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Abstract

The ways of using the Elliot~-MacMahon algorithm to compute the Hilbert base of a system
of linear Diophantine equations known so far are either not efficient or can fail to terminate. We
present a version of an algorithm exploiting this range of ideas, which however is reasonably
efficient as well as finite. (© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of computing the minimal generating set H of the semigroup X of the
nonnegative integer solutions of the system of equations

Ax =0, n

where A is an d X n integer matrix, recently received a lot of attention, particularly in
computer science (AC-unification, Petri nets), in integer linear programming, as well
as in combinatorics and computational commutative algebra. We refer the reader to
[1,2,6,7,10-14] for more details, references and applications. We will call H the
Hilbert base of A.

It was observed recently that a modification of the classical Elliott—-MacMahon algo-
rithm for computing the graded generating function of X can be used to compute H.
It works by repeated transformations of a set S of certain subsets S; of vectors in Z%,
in the following way. In each step a critical pair of vectors {x, y} belonging to some

* Corresponding author.
E-mail address: d.pasechnik@twi.tudelft.nl (D.V. Pasechnik).

0304-3975/01/8 - see front matter (©) 200! Elsevier Science B.V. All rights reserved.
PIl: S0304-3975(00)00229-2



38 D.V. Pasechnik | Theoretical Computer Science 263 (2001) 3746

S; €S is chosen in such a way that the vector 4(x + y) is in certain sense “closer” to
the origin than Ax and Ay. Then S; is replaced by two sets S; U {x + y} — {x} and
S;U{x+y} —{»}. (Optionally, other Sy 2{x, y} are replaces simultaneously, as well.)
The starting set S consists of just one set, namely the set of standard basis vectors of
Z%,,. Stanley [9] observed that when all Sx 2{x, y} are replaced simultaneously, the
procedure can be interpreted as a sequence of subdivisions of a simplicial fan in RY,.

Several obstacles lie on the way of making the procedure just described practically
feasible. First, it is necessary to avoid computing the same element of H repeatedly.
This can be accomplished via the Stanley’s idea just mentioned. However, a naive way
of using it might lead to an explosive exponential growth of the memory needed to
store S. In Section 2 we will show (see Proposition 2.1) that the simplicial fan S can
be recovered from its 1-skeleton, thus providing a crucial reduction in the memory
usage.

Second, it is crucial to ensure a speedy termination of the procedure. Here the issue of
the strategy to choose the critical pair P = {x, y} needs to be addressed. Geometrically,
it is natural to choose P so that

xTAT4y <0 (2)

holds. However, as Tomas [13] shows, the strategy of choosing P on the basis of (2)
alone can lead to failure of termination. The only strategy proved to be finite so far
basically solves the equations of (1) one by one. This is well-known to be in general
rather inefficient, as the size of the Hilbert base of these intermediate systems can be
huge compared to the size of H we seek. In Section 4 we will show that the strategy
of selecting P minimizing

Yi (3)

n
degx+degy=> x+
= i=1

n
i=1 i=
among P’s satisfying (2) is finite.

The remained of the paper is organized as follows. Section 2 concerns notation and
preliminaries. The algorithm, for a range of strategies of choosing a critical pair, is
described and shown to be complete in Section 3. Section 4 is devoted to a termination
proof of our strategy, and Section 5 concludes the paper with a discussion and some

data obtained from an experimental implementation of our algorithm.
2. Preliminaries

The notation used is mainly taken from Ziegler [15], Sturmfels [11] and Stanley [9].

2.1. Cones and fans

For a cone C, one can construct the complex F(C) in the usual way, with the
i-dimensional faces of C corresponding to (i — 1)-dimensional simplices of F(C). A
cone C is simplicial is F(C) is a simplex. A simplicial cone C C R, generated by
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linearly independent vectors cy,...,ck (notation C =cone(cy,...,cx)) is called a lattice
cone (or a unimodular cone) if any vector in CNZ" can be expressed as a nonnegative
integer linear combination of ci,...,c,. The latter is equivalent to the existence of n—k
integer vectors Cgii,...,cy such that

det(cl,....c]) = 1. 4)

Geometrically, it means the absence of integer vectors in the interior of the paral-

lelepiped defined by 0,cy,...,c.

A fan Z is a set of cones in R¥ satisfying the following two properties.

(i) Every nonempty face F of a cone C € # also belongs to #.

(ii) The intersection of two cones in & is a face of both of them.

A fan is called simplicial if all its cones are simplicial. A simplicial complex can be
naturally associated with a simplicial fan. Now we are going to define two operations
which, given a simplicial fan # in RY,, produce a new one.

Syy: Edge split. Given a cone E =cone(x, y) € #, replace each cone C = cone(x,y,
ci,...,cx) € F by a pair of cones C’' =cone(x,x + y,ci,...,c), C”" =cone(y,x +
V,Cly-yCk )

R,: Vertex removal. Given a ray x € #, remove from & all the cones containing x.

We shall consider fans obtained from R%, by repeatedly applying edge splits and
vertex removals. Formally, we define a family ¢ = |J,,, ®: of simplicial fans induc-
tively by setting &y ={R%,}, and &,y =S,(®;) for some cone(x, y) € $; or Diyy =
R.(®;) for some cone(x) € &;.

Denote by G = G(F) the 1-skeleton of the simplicial complex of 4 € ®. As usual,
V(G) and E(G) denote the sets of vertices and edges of G, respectively.

Proposition 2.1. The cligues of G=G(F) are in the natural one-to-one correspon-
dence with the cones of & € ®.

Remark 1. It is essential that # € @. For instance for a fan & with the maximal cones
cone(a, b), cone(a,c) and cone(b,c), where a=(100), b=(010) and ¢=(001), the
clique {a,b,c} of G(Z#) does not correspond to any cone of F.

Proof. We proceed by induction. Observe that the statement holds for the fan {R%,}
and assume that it holds for %, € ®.

Trivially, a cone C € %, corresponds to a clique G(C) of Gy =G(#.0). Hence, in
particular, the proposition holds for & = R(%y).

Next, let # =S,,(Z%). Observe that the graph G is obtained from the graph G, by
replacing the edge (x, y) with the two-path (x,w, y), where w=x + y, and joining w
to the common neighbours of x and y in Gy. Clearly, it suffices to prove the statement
for the maximal cliques only. Let C be a maximal clique in G. If w¢C then C
is a clique in Gy unaffected by S.,. Thus cone(C) is a cone in F N %, and we
are done. Now assume w € C. Observe that C — {w} is a clique of Gy consisting of
some of the common neighbours of x and y in Gy, as well as of either x or y. (The
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latter follows from the maximality of C.) Without loss of generality, x € C. Moreover,
Co=CU{y}—{w} is a clique of Go. Hence, by induction, cone(Cy) = cone(C—{w}, y)
is a cone of % and cone(C) € F by definition of Sy,. O

Remark 2. Tomas observed, after a preliminary version of this paper was distributed,
that a rather similar idea appears in [4]. The exposition we give here is however quite
different from the one in [4] and is easily accessible for a reader unfamiliar with
“constraint propagation” technique of [4].

The proposition just proved shows that the combinatorics of # € @ is completely
encoded in G(&). The following proposition, derived from Stanley [9, Lemma 3.7],
deals with the geometry of #.

Proposition 2.2 (Stanley [9]). The cones of & € & are lattice cones.

Proof (Stanley [9]). For the fan {R%,} the statement holds. Assume that is holds for
Fy € ®. Then it clearly holds for # = R,(%g). Let F = 5;,(%0) andw=x+ycCe%,
with C maximal (obviously it suffices to prove the statement for the maximal cones).
Thus we can assume x € C and C = cone(w, X, c1, ..., ). Then Co = cone(x, y,¢1,...,¢k)
€ #, by definition of S, and is a lattice cone by assumption. Thus,

£1=det(x",y",c] -+ cf,d} - dn_s_2)
:det((x + y)Ta yT’C’lr o 'CE’dT o 'dZ—k—z)’

applying (4) to get the first equality, and a well-known determinantal identity to get
the second one. Hence the proposition. [

2.2. Matrices and vectors

The vectors v € Z% satisfying (1) form the semigroup Z. The Hilbert base of 4 is
the (unique, cf. e.g. [8, Theorem 14.6]) set H of vectors ve Z%, satisfying (1) and
such that
1. x=3,cyonh, an€Zo for any x€ 2 (i.e. H generates z);

2. u—v¢Z% for any u,v € H (i.e. H is minimal).

In what follows ||x|| stands for the Euclidean norm of x € R” (i.e. ||x|| = S %)

The support of x is the set supp x={j|1<j<n, x; #0}.

3. Description of the algorithm

In this section we describe an algorithm HB =HB(4, R, b,R’,b') computing the in-
tersection H N P of the Hilbert base H of A4 with the set

P={xcR.,|Rx<bR'x<b'}, RO=(ry), r;=0.
=0 j ]
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We allow R=R’=0, so that H N P=H in this particular case.

HB works by updating a fan & by applying edge splits (and, optionally, vertex
removals) starting from & ={R%,}. & is stored as G=G(#), as Proposition 2.1
allows. As x € V(G) satisfying (1) appear, they are stored in H, which is initially
empty. We shall denote

Es = Es(G)
={(x,y) € E(G)|x"4TAy <0, R(x + y)<b, R(x + y)<V¥/,
there is no w € H with x + y=w}. (5)

The edges (x, y) for the splitting S;, will always be selected from Es. The set Eg
is maintained by calling HB recursively. This allows to describe the procedure in a
greater generality. Other possibilities for maintaining Es are described in Section 5.

The algorithm in pseudo-code is given in Fig. 1. First, we assume that the step
(Optional) is not performed at all.

Lemma 3.1. Let we H NP lie in the interior of a cone C &€ %, where G=G(F) is
obtained at some stage of the execution of the algorithm (assuming (Optional) not
being performed). Then Es=Es(G)#0.

Proof. As C=cone(cy,...,cx) is a lattice cone (cf. Proposition 2.2) and w is in its
interior,

k
WZZO(,'C,‘ with OC,‘ZI for l<l<k
i=1
Applying 4 to both sides of this expression yields

k
0= E (X,'AC,'.
i=1
The latter implies that ¢fATAc; <0 for some 1 <i<j<k. As ;21, a; =1, and w€EP,
we have ¢; + ¢; € P. Hence (c;,¢c;) €Es#0. O

The following can be proved by a straightforward inspection of the definition of Es.

Lemma 3.2. Let (x, y,v) be a triangle in G with (x,v) and (y,v) not in Es. Then
(x + y,v), should it arise during the run of algorithm, cannot belong to Es.

Thus the vertices of G removed during the step (Optional) are “redundant”, as they
do not participate in updating of Es. Hence this step does not affect the outcome of
the algorithm.

By Lemma 3.1, if the algorithm terminates then w & H will appear in the block
Choice of the algorithm as w=x + y for some (x, y) € Es. Thus H will be returned
upon termination.
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Input: 1. A - d x n integer matrix
2. R - r x n matrix of nonnegative integers
3. b - vector in RY,,.
4. R' - ¥/ x n matrix of nonnegative integers
5. b’ - vector in R;’O.
Output:  {x € H|Rx<b,R'x<b’}, where H is the Hilbert base of 4

Initialize: G:=G(RL,); H:=0;
Jor veV(G) do
if Ro & b or R'v £ b’ thenG:=R,(G); fi;
if Av=0 then G:=R,(G); H:=H U {v}; fi;
od
Set Es using (5);

Main loop: while E; # 0 do
Choice: Choose (x,y) € Es

7 !
w:=x+y; H,:=HB (A,R,b, <1; ),(l‘i})),

if H, =0 then
if Aw =20 then
H:=HU{w}; Es:=Es — {(x, »)};
else G:=S,,(G);
Es:=Es U {(w,u) € E(G) | wTAT4u <0,

R(w+u)<h,
R(w+u)<b'}
fi;
else Es:=Es — {(x, »)};
fi
(Optional): for veV(G) do
if {u|(u,v) € Es} = 0 then G:=Ry(G); fi
od;
od,
return H,
END HB;

Fig. 1. The algorithm HB(4,R,b,R',b’).

4. Termination

The way the algorithm is described in Section 3 leaves the question of choosing
w in the step Choeice widely open. In fact, it is shown in [13] that for certain ways
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of performing this step, in particular when (x, y) with the least value of xT4TAy is
selected in Ej, can lead to failure of termination. However, if we process V(G) degree
by degree (recall that degx= Y, x;) then, as we shall show, the situation is quite
satisfactory. We use a generalization of the technique due to Contejean and Devie
[2, Section 5]. Namely, we prove the following.

Theorem 4.1. If (x,y) € Es of minimal degx+degy is always selected at the step
Choice, then the algorithm terminates.

Proof. Assume the contrary. Then in the graph G we will have an infinite degree-
increasing path v1,v,0s,...,0;,..., where v;1| = v;+x; for some x; € V(G) with v,?ATAxi

<0 forevery iz1. 0O

We shall use following generalization of [2, Lemma 5.1].

Claim 4.2.
A
fim 4%l
k—oo deguy

Proof of the Claim. It suffices to show that for any vertex vx € V(G) we have ||dve|?
<Cdeguy, for a constant C. We proceed by induction. Using v]_,ATAxe_; <0 we
derive

lAve|[* = ||dve—t|[* + ||dxe—1||* + 204, 4" Axy
< Cdegui—; + Cdegxy_y; = Cdeguy.

Now define u; =ui/degvy. Then deguy =1 and limg_oo ||[Auk||=0.! As u is a
sequence on the n-dimensional simplex, which is a compact set, there is an adherence
point 7. Namely, # is the limit of the subsequence (ug))k>1, where ¢ is an increasing
mapping on 7. By the continuity of the mapping x — ||4x||,

14211 = Jim Jldugei = 0.

Thus ¢ satisfies (1).

Starting from #, we construct a nonzero solution r € Z%  to (1) with suppr C supp?.
Note that # lies in the rational cone {x € R%,|Ax =0} (rational means that the ex-
tremal rays of it are rational vectors). As it is finite-dimensional, these rays can be
given by vectors r;’s in Z% . Thus £ is a sum of r;’s with nonnegative coefficients.
Hence there is a constant N such that N/ >r, for some r =r;, an extremal ray of the
cone.

! At this point it suffices to refer the reader to Contejean and Devie [2, Proposition 5.3] to complete the
proof. As the second part of their proof (starting from the middle of p. 153) can be considerably streamlined,
we would nevertheless like to give a complete proof here.
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From the definition of u; we know that for j € supp?, the jth entry of v; increases
without bound as k increases. Thus for some ko we have vy, 27, the desired contra-
diction. O

5. Discussion

5.1. The implementation

The author has done an experimental C language implementation of the algorithm
described in Section 3, Fig. 1, with the minimal degree edges (x, y) chosen at the step
Choice, as justified by Theorem 4.1. The graph G is maintained using balanced binary
trees to represent ¥ (G) and the adjacencies of the vertices.

The recursive call to HB in Choice in the implementation is replaced by a search
in the set H kept as an hierarchical structure. Due to the order of the edges in Es
processed, H always contains the elements of the Hilbert base of 4 of degree less than
the one currently processed. While this works well when |H| is small, this becomes the
bottleneck of algorithm when, roughly speaking, |H| becomes comparable with |V (G)|.
The alternatives would be to try the recursive call to HB, or to some other algorithm
computing the Hilbert base, e.g. the one described in [2]. Perhaps the most promising
is to try to keep some vertices of G (removed by the step (Optional) in the current
implementation), so that the recursive calls to HB would not have to rebuild (parts
of) G. This needs further analysis.

Also, one could try to keep H in the data structures known in computational geome-
try such as Kd-trees and range trees. For them, however, the worst case analysis does
not give too much ground for optimism, either (the “rectangular query range” cannot
be searched faster than O(log”™' |[H|)). See [3] for details on this.

Finally, we observed that for large G’s the search of vertices in V(G) and the vertex
adjacencies slowed down. More experiments are needed here with efficient ways of
maintaining large sets.

5.2. Comparison and conclusion

It appears that the most efficient algorithm known to date is described in [2]. The
major attraction of it is that the space needed by it is just a constant O(dn). How-
ever, it generally needs to perform more additions of vectors of length d, i.e. linear
combinations of columns of 4, than Elliott-MacMahon algorithm. For instance for
the (1 x 2)-matrix 4 =(a,b) it needs to perform roughly ab vector additions, while
Elliott-MacMahon takes at most max{la/, |b|}.

The preliminary results of testing of the implementation appear to be encouraging.
For instance, on the (proposed in [11, Chapter 6]) benchmarks homogeneous primitive
partition identities, where A is the (2 X 2n)-matrix

A=A, = {ﬂ:(i)'lsién},
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our program outperforms the program implementing [2], as much as by a factor of 100
for n26. As well, on some tests from Tables II and III of [2] our program is faster
(while on some, especially “small” ones, slower).

The memory problems start to affect the performance when G gets large. This is
certainly the price one pays for the faster performance, not so uncommon in the theory
of algorithms.

Finally, we must stress that there is apparently no particular algorithm for finding
the Hilbert base which is much better than the rest of them. Specific domains need
specific algorithms. We hope that Elliott-MacMahon algorithm will have its place, as
well.
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