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Abstract

A form p on R* (homogeneous n-variate polynomial) is called pos-
itive semidefinite (p.s.d.) if it is nonnegative on R™. In other words,
the zero vector is a global minimizer of p in this case. The famous 17th
conjecture of Hilbert [9] (later proven by Artin [1]) is that a form p is
p.s.d. if and only if it can be decomposed a sum of squares of rational
functions.

In this paper we give an algorithm to compute such a decomposi-
tion for ternary forms (n = 3). This algorithm involves the solution
of a series of systems of linear matrix inequalities (LMI’s). In partic-
ular, for a given p.s.d. ternary form p of degree 2m, we show that the
abovementioned decomposition can be computed by solving at most
m/4 systems of LMI’s of dimensions polynomial in m. The underlying
methodology is largely inspired by the original proof of Hilbert, who
had been able to prove his conjecture for the case of ternary forms.

1 Introduction

Usually, mathematical programming is used in operations research and en-
gineering. In this text, however, the application domain is primarily pure
mathematics, or, to be more precise, real algebra. The algorithm described
here, however, can be applied to check efficiently whether a ternary form
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(or, equivalently, a bivariate polynomial) is nonnegative. This can be used
in stability analysis of dynamic systems, in global optimization, etc.

The question on whether a positive semidefinite (p.s.d.) n-ary form p
can be represented as a finite sum of squares (s.o.s.) of rational functions,

i.e.
N
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]
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was listed by Hilbert in his address to the first International Congress of
Mathematicians in 1900 [9]. It became later known as the 17-th Hilbert
problem, and was affirmatively solved in full generality by E. Artin [1, pp.
273-88], albeit in a rather non-constructive way.

It was already established by Hilbert that the r;’s in (1) cannot in general
be constants. The following example is due to Motzkin [10, p. 217] (see also
[20]). The form

M(z,y,z) =25+ zhy? + 2%yt — 3229222 (2)

is p.s.d., but not s.o.s. of forms.

Hilbert himself was able to give a solution for the 17-th problem in the
case of ternary forms [8], that is, when the number n of variables equals
3. More on the topic of the 17-th Hilbert problem can be found in e.g. in
[20, 14, 15]. Hilbert’s approach also appears to be, at first sight, a non-
constructive one. However, as we will show, a slight modification leads to
an algorithm. Namely, the main ingredient in his approach, finding a p.s.d.
form p; of degree degp; = degp — 4 = 2m — 4 such that

N 2
Z q;
Jj=1

p= ) ’ (3)

can be restated as a semidefinite feasibility problem!, at least when Hilbert’s
extra condition N = 3 is replaced by a weaker one, N < oco. Once such p;
and the set of g; = go; is found, (3) can be applied to p; in place of p = po,
and some p2 on place of p;. Repeating this sufficiently many times, say k,
one arrives at the situation when degp, < 4. It is known that a ternary
p.s.d. form of degree at most 4 can be decomposed in a s.0.s. of forms, using
the method that is known to algebraic geometers as Gram matrix method.

lGiven a system of LMI’s, the problem of deciding whether a solution exists is known
as the semidefinite feasibility problem.



It is then easy to construct a sum (1) from p; and g;;. We will give details
in the proof of Theorem 1.

For instance, for p = M(z,y,2) in (2), k = 1 step suffices, and the
following decomposition of M as in (1), with p; = 2% +y2 + 22, can be found
(see [11]).

2yz—yz3)? 25 _123)2 2,2 _,4\2
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Specifically, we obtain the following.

Theorem 1. A p.s.d. ternary form p of degree 2m can be decomposed
as in (1) via solving a sequence of at most m/4 systems of linear matrix
inequalities of dimensions polynomial in m. The degrees of the denominators
in (1) will be bounded from above by 3m?/2.

We must mention that the complexity status of the semidefinite feasibil-
ity problem is not known, but it cannot be an NP-complete problem unless
NP = co-NP (see [16, 17, 12]). In particular, we can state the following
result.

Corollary 1. The complexity of computing the decomposition (1) in the
real number model (see [2]) is in NP Nco — NP.

For further remarks concerning complexity, see Section 4.

Remark 1. The degree bound in Theorem 1 is the sharpest known, and
optimal for m < 4. In fact, this is the only bound known to us on those
degrees for forms with real roots, that is, p.s.d., but no positive definite.
The bounds for the latter, such as [13, 19, 18] all involve the minimal value
taken by the form on the unit sphere.

The main work in proving Theorem 1 lies in proving the following.

Theorem 2. For a p.s.d. ternary form p of degree 2m, a p.s.d. form p; of
degree 2m — 4 satisfying (3) can be found by solving an LMI of dimensions
polynomial in m.

The existence of a decomposition just mentioned was proved in [8]. Thus,
one needs to demonstrate how to compute one using LMIs. We defer this
task to the following Sections.



Let us show how to derive Theorem 1 from Theorem 2. Denote @Q; =
N; 1=1¢
> qi2j. We also abuse notation by assuming [[ Q; = 1 whenever iy > i;.
j=1 i=ip

Then repeated application of (3) gives

k-1
Qo _pQo Qo2 il;[o N
Po—P—E—T—m—'“—fk_s - (5)
l:[OQ2i+1

where f = pog, s =1for m =4k + 1 or 4k + 2, and f = 1/pog_1, s = 2 for
m =4k — 1 or 4k.

Note that for odd m the degree of f (respectively, of 1/ f) is two, while for
even m the degree of f (respectively, of 1/f) is four. Such an f (respectively,
1/f) can always be decomposed as a s.0.s. of forms. This is well-known for
degree 2. For degree 4 it was first proved by Hilbert [7], and an easy modern
proof can be found in [3].

Multiplying both the numerator and the denominator D (it will include
f when m = 4k — 1 or 4k) in (5) by D presents p as a sum of squares of
rational functions with the same denominator D.

This allows one to compute the degree of D? in (5), using the fact that
deg QQ; = 4m — 8i — 4. Namely, one gets

m 4k — 1 4k 4k + 1 4k + 2
deg D? | 12k2 — 12k +2 | 12k% — 8k | 12k% | 12k% + 4k

This completes the proof of Theorem 1.

2 Preliminaries

2.1 Linear matrix inequalities

The notation we use here is fairly standard and taken largely from [21, 12].

Denote the space of symmetric k& x k matrices by Sg. A matrix A € S
is p.s.d. is the associated quadratic form 7 Az is p.s.d., that is, T Az > 0
for all z € R,. Write A = 0if Ais p.s.d,and A > Bif A— B > 0. The
elements of the standard basis of R* are denoted e;, for 1 < i < k. For a
vector v, we denote diag(v) the diagonal matrix with the entries specified by
v, and for a square matrix A we denote by Diag(A) the vector of diagonal
entries of A. For a subset « C R¥, we denote Uy = {z € U | z > 0}.

In what follows we are concerned with certain convex subsets 7 of the
cone of the p.s.d. matrices {A € S | A > 0}. We need the definition of the
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relative interior ri(T) of 7. Namely, ri(7) consists of A € T such that for
any B € T there exists € > 0 satisfying (e + 1)A —eB € T.

Then, Tr(A) = Y, Ai; denotes the trace of A. Equip Sx with the inner
product (A4, B) = Tr(AB). A linear matriz inequality (LMI, for short) on
Sy is specified by a K-tuple of matrices (4;,...,Ak), where A; € S, and
c € R as follows.

(A, X) = ¢ for1<i<K (6)
X =0 (7)

We say that the LMI (6)-(7) is feasible if there exists X € Sy satisfying
(6)-(7), and we denote the set of such X by T(A;,...,Ax,c). The numbers
k and K are called the dimensions of the LMI here.

In fact, the feasible set of a system of LMI’s is sometimes called a spec-
trahedron which is a generalization of the concept of a polytope. Just as for
linear programming, that is, linear optimization on polytopes, there is rich
theory and practice of solving linear optimization problems on spectrahe-
dra, known as semidefinite programming (see e.g. [22]). In particular, the
semidefinite feasibility problem can be solved by interior point methods (see
e.g. [5, 6]). This can be done by embedding (6)-(7) into a larger semidefinite
programming problem that is strictly feasible (has positive definite feasible
solutions) and is its own dual problem (i.e. is self-dual). Thus the so-called
central path of the embedding problem exists, and interior point methods
‘follow’ the central path approximately to reach the optimal set of the em-
bedding problem. An optimal solution of the embedding problem tells us
whether (6)-(7) has a solution or not. Moreover, if T(A;,...,Ak,c) # 0, the
limit point of the central path of the embedding problem yields a solution in
the relative interior of T(A1,..., Ak, c). The only difficulty is that the limit
point of the central path can only be approximated to within e-accuracy in
time polynomial in k, K and log(1/e) for each ¢ > 0, and it is not known
if it can be computed exactly (in the real number model); for a detailed
discussion of these issues, see [5, 6].

For future reference, we summarize the above as follows.

Lemma 1. There is an iterative algorithm that either produces iterates
that converge to an X € ri(T), where T = T(A4,,...,Ak,c), or certifies
that 7 = 0.

We shall need a slight extension of (6)-(7), where ¢ is not fixed, but
rather given by an affine linear map C from RL x Ri to RE | so that

c=di+Cly+CTy, yeRt, yeRY, deR (8)
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First of all, there is no loss in generality in assuming L' = 0, as any ¥’ in (8)
can be written as 4’ = y* —y~, with 4™ > 0 and y~ > 0, and adjusting C;
accordingly (there are other ways of dealing with ' that require less extra
dimensions added). Now we have to consider just

ci=d;+CTy, yeR, d;eR (9)

It is well-known that this problem can be converted into (6)-(7) by adding L
diagonal 1 x 1 blocks to X. Namely, one replaces X by X @diag(y1,...,yL),
¢; by d; and A; by A; & diag(—C;), where @ is the operation that constructs

the matrix M
0
aws= (2 0)

from matrices A and B, and constraints ensuring that the extra off-diagonal
entries of X are 0.

2.2 Forms

We introduce the following standard notation for writing multivariate poly-
nomials. We write z® = z{'z3?...z9". The vector space of n-ary f forms
of degree d is denoted Hg(R™). In what follows we restrict ourselves to
polynomials with coefficients in R and write Hg(n) instead of Hg(R").

An f € Hg(n) can be written as

f@= > a.™ (10)

llell1=d,a€Z?

with @ = (aq, - - - @ay) =€ RY being the N-tuple of coefficients of f. Note
that N = (":i}l) The Newton polytope of f is the convex closure C(f) =
Conv(ay,...,an).

Further, one easily checks that for f = )., aqz® € Hy(n) and g =

28 bgxP € Hy(n), the product as given as follows.

fg= Z Z agbg | 7. (11)

veZ? \y=a+B

That is, coefficients ¢, of fg are as follows.

C’y = Z aabﬂ. (12)
v=a+B;l|al|[1=d,||8|l1=d"
a,BELY
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By definition, a form f € Hy(n) is p.s.d. if f(z) > 0 for all z € R". Note
that d = 2m is necessarily even here, unless f = 0. Then, f is s.o.s. of forms
(we will simply write s.0.s. in what follows) if

M
=Y "h2, forhj€ Hy(n), M <oo. (13)

If f is s.0.s. then f is p.s.d., but the converse only holds for (n,m) = (2,m),
(nam) = (na 1) and_(nvm) = (3a2)
Let hj =>4 ug)xﬂ for h; in (13), and let

Uﬂ = (’u,(ﬁl), . ugM)) € RM. (14)

Then Y
f= Z Z () zP) Zu(a) £y Z(UgUgI)mﬁw’- (15)
=1 B 5 8.8

The equation (16) shows U and the corresponding monomials involved
in the decomposition (4) for f = M(z,y, z)(z*+y%+22), where M is defined

in (2).
( (0,0,4) )
0 0 —-10 0 (0,1,3)
-1 0 000 (1,0,3)
0 0 00 s )Ly
U=]o01000 |, C(hj)NZ3={ (121) } (16)
that (130
00 100 (2,1,1)
0 0 001 (2,2,0)
[ 51.0) |

Comparing coefficients a, of f at both sides of (15), one gets

> UiUg.

B+p'=a

This observation reduces testing whether f is s.o.s. to checking feasibility of
the LMI, where G = UU7,

Gq = Z Gpg fora€Zy, |lalli=d (17)
B+5 =a
G > 0.

This is called Gram matriz method in [4, 20]. In particular, one sees that,
M < dim Hp,(n) = (”+m_1) in (13), as G € Hy,(n). Obviously, M equals

n—1

the rank of G obtained from (17).



Further refinements to this can be found, for instance in [20]. E.g., as
the Newton polytopes C(h;) of the forms h; from (13) must be contained in
%—C (f), not all the monomials from Hy,(n) are allowed in h;’s. For instance,
for f = M(z,vy,z)(z? + y? + 2z?) only the 9 monomials on the righthand side
of (16) are allowed, and G € H,,(n) with m' < m.

3 LMIs and products of forms

As we already mentioned, a p.s.d. f need not be a s.0.s. One can try to find
9=2 b,zP € Hpy(n), for m’' < m, such that the product fg is a s.o.s.,
and f = (3; hf) /g. The former is easy to accomplish by plugging (12) into
(17).

Y aaby = Y, Gpp foryeZh, |lh=2m+m) (18)
a+p=y B+B'=y
G > 0. (19)

Obviously, this is an LMI of the form (6)-(8). Not always a solution (g, G)
of (18)-(19) would satisfy the second requirement, that f = (3_; h?)/g.
Indeed, (0,G) is always a trivial solution of (18)-(19). More precisely, to
satisfy f = (3_; h?) /g, one needs to ensure that the set of real roots Vg(g)
of g is contained in VR(f). However, noting that the solutions (g,G) to
(18)-(19) form a convex set, and observing that all g appearing in solutions
(g,G) are p.s.d., one sees that Vr({(g +¢')/2) = Vr(g9) NVr(¢'). That means
that a “generic” solution (g, G) has Vg(g) as small as possible. This is made
precise in Lemma 3 below.

Finally, we should make sure that g obtained from (18)-(19) is p.s.d..
This will always be the case as long as f and fg are not identically 0 and
p.s.d.. Indeed, assume g(z*) = go < O for some z*. Then f(z*) = 0.
Applying a nondegenerate linear transformation, one can assume that r* =
e1. This means that ¢ has a term x9°89 with negative coefficient, and thus
for any z there exists po > 0 such that g(y) < 0 for y = = — (1 — z1)es
and any pu > po. Hence f vanishes on every such y, clearly a nonsense. To
summarize, we have proved the following.

Lemma 2. Let (g,G) be a solution of (18)-(19) for a p.s.d. form f =
>, aax® € Hy(n). Then g is p.s.d. If g satisfies Vr(9) C Vr(f) then
f = (X, h3)/g, with the coefficients ul9) of h; obtained from G = UUT
using (14).



If g* corresponds to a solution (g*,G*) in the relative interior of the
feasible set of (18)-(19), then Vk(g*) C Vk(g) for any solution (g, G) of (18)-
(19). (Recall that the iterates of a suitable interior point algorithm converge
to a solution in the relative interior.)

Lemma 3. Let 7 be the feasibility set of (18)-(19) and let (g,G) € ri(T)
and (¢',G') € T. Then Vr(g) C Vr(¢'). Furthermore, if (¢',G') € ri(T)
then Vr(g) = Vr(d).

Proof. Let (¢",G") = 1(g,G) + 3(¢',G"). Then (¢",G") € T and Vr(g") =
Vk(g)NVk(g'). On the other hand, by definition of the relative interior, there
exists 0 < € < 1such that e(g”, G")+(1—€)(g,G) € T. Thus Vr(g) C Vr(g")-
By a similar argument, Vr(g') C Vk(g") when also (¢’,G’) € ri(T). Hence
the lemma. Wl

To complete the proof of Theorem 2, we use the following result of
Hilbert.

Theorem 3. (Hilbert [8], cf. [20].) Let p € Hy;m(3) be p.s.d., m > 3. Then
there exists p; € Hopm—4(3) such that p = (Ef’:l h?)/pl for N = 3 and some
hj € Hopm—2(3), 5 =1,2,3.

We will not use the N = 3 part of Hilbert’s result. As observed above,
without assuming N = 3, the corresponding p; and h; can be computed
using an interior point method for SDP on the system of LMIs (18)-(19).
This completes the proof of Theorem 2.

To summarize, we state our algorithm concisely (Algorithm 1).

4 Discussion

The main result of the paper gives an algorithm to find a decomposition of
a p.s.d. ternary form of degree 2m into a s.o.s. of rational functions with
degrees of denominators bounded from above by O(m?). For a given p.s.d.
ternary form p of degree 2m, the algorithm requires the solution of at most
m/4 systems of LMI’s of dimensions polynomial in m.

The O(m?) bound for the degrees of the denominators appears to be
close to being the best possible.

The number of terms in (1) is however far from optimal, for Hilbert (8]
has shown that N = 4 terms suffice. The obstacle here lies probably in (18)-
(19), as the number of terms in the intermediate s.0.s. obtained equals the
rank of G; if p(z) > 0 for all z € R3 then G can be of full rank. Reducing the
number of terms in the decomposition remains a topic for future research.



Algorithm 1 Computing s.o.s. of rational functions decomposition of p
INPUT: a ternary form p
1:=1pr=p
while degp; > 4 do
compute g of degree deg p; —4 such that p;g is s.0.s. and Vr(g) is minimal
by solving the LMI's (18)-(19).
if g =0 then
STOP — p is not p.s.d.
end if
Pi+1 = g; Qi := Pit1Pi-
1+—1+1
end while
compute f := (resp. 1/f :=) s.0.5.(p;).
OUTPUT: p given by (5).

Another intriguing question is when, for a given n-ary p.s.d. form p,
there exists a form p;, degp; < degp, such that p admits a decomposition
as in (3). This cannot be the case for all n, unless P = NP.

A last remark concerns the complexity of our algorithm. A practical
(polynomial-time) implementation of the algorithm would use e-approxima-
tions of a relatively interior solution of the system of LMI’s (18)-(19), instead
of an exact solution in the relative interior. Such a polynomial-time imple-
mentation can probably still detect nonnegativity of positive definite ternary
forms (i.e. ternary forms positive on the unit sphere in R™). In this case one
would choose € as a function of the minimum value of the form on the unit
sphere. It is of practical interest to prove rigorous results along these lines.
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