removal was 842 seconds of which only 112
seconds were used to find the duplicates and the re-
mainder for reading and writing the data on the CON-
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Table 3 Pure Set-Partitioning Problems: Branch and Cut Performance Measures

# ot # of LP CG # of # of Prep LP Heur CG Total
Cols Rows Calls Calls Calis Cuts Nodes Time Time Time Time Time Proc
197 17 5 1 2 0 0.02 0.03 0.0 0.0 0.06 CG
294 19 7 2 6 0 0.03 0.07 0.02 0.01 0.17 CG
404 19 4 1 4 0 0.03 0.05 0.08 0.01 0.21 CG
434 24 1 0 0 0 0.02 0.04 0.00 0.00 0.08 LP
467 31 1 0 0 0 0.03 0.04 0.00 0.00 0.10 LP
577 25 2 1 3 0 0.04 0.06 0.14 0.01 0.30 CG
619 23 3 2 6 0 0.03 0.09 0.13 0.02 0.34 CG
626 27 1 0 0 0 0.02 0.03 0.00 0.00 0.09 LP
677 25 5 1 2 0 0.05 0.08 0.03 0.00 0.19 CG
685 22 4 1 9 0 0.04 0.07 0.44 0.03 0.62 CG
711 19 4 1 3 0 0.03 0.09 0.13 0.02 0.34 CG
770 19 4 1 1 0 0.04 0.05 0.06 0.00 0.19 CG
m 23 5 1 3 0 0.05 0.08 0.17 0.01 0.34 CG
853 24 1 0 0 0 0.03 0.05 0.00 0.00 0.13 LP
899 20 5 1 1 0 0.05 0.10 0.09 0.00 0.30 CG
1072 18 2 1 1 0 0.05 0.08 0.17 0.01 0.38 cG
1079 23 6 4 17 0 0.06 0.15 0.59 0.07 0.99 CG
1210 18 4 1 2 0 0.04 0.09 0.16 0.10 0.40 CG
1217 20 5 1 7 0 0.06 0.10 0.36 0.03 0.62 cG
1220 23 4 1 3 0 0.08 0.13 1.06 0.01 1.35 cG
1355 22 4 1 2 0 0.06 0.06 0.08 0.00 0.28 o]
1366 19 14 3 15 0 0.09 0.13 0.23 0.03 0.56 CG
1709 23 4 1 1 0 0.09 0.10 0.18 0.00 0.48 CG
1783 20 13 10 180 0 0.11 0.91 0.26 2.15 3.68 CG
2540 18 12 3 14 0 0.15 0.32 0.32 0.03 0.99 CG
2653 26 8 0 2 0 0.16 0.26 0.20 0.01 0.75 cG
2662 26 7 3 28 0 0.16 0.38 0.41 0.28 1.43 CG
2879 40 1 0 0 0 016 028 0.00 0.00 0.50 Lp
3068 23 9 2 7 0 0.20 0.31 0.70 0.05 1.45 cG
3103 40 1 0 0 0 0.12 0.27 0.00 0.00 0.53 LP
5172 36 1 0 0 0 0.21 0.28 0.00 0.00 0.74 LP
5198 531 1 0 0 0 390 6.00 0.00 0.00 10.15 LpP
6774 50 10 3 33 0 0.72 2.28 6.39 0.42 10.41 CcG
7292 646 12 3 74 0 11.99 17.56 5.89 1.44 37.30 CG
7479 55 1 32 20 229 2 0.98 4.15 7.35 22.16 35.40 BC
8308 801 53 42 345 4 18.32 73.75 23.73 92.93 215.30 BC
8627 825 1 12 2 37 0 11.07 29.81 6.03 0.93 48.42 CG
8820 39 4 1 3 0 0.46 0.74 0.45 001 2.05 CG
10757 124 3 1 15 0 0.68 8.16 13.61 3884 62.49 CG
13635 100 1 0 0 0 1.24 2.58 0.00 0.00 478 LP
16043 51 5 2 4 0 0.86 1.90 0.83 0.01 429 CG
128016 163 2 0 0 0 287 238 439 0.04 11.19 CG
36699 4 10 8 127 0 295 16.48 §0.31 62.10 134.38 CG
43749 59 8 5 20 0 3.07 11.48 6.90 0.18 24.00 CG
51975 135 1 0 0 0 2.76 13.92 0.0 0.0 19.25 LP
85552 7 1 0 0 0 6.83 7.86 0.0 0.0 2027 LP
‘87879 145 1 0 0 0 307 27.88 0.0 0.0 37.35 LP
118607 61 43 15 48 4 8.07 34.68 34.67 2.32 87.53 BC
*123409 73 1 0 0 0 3 50.7 0.0 0.0 876 LP
148633 139 1 0 0 0 443 122.2 0.0 00 1744 LP
288507 71 1 0 0 0 65.3 1199 0.0 0.0 192.5 Lp
“1053137 145 44 26 389 0 156.2 628.3 530.7 62.7 1410.6 CG
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Table 4 Base Constraint Problems: Probiem Characteristics
Cols Rows PCols PRows Dens PDens
86 25 84 21 24,42 26.81
154 28 147 23 23.00 23.07
189 23 170 22 24.82 24.25
191 27 147 23 23.95 22.89
504 28 491 26 27.30 28.97
699 3 689 28 25.77 26.91
819 26 810 2 27.25 28.91
854 31 814 28 15.73 26.78
1586 32 1539 29 24.23 24.36
1609 25 1447 2 38.18 4454
2296 30 49 17 32.66 43.94
28016 179 12672 130 7.05 7.75
85552 83 31852 57 19.47 22.67

VEX machine. The time reported in the table refers to
the second stage where the resulting reduced problem
with 370,642 variables was provided to and solved by
CREW_OPT. The last column in this table, labeled Proc,
indicates the procedures used to prove optimality. LP
indicates that the first LP provided the integer optimal
solution and thus only the preprocessor and the LP sol-
ver were used. HR indicates that in addition to the pre-
processor and the LP solver, the heuristic was needed.
Similarly, if the row has the notation CG, constraint
generation was needed to prove optimality, and finally,
BC denotes that all procedures were called including
branching to construct a search-tree.

Each of the pure set partitioning problems within our
test set having less than five thousand variables was
solved in under four seconds with an average time of
less than one second. Of all 52 problems in this set,
only one required more than four minutes and that
problem has over one million original variables. The
total solution time for this largest problem was under
37 minutes which includes the time to read the entire
problem, remove duplicate columns and rewrite the data
for the problem without duplicates— far less time than
was required to generate the rotations associated with the
problem. Only three of the 52 problems required
branching and the largest search tree produced by our
software package had a total of four nodes. So almost
all of the problems are very easily solved by a state-of-
the-art combinatorial problem solver such as
CREW_OPT.

An examination of the times reported in Table VI for
problems with base constraints shows that the inclusion
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of base constraints makes the problem more difficult.
Unlike the pure set partitioning problems, even rela-
tively small problems have fractional solutions. In all
cases optimal solutions are provided quickly. All but
the largest problem were solved in under fifteen sec-
onds. The largest problem, which had 85,552 variables,
required slightly over one half hour to solve to proven
optimality. In six of the thirteen cases tree-search was
required.

The three other problems in the test set not yet de-
scribed are pure set partitioning problems that require
significantly more computational effort than the rest.
For this reason the three problems became sort of our
“‘problem children” which in turn prompted us to write
more software—especially for the constraint generator.
This lead to an overall improvement of CREW_OPT and
the current package handles also these three “outliers”
satisfactorily. The problems sizes and characteristics of
these problems are presented in Tabie 7. We do not
know what makes these problems more difficult. We
have found nothing unique about these problems in
terms of size, density, distribution of the nonzeroes, or
distribution of the cost data. At present, CREW_OPT is
the only code capable of proving optimality on any one
of these problems. Problem NW04 requires 44 minutes
to prove optimality, although the optimal solution of
16862 was found on the first node after only 5 minutes
(298 seconds) on a IBM RISC6000 Model 550 machine.
The linear Programming relaxation has a solution value
of 16310.7 (which is 3.3% lower than the optimal so-

Table 5 Base Constraint Problems: LP, IP and Heuristic
Solution Values

Cols Rows 2 Zuem Ze
86 25 7819.1 failed 8296
154 28 9794.6 failed 10420
189 23 8943.0 failed 10002
191 27 6329.4 failed 7036
504 28 5395.4 6032 5944
699 31 6051.0 6700 6056
819 28 5771.0 5788 717
854 31 6431.1 6446 6446
1586 32 7165.8 failed 7526
1609 25 3676.4 failed 3768
2296 30 6932.5 failed 7556
28016 179 18236.4 18263 18263
85552 83 5349.5 failed 5697
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cult. Table 6 Base Constraint Problems: Branch and Cut Performance Measures
rela-
a all # of # of Prep LP CG # of # of Prep LP Heur CG Tota!
but Cols Rows Calls Calls Calls Cuts Nodes Time Time Time Time Time Prac
sec 86 25 4 8 2 6 2 0.79 0.06 0.04 0.01 097 BC
Oles, 15 28 7 8 2% 106 8 0.55 0.38 0.10 0.20 151 BC
ven 189 23 4 9 2 14 0 0.48 0.12 0.06 0.05 0.78 CG
was 191 27 3 12 5 10 2 0.90 0.14 0.16 0.08 1.45 BC
504 28 4 16 3 10 2 1.34 0.38 0.47 1.22 4.21 BC
de- 699 31 2 4 1 2 0 0.71 0.10 0.08 0.01 0.94 cG
. 819 26 3 5 2 6 0 0.75 0.13 0.08 0.01 1.01 CG
ire 854 31 3 3 5 39 0 0.71 0.13 0.15 0.00 104 MR
rest. 1586 32 10 29 6 60 2 247 1.18 240 8.14 15.30 BC
our 1609 25 4 8 2 5 0 143 0.53 0.45 1.63 4.25 CG
rite 2296 30 2 4 1 5 0 1.22 0.04 0.03 0.01 1.41 CG
tor. 28016 179 3 3 0 0 0 3.05 247 421 0.0 1046 HR
and 85552 83 1" 129 79 1386 22 1535 515.4 285.3 775.8 1734.2 BC
s’
s of lution). To prove optimality required 44 nodes on a  ona search tree to prove optimality. 15,449 polyhedral
not search tree, 253 calls to the LP solver and 14 calls to  cuts were generated in the process.
we the preprocessor. 6,109 polyhedral cuts were generated
o in the process. 8. Conclusions
f(;: P'roblem A‘,Al requueFl 4.01 hours to p rove that the We conclude from examining the results of this ex-
optimal solution value is 56137, A solution of 56138 tensive test effort that it js ible to sol :
one ) possible to solve very large
was found at node one after only 6.3 minutes of com- t partitioning problems to proven optimali even
ites puting time, with the optimal solution found at node ., P oang P P P ty:’ .
- of 20. The linear programming relaxation has a solution when addxtlon?l ?lde constraints that model th.e true
tes vaiue of 55535.4 (1.05% lower than the optimal solu. problem that airline crew schedulers face are incorpo-
ne. tion). It r un-ed 90. nodes on the search tfee to prove rated explici'tly in the integer programmipg f9mula§on.
lue optin;alityeqS 787 polyhedral cuts were generated ; the For the few instances when proving optimality requires
so- » 9 /87 poly 8 substantial effort, our software package provided ex-
process. traordinarily good solutions with worst case estimates
. The last _Of these problems, P.roblem AA4 has an op- on their correctness very early in the solution process.
hm.al so.lutlon of 24?374. It reflmred 38.7 hours to prove Thus, by using the technology described above and
— optm'.\ahty. The ophm.al solutxon.was found at r}ode 125. solving larger set partitioning problems exactly in the
e The linear programming re'laxal.tlon has a solution va.lue p of determining less costly crew schedules than
— of 25.877.6 (1.8% off ?f optu.nahty). The integer feasible is done currently, the airline in dustry could see imme-
296 solutions found during this run had values 27080, diate and substantial dollar savings in their crew costs.
420 27030, 26993, 26707, 26453, 26448, 26402, and 26374. More specifically, we think that it js possible, with to-
002 They were found within 53, 877, 1,423, 3,642, 7,224, ’ ’
3246 7,443, 7,602 seconds, respectively. It required 494 nodes
956 Tabie 8 Hard Set-Partitioning Problems: LP, IP and Heuristic
m Table7  Hard Set-Partitioning Problems: Problem Characteristics Solution Values, and Time to Optimaitty
;.:_g PROI PROB LP P HEUR Time to Time to Time to
68 BLEM _ Cols  Rows  PCols  PRows  DENSITY MAME  VALUE  VALUE  SOL  2%ofOpt 1%ofOpt  Optimaity
3236 NW04 87482 36 4619 36 202 NWA 163107 16882 a2 225 208 2642
: AAY 8904 823 7632 607 10 AAl 555354 56137  failed 3rs 375 14441
fd AAd 795 42 6122 342 18 MM 258776 26374 27080 68 43 130337
93
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day’s technology, to solve the entire problem as a single
optimization problem. Column generation methodology
similar to that employed for the traveling salesman
problem (see Padberg and Rinaldi 1991) can be devel-
oped for the solution of large-scale crew scheduling
problems as well. This allows very large integer pro-
grams to be handled in an iterative fashion that guar-
antees global convergence but does not require all col-
umns to be generated and used in the solution process
simultaneously. Future work will examine the efficacy
of this approach.

Instead of directing resources towards efforts that
provably reduce operating costs, during the past few
years much of the industry’s attention has focused on
revenue generation—like yield management—that re-
sulted in an enormous variety of fares for a given flight.
More recently, due to outcries by travelers that passen-
gers in neighboring seats were paying tremendously dif-
ferent fares for the same service on the same flight, fare
structures have been simplified and the industry is now
able to focus on other issues related to profitability and
cost reduction. Increased competition induces greater
willingness and the necessity to cut cost. We think that
this is possible through improved planning; crew
scheduling is a very important part of the airlines’ busi-
ness, and cutting cost here not only seems possible but
it is also a problem that can be tackled mathematically
better than done currently. In addition to cost savings
to the airlines, greater job satisfaction of crew members
results from improved Planning since the crews spend
more of their duty time flying and less time on the
ground. There are other aspects of the industry, such
as fleet assignment and maintenance scheduling, where
combinatorial optimization software based on the
mathematics of polyhedral theory is most likely to yield
similar improvements as far the management of per-
sonnel, the planning of equipment utilization and
maintenance and, most importantly, the reduction of
operating cost are concerned.,

We close by noting that much of this paper describes
the general set Partitioning problem with side con-
straints. Thus the solution techniques and therefore the
package CREW_OPT can be applied to a wide variety of
real-world problems different from crew scheduling.
Crew scheduling was chosen because of the availability
of data sets and the interest by the airline community.
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We would like to collect and distribute a large data set
representative of problems having the general set par-
titioning structure. We therefore invite all readers having
such problems to contact the authors, !

! This work would not have been possible without the availability
of data from the airline industry and without many people within
such corporations who provided us with the detailed background for
this important problem. Specifically, we wish to thank Lorraine Latosky
and Fenton Hill of U.S.Air, Jane Barrutt, Jeremy Schneider and Elroy
Olson of Northwest Airlines, and Ranga Anbil of American Airlines
for all of their assistance. Convex Computer Corporation has graciously
provided us with extensive machine time to develop and test the
software package and we are most grateful for that assistance. Finally,
we wish to thank Greg Astfalk of Convex Computer Corporation not
only for his untiring computer help and tutelage, but also for his
enthusiasm and encouragement during this effort.

The authors were supported in part by grants from the Office of
Naval Research (N00014-90-J-1324) and the Air Force Office of Sci-
entific Research (F49620-90-C-0022).

8. Appendix

The data for the set partitioning problem from which Figure 1 is derived
are given in column-major and row-major form in Table 9 which aiso
gives the objective function coefficients which simply equal the number
of ones in each column for this demonstration, e.g., column 1 of the
problem has entries equal to one in rows 14, 26, 27 and 28 and zeros
elsewhere and ¢, = 4. The first constraint of the problem is x, + x,,
=1, etc., and there are m = 30 rows and n = 25 columns. The solution
displayed in Figure 1 is a basic feasible solution to the linear pro-
gramming relaxation of the corresponding set partitioning problem—
and thus it is clear that no integer feasible solutions to this problem
exist. Indeed, the sample problem corresponds to a “block” of the
linear programming solution to one of the problems in the test set
and thus it was originally part of a much larger problem. How do
you prove—using the constraint generation procedures described in
this paper—that no integer solution exists? First, one runs through
the clique detection routines of § 6 which find that no constraint of
the type (1) is violated. This is an exact statement, i.e., the point ¥
€ R* displayed in Figure 1 satisfies all constraints (1) corresponding
to cliques K of the intersection graph of Figure 1. Now running the
odd cycle detection routine of § 6 the program CREW_OPT finds four
odd cycles:

Gi=1{421,18223}, G=(4,21,186 22},
G ={9.17,10,24,18}, C, = {6,24,10,11,25}.

Only for the odd cycle G, is constraint (2) violated as such, while for
the other odd cycles we get a nonnegative slack in (2). Lifting these
“kernels” of facets of the corresponding set packing polytope P#, the
package CREW_OPT produces four violated inequalities:
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Yot Xet Xig + X0 + 22y + X3 < 2,
Yot X + X3 + Xy + 22y, + Xy < 2,
Yo+ X190+ X7 + X5 + X3 < 2,

Xe + Xig + Xy + Xyg + Xy + X5 < 2,

which—incidentally—deﬁne facets of the corresponding polytope
P}. CREW_OPT then adds these four constraints, concludes that the
resulting larger linear program has no feasible solution and stops with
a corresponding message. The time to do all of this on a VAX 8800
is less than one second! We recommend that you do it by hand to see
how the theory works and to really appreciate the help the computer
provides with respect to these calculations. If you do it by hand, you
will find two more violated lifted odd-cycle constraints, namely:

x6+x,+x|,+x,,+x,,+xm+x2.+xz,s3,
Yo+ o+ Xy + X5 + x5 < 2,

which CREW_OPT does not find because we programmed the odd
cycle detection routines to select another node as ““root node’ as soon
as some violated lifted odd cycle constraint at a given root node has
been found by the procedure. The reason for doing so is clear if you
think in terms of “large” graphs: locally we have found a violated
polyhedrai cut and now we wish to 80 into some other ““distant”* part
of the graph and—hopefully—find a violated constraint there, again
locally.

In order to construct the output for the example of this appendix,
we had to “shut off* the preprocessor of the package CREW_OPT
because if we use all “cannons” at our disposal to “finish off “ this
tiny problem, i.e., if we invoke all components of CREW._OPT, integer
infeasibility of the sample problem is detected already in the prepro-
cessor. You can verify that one also by hand calculation using the

routines described in § 4, see especially the merging of two columns
into one.

Table 9 Data for Sample Problem
m=30,n=25
Matrix A columnwise: Columns 1,. . . , 25in sequential order:

{14.26.27,28},{7,10.21},{13,25}.{19,20}.{12}.{6,8.22L
{27.29'.{23.24},{1.2J.{3.4.15}.{9.15,16}.{16}.{28.30L
{29.30}.{18,24}.{25,26}.{2,3},{1.5.6.7,8.9,10.11,12.13
14}.{5.17}.{17,23}.{11.19}.{10.11.19.20.21.22}.{20.2t
22}, {4,5.6,7}, (8,9, 18}.

Matrix A rowwise: Rows 1,. .. ,30in sequential order:
{9.18}.{9.17},{10.17},{10,24}.{18.19.24}.{6.18.24}
{2, 18, 24, (6, 18, 25}, {11, 18, 25}, {2, 18, 22}, {18, 21, 22},
{5, 18}, (3. 18}, {1, 18}, {10, 11}, {11, 12}, {19, 20}, {15, 25},
{4, 21, 223, {4,22, 23}, {2, 22, 23}, {6, 22, 23}, {8, 20}, {8, 15},
{3.16},{1,16},{1,7},{1,13}.{7,14}.13.14L

Cost of columns 1,....,25
4.3.221,32223,3, 1,22,2,2,2,11,2,2,2,6, 3, 43
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Just to satisfy your curiosity (and our own ) we also ran CREW_OQPT
to solve the associated maximum cardinality stabie set problem on
the graph displayed in Figure 1; see § 2 for the definition of a stable
set. In this case, we wish to maximize the objective function %, x,
over the associated set packing polytope of P#. The problem is brought
into the form of (SPP) by adding 30 slack variables with zero cost,
except that we set c3, = 0.1 in order to avoid an alternative integer
optimum solution. The linear Programming relaxation of the problem
gives for the first 25 variables, x; = } for

/€12.4,6,8,9,10, 11, 12, 15, 17,19, 20, 21, 23, 24, 25 e

xy=1forj€!1,3,5 14}, and x; = 0 otherwise as an optimal solution
with an objective function of 12. If we run CREW_OPT as we have
designed it, the heuristic finds the integer solution x, = 1 for

JE€I1,2,3,4,5,6,9,10, 12, 14, 15, 20},

x, = 0 otherwise and—sirice its objective function is 12 and thus equal
to the linear programming upper bound—the software stops since it
has obtained and proved optimality of a solution to the problem. So
we shut off the heuristic and ran the problem again. Drawing the
intersection graph G, corresponding to the LP optimal solution given
above you will find that all clique-constraints (1) are satisfied and
there are exactly two violated lifted odd cycles constraints. CREW_OPT
produced the following constraints:

x.+x,o+x,,+x,,+x,.+11552,
x.+x.+x,,+x,.+x,,+xw+xu+xus3.

When added to the linear program, the reoptimization yields the above
0-1 solution found by the heuristic and stops. As we did not want to
spend time preprocessing the problem either, we had shut off that
part of CREW_OPT as well. Total computation time on a VAX 8800
about half a second (0.65 secs) of CPU time!
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