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Abstract

The problem of colouring a k-colourable graph is well-known to be NP-complete, for k& > 3.
The MAX-k-CUT approach to approximate k-colouring is to assign k colours to all of the vertices
in polynomial time such that the fraction of ‘defect edges’ (with endpoints of the same colour) is
provably small. The best known approximation was obtained by Frieze and Jerrum [9], using a
semidefinite programming (SDP) relaxation which is related to the Lovasz 9-function. In a related
work, Karger et al. [18] devised approximation algorithms for colouring k-colourable graphs exactly
in polynomial time with as few colours as possible. They also used an SDP relaxation related to
the YJ-function.

In this paper we further explore semidefinite programming relaxations where graph colouring
is viewed as a satisfiability problem, as considered in De Klerk et al. [6]. We first show that the
approximation to the chromatic number suggested in [6] is bounded from above by the Lovész
J-function. The underlying semidefinite programming relaxation in [6] involves a lifting of the
approximation space, which in turn suggests a provably good MAX-k-CUT algorithm. We show
that of our algorithm is closely related to that of Frieze and Jerrum; thus we can sharpen their
approximation guarantees for MAX-k-CUT for small fixed values of k. For example, if k = 3 we
can improve their bound from 0.832718 to 0.836008, and for k = 4 from 0.830301 to 0.857487.
We also give a new asymptotic analysis of the Frieze-Jerrum rounding scheme, that provides a
unifying proof of the main results of both Frieze and Jerrum [9] and Karger et al. [18] for £ >> 0.

Keywords: Graph colouring, approximation algorithms, satisfiability, semidefinite programming, Lovész 9-
function, MAX-k-CUT

1 Introduction

The Lovasz ¥-function [23] of a graph G = (V, E) forms the base for many semidefinite programming (SDP)
relaxations of combinatorial optimization problems. The ‘sandwich’ theorem of Lovész ensures that w(G) <
HG) < x(G) (see [23, 14, 21]), where w(G) and x(G) denote the clique and chromatic numbers of G = (V, E)
respectively, and G is the complementary graph of G. Karger et al. [18] devised approximation algorithms for
colouring k-colourable graphs. Their so-called vector chromatic number is closely related to — and bounded
from above by — the ¥-function. The authors of [18] proved that k-colourable graphs can be coloured in

polynomial time by using at most min{é pl=¥/ D)) O (Al-2k colours, where n = {V| and A is

the valency of the graph; for a review of earlier results, see [18]. This work employs the ideas of semidefinite
approximation algorithms and associated randomized rounding, as introduced in the seminal work of Goemans
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and Williamson [12] on the MAX-CUT and other problems. The results in [18] cannot be improved much for
general k, since approximating the chromatic number of a general graph to within a factor n'~¢ for some 6 > 0
would imply P = RP. There is still some room for improvement of the results of Karger et al. for fixed values
of k — the best related hardness result states that all 3-colourable graphs cannot be coloured in polynomial
time using 4 colours, unless P = NP [20]. The best known (exponential) algorithm for exact 3-colouring runs
in 0(1.3446™) time [4].

The graph colouring problem for k-colourable graphs can be seen as a special case of the unweighted MAX-
k-CUT problem.! Approximation algorithms for the MAX-k-CUT problem assign a colour from a set of k
colours to each vertex in polynomial time so as to minimize the number of defect edges (see e.g. [5]). The
approximation guarantee of a MAX-k-CUT approximation algorithm is the ratio of the number of non-defect
edges in the approximate solution to the maximal number of non-defect edges. The fraction 11 /k is achieved
by a random assignment of colours to the vertices. This can be slightly improved to (1 — + +2In(k)/ k?) for
sufficiently large values of k, as shown by Frieze and Jerrum [9]; there is very little room for further improvement
of this result, since the attainable approximation guarantee is upper bounded by 1 — 1/(34k), unless P=NP
[17). For fixed values of k the approximation guarantee can be improved. For example, Frieze and Jerrum [9]
showed that a guarantee of 0.832718 is attainable for MAX-3-CUT. The approach in [9] is closely linked to
that by Karger et al. in the sense that both underlying semidefinite programming relaxations are related to the
same formulation of the ¥ function. In another related work, Alon and Kahale [2] proposed an approximation
algorithm for the independent set number of a graph based on the ¥-function.

Recently, De Klerk et al. [6] proposed a SDP based approximation of x(G) by casting the colouring problem
as a logical formula (satisfiability (SAT) problem). This logical formula is an encoding of the problem: ‘Is
x(G) < k? for a given integer k; the SAT problem is subsequently relaxed to a semidefinite programming
(SDP) feasibility problem, and the approximation to x(G) is the smallest value of k for which the SDP
feasibility problem is feasible. The authors showed that the resulting approximation to x(G) satisfies the same
sandwich theorem as does 9(G).

In the first part of this paper we show that a slightly tighter SDP relaxation of the SAT formula yields [9(G)]
as an approximation to x(G). Thus we show that the approximation to x(G) from [6] is bounded from above
by [9(G)]. The SDP relaxation we employ is closely related to the types of MAX-SAT relaxations studied
by Karloff and Zwick [19], Zwick {26], and Halperin and Zwick [15]. The relaxation problem involves a lifting
of the usual n X n matrix variables to kn X kn matrix variables. The advantage is that the different choice
of variables suggests a rounding strategy that is simple to analyze. In the second part of the paper we show
that this rounding procedure is actually equivalent to the rounding procedure by Frieze and Jerrum. Thus
we can refine their approximation guarantees MAX-k-CUT where k is fixed (small). For example, if k = 3
we can improve their bound from 0.832718 to 0.836008, and for k = 4 from 0.850301 to 0.857487. Since
the first submission of this paper, the improved bound for MAX-3-CUT was also independently obtained by
Goemans and Williamson [13]. They also used a semidefinite programming relaxation of MAX-3-CUT, but
with the novel feature that complex (Hermitian) matrix variables are used. Nevertheless, they showed that
their method is in fact equivalent to that by Frieze and Jerrum [9] for MAX-3-CUT as well as to the method
by Anderson et al. [3] for solving linear equations mod p when applied to the special case of MAX-3-CUT.
Goemans and Williamson [13] also show that the MAX-3-CUT guarantee can be expressed as the minimum
of a function in closed form. However, there is no obvious way to extend their approach to MAX-k-CUT if
k>3.

We will also give a theorem describing the asymptotic behavior of the rounding scheme in the Frieze-Jerrum
MAX-k-CUT algorithm for large k. We show how the main results of Frieze and Jerrum [9] and Karger et al.
[18] for k > 0 follow from it, thus giving a unified view of these results.

Outline of this paper

We show how to formulate the graph colouring problem as a Boolean quadratic feasibility problem in Section
2, and thereafter review the standard procedure to relax such problems to semidefinite feasibility problems in
Section 3. Subsequently we apply the general relaxation procedure to our reformulation of the graph colouring
problem in Section 4, and thus define an approximation to the chromatic number which is an upper bound to
the approximation defined by De Klerk et al. [6]. In Section 5 we show that the new approximation is simply

1In the (unweighted) MAX-k-CUT problem the goal is to assign k colours to the vertices of a given graph so as
to minimize the number of defect edges (edges where both endpoints have the same colour). Note that a k-colourable
graph allows a k-cut where there are no defect edges.



[9(G)], thus giving an upper bound on the approximation in [6]. Based on this analysis we propose a MAX-
k-CUT algorithm in Section 6 and prove that it is equivalent to the Frieze-Jerrum algorithm for graphs where
9(G) = k. We derive an expression for the performance guarantee of our algorithm in Section 7. In Sections
8 and 9 we give performance guarantees of our algorithm for the MAX-k-CUT problem; this is followed by
a section on approximate graph colouring where we show how to derive the main result by Karger et al. [18]
from the analysis in our paper.

2 The colouring problem as a Boolean quadratic feasibility
problem

Consider a simple graph G = (V, E) with |V]| := n and chromatic number x(G). The colouring problem is
stated as: Can G be coloured using k colours, i.e. is x(G) < k?

We define the following {—1, 1} variables:

T =

1 if vertex 7 has colour j
—1 otherwise.

Adjacent vertices may not share a colour:

(2P +22+1)* =1if (i,j) € E (1)
for each colour p = 1,...,k, and each vertex must be assigned exactly one colour:
T 4. +zE=—k+2 (i=1,...,n). 2

Squaring both sides of (2) and using the fact that the variables are {—1,1} one also has

HIECEEICEDEDE

p=1g¢>p

(k* — 5k +4) . (3)

[ =1

Having chosen the Boolean quadratic representation the graph colouring problem, namely (1), (2) and (3), we
can now use a standard procedure to relax it to an SDP feasibility problem.

3 SDP relaxations of Boolean quadratic equalities

Let us assume that
2 Az + 2Tz +c=0, ze{-1,1}" (4)

is a given Boolean quadratic equality. Equation (4) can be rewritten as
T A b zzT z 0 (~1,1}" 5)
r =0, ze1—1, )
T ¢ 7 1

where ‘“Tr’ denotes the trace operator. We can relax (5) to

Ab
Tr

where X is now a symmetric n X n matrix which satisfies

X -yy" >0, (6)

X y

:0,
T

y

and X;; =1(j = 1,...,n) (4 = 0 means A is symmetric positive semidefinite). Note that the entries X;
correspond to the products z;z; and y; corresponds to x;. Also note that (6) is equivalent to

X
| »o,
yT 1

by the Schur complement theorem (see e.g. Theorem 7.7.6 in [16]).



4 An SDP relaxation of graph colouring

Recall that the variables of the SDP relaxation problem correspond to pairwise products of the {—1,1}
variables and to the variables appearing in linear terms. The possible products which can occur and their
corresponding relaxation variables are respectively listed and defined in Table 1.

Product | Corresponding relaxation variable
P4 PY
T T] Xij
PP p
T T} Xij
P9 rq
z T} X;
P P
z; X1 Xir

Table 1: The notation for variables appearing in the SDP relaxation

It is easy to check that (1) gives rise to the following constraint in the SDP relaxation:
XL+ X+ Xir=-1 (7)

for each edge (%, ) and each colour p. Similarly (2) gives rise to
k
Yo X =2—k (8)
p=1

for each vertex ¢. Summing over p in (7) and using (8), we immediately derive

k

S XE =4k, (9)
p=1
if (¢,7) € E. Finally, (3) gives rise to
k k 1
ZZqu=§(k2—5k+4), i=1,...,n. (10)

p=14¢<p

We now order our (kn+1) x (kn+1) SDP relaxation matrix X as follows: X consists of n® blocks of size (k x k)
and is bordered by a kn-vector and has entry 1 in the lower right corner. Each (k x k) block corresponds to
a pair of vertices (say (i, §)), and its entries correspond to the relaxation of the products a? :1:?, where p and ¢
range over all the colours.

The bordering kn-vector is divided into n k-vectors, where the ith k-vector is given by [XilT e XI-’“T] (i=
1,...,n). A schematic representation of the structure of X is given in Figure 1.

We formally define our SDP feasibility problem as follows:
Find whether there exists an X = X7 ¢ RF*1x*n+! (SDFP)

such that?
X >0, diag(X)=e, i=1,...,kn+1,
and the constraints (7), (8) and (10) are satisfied.

We further define the number k(G) as the smallest value of k for which the SDF feasibility problem (SDFP)

has a solution.

2Here, diag(X) means the vector obtained by extracting the diagonal of X and e is the all-one vector.
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Figure 1: Schematic representation of the block structure of the matrix X. The k x k blocks are
symmetric and only the upper triangular parts are shown.
5 Relation with the Lovasz v-function

We show in this section that k(G) = [9(G)]. To quote Goemans [11]: ‘It seems all roads lead to ¥’!

The 9-function has many representations (see [14]); the representation we will use is by Karger et al. [18]:

ﬂ(G):IB},?k (%)
subject to
—1 AP
Uij - m7 lf(’L,])EE
Uii = 1, i=1,...,n
U >0 k22

We will show that if X is feasible in (SDFP) for some integer k > 2, then one can construct a feasible solution
for problem (x). Conversely, if (U, k) is feasible in problem (x) for some integer k, then a feasible solution to
(SDFP) an be constructed. This then implies that k(G) = [9(G)].

Theorem 5.1 Let G = (V, E) be given. Then k(G) = [9(G)].

Proof: Let k be given and assume that X > 0 is feasible in (SDFP) for k. We define the (kn+1) x (kn+1)
matrix

k!
~ 1 - T
Y= Hz:lQiXQi

where the (kn + 1) x (kn + 1) matrices Q; (i = 1,...,k!) take the form

P, 0O 00

0 .00
Qi =

0 0 PO

0 0 01



where P; (i = 1,...,k!) are all the k X k permutation matrices. In other words, Q: has n copies of the k x k
permutation matrix P; as diagonal blocks and 1 in the lower right corner. Note that Y = 0 since X > 0.3

Note that ¥ has the same block diagonal structure as X. For each square block of Y there holds: the diagonal
entries are constant and given by the average of the diagonal entries of the corresponding block of X; the
off-diagonal entries are likewise equal and given by the average of the off-diagonal entries of the corresponding
blocks of X. The bordering vector of X is mapped to the vector of all ones times the average of the vector
components. In other words, all components of the bordering vector of Y equal (2 — k)/k, by (8).

The diagonal blocks of Y have ones on their diagonals. The off diagonal elements are easily shown to equal
(k—4)/k by using (10). Moreover, if block (i, j) corresponds to an edge (4, j) € E, then all the diagonal entries
of this block equal (k — 4)/k, by (9).

Note that Y satisfies the constraints (7) , (8) and (10). This means that X is feasible for (SDFP) if and only
if Y is feasible for (SDFP). The matrix Y has the form:

2k
N Yinxkn “1=€kn
V= %
- b
2—k T
i €rn 1

where e; denotes the all-ones vector of length ¢. Now define the (kn x kn) matrix
i, 2-k\?
Y := Yinxkn — (—k—> eknefn (11)

which is positive semidefinite by the Schur complement theorem. More precisely, ¥ > 0 if and only if Y = 0.
All the diagonal blocks of Y are identical and given by:

4 k—4 1 (2-k\’ o 4 1
(k)1k+ o ke ( A )ekek—k I peker |

where Ij, denotes the identity matrix of size k x k. The blocks of Y corresponding to edges have diagonal
entries —4/ k2. The diagonal of ¥ can now be normalized to one by defining

2
Y: k

(it (12)

We now take a (n x n) principal submatrix of Y (say U) determined by the rows and columns with indices
tx k+1wheret=0,1,...,n — 1. Straightforward calculations yield that

1 ifi=j

= if (4,5) € E.

Uij =

This proves that k(G) > [9(G)].

Conversely, assume that a feasible solution U, k is given for problem (x), where k is an integer. We can now
construct Y via

k 1
Y=U®— (Ik— Eekez), (13)
where ‘@’ denotes the Kronecker product and subsequently obtain a feasible solution of (SDFP). This implies
that [9(G)] > k(G), which completes the proof. |

Remark 5.1 Note that we can solve (SDFP) by solving problem (x) to obtain 9(G). If ¥(G) > k then
(SDFP) has no feasible solution. If 9(G) < k, one can find a feasible solution U of (x) with objective value
[9(G)] and subsequently construct a feasible solution of (SDFP) via (13).

3The above construction is well-known and was used e.g. by Lovdsz [23] in his study of the Shannon capacity of
graphs.



Remark 5.2 The approximation to x(G) from [6] (say |C*|) was defined in a similar way as k(G). The
only difference was that the requirement that each node should be coloured was modeled using the quadratic
inequalities

(x}+...+x§—1)2g(k—1)2, (14)

instead of (2) and (3). Since (14) leads to a weaker restriction in the associated SDP feasibility problem than
(2) and (3), we have ~ B

IC*| < K(G) = [I(G)]. (15)
Theorem 5.1 still holds if the constraint (10) is dropped in the formulation of (SDFP). The constraint (10)
was only included to prove the inequality (15).

Remark 5.3 There are many possible valid inequalities for (SDFP); the well-known triangle inequalities
may be added, for example. Feige and Goemans 7] derived improved approximation results for MAX-2-SAT
by including the triangle inequalities associated with the last row of X. For (SDFP) the analogous set of
inequalities is given by:

j:XfTiX;?T:tijq >-1, 4,5=1,...,n, p,q=1,...,k, (16)
where the +’s must contain a even number of minuses. If we add all triangle inequalities to (SDFP), we

obtain a problem (SDFP’) with associated k'(G) > k(G) = [9(G)]. This is analogous to the definition of the
¥ -function of Schrijver [25] which satisfies ¥ (G) < 9(G).

The subclass of triangle inequalities where p = ¢ in (16), imply

-1
i 2 T
Ui 2 k-1
for problem (*). These valid inequalities for () are not mentioned explicitly in [18], but follow from arguments
presented there; they are included in the MAX-k-CUT relaxation of Frieze and Jerrum [9].

i,j=1,...,n, 17

The inclusion of all possible triangle inequalities in (SDFP) implies the addition of the valid inequalities (17)
as well as
Ui'— jl—UuZ-—l, i,j,l:l,...,n, (18)

to problem (x).

6 A randomized MAX-k-CUT algorithm

We now propose a randomized MAX-k-CUT algorithm that will turn out to be closely related to that of
Frieze and Jerrum [9], although it appears quite different at the first glance. The algorithm is inspired by the
alternative formulation of the J-function presented in the previous section.

We will work with vectors [vi,v?...,v},...,vk], where each vector is associated with a particular vertex and
a particular colour. We can then generate a random ‘truth vector’ on the unit ball in IR*" and assign colour p
to vertex i if v? is the ‘closest’ to r of the k vectors associated with vertex i. In other words, we assign colour
p to vertex ¢ if p = argmaxg=1,... & {rTv? } Note that each vertex is assigned exactly one colour in this way,
with probability one.

The algorithm we propose is as follows.

Algorithm 1: Randomized MAX-k-CUT Algorithm

1. Find an optimal solution (U,ﬂ(@)) of problem (%), and let

k 1 7
Y=U® — |, — ~ . 19
®k—l<k k““) (19)
2. Rounding scheme:
Perform a factorization Y = VTV where V = [v},v?...,0f,...,vk);
Choose a random unit vector 7 € R*"* from the uniform distribution on the unit ball in IR*™ .4
Set 2f = 1 if rTvf = maxg=1,...x {r” v }; Otherwise, set 27 = —1.

caey

4This can be done by choosing each component of  independently from the standard normal distribution with mean
zero and variance one, and subsequently normalizing.



We proceed to show that the rounding scheme of Algorithm 1 is equivalent to that used by the MAX-k-CUT
algorithm of Frieze and Jerrum [9].

The MAX-k-CUT algorithm of Frieze and Jerrum works as follows.
Jerrum-Frieze MAX-k-CUT algorithm

1. Find U = 0 such that U;; > =%, (5,5 =1,...,n), and Uy = 1 (i = 1,...,n) which maximizes
k—1
5 > (1-Uy).
(3,5)EE

2. Rounding scheme:
Take the factorization U = VTV, and denote V = [v1,...,vn];

Generate k different random vectors v, ... r(¥) ¢ R™; (Random vectors here means that each
component of each vector is drawn independently from the standard normal distribution with mean zero

and variance one.) Each vector (¥ is associated with a colour i;

Assign colour i to vertex j if { = argmax, vfr(t), i.e. assign the colour corresponding to the ‘closest’

random vector.

Our goal here is to prove the following.

Theorem 6.1 For a gwen matriz U = 0, the rounding schemes of the MAX-k-CUT algorithm of Jerrum-
Frieze and Algorithm 1 are equivalent.

Proof: Let U > 0 and k be given. The first step of Algorithm 1 is to take the Kronecker product

Y=U®c (Ik - Tlc-eke",z‘) =VvVTy ®Rec (Ik - %eke{)

where ¢ = k—f—l, and subsequently obtaining the Choleski factor [v%vf e vﬁ] of V. Vertex i is then assigned
colour p if
p = arg max 'ufTr (20)

for a random r € R*"® (each component of r is independently drawn from the standard normal distribution
with mean zero and variance one). The identity

(B"B)® (GTG) = (8" ¢")(BeG)=(B8G)T (BoO),
implies
=T 15 1 T =, 1 T T Y7 3 1 T
ViVec Ik_Eeke’“ = (Ve Ik—-zekek Veve Ik_'k‘:ekek ) (21)
where we have used the fact that the matrix (Ix — %eke{) is idempotent. We define the matrices:
T
Xi=[v}u?...vf] L i=1,...,n. (22)

Note that by (20), vertex i is assigned colour p iff

p=arg mta.x(Xir)t.

By (21) and (22) we have
X; =of @ Vel —vl ® %ekef,

so that

Xir = (v;r ® \/EI;C) r— (v;r ® -\—Z—Eekez> r= ('UIT ® \/Elk) T — Ci€x

where ¢; is a scalar depending on r and v;. Note that we can ignore the last term when finding the largest
component of X;r. In other words,

arg max(X;r), = arg max ('U;T ® \/Elkr) . (23)
P P p



Finally, we construct a set of k random vectors in R™ from r as follows:

i T .
'r‘( ) = [7'1‘77'1'+ky7'i+2k,~~~,'ri+(n—1)k] , 1= 1,. . .,k.

Note that, by construction,

T
(’U;’T®\/Elk)7'=\/E[U?T(l),...,v?’l‘(k)] , i=1,...,n,

so that

T .
arg max(X;r), = arg max v; PP i=1,..,n,
P P

by (23). This completes the proof. o

Note that the matrix U used by the rounding scheme of Algorithm 1 may be different from that used in the
Frieze-Jerrum rounding scheme. However, it is easy to verify that for graphs where ¥(G) = k, the U-matrices

will be the same, namely U = k’“—ll - —1TeeT.

Corollary 6.1 The MAX-k-CUT algorithm of Frieze-Jerrum and Algorithm 1 are equivalent for graphs G =
(V, E) where 9(G) = k.

7 Analysis of Algorithm 1

We proceed to give a simple proof — using geometric arguments only — which establishes the probability that
a given edge is defect after running Algorithm 1. In particular, we wish to know what the probability (say
p1) is that both endpoints of a given edge are assigned colour 1. The probability that the edge is defect is
then simply kp; since the number of colours used equals k. The expected fraction of non-defect edges simply
equals (1 — kp1). by the linearity of expectation.

Note that both endpoints of an edge (i, j) have been assigned colour 1 if and only if:

Tyl I q=2,...,k,

r'u>rv

and

rTv1>rv q=2,...,k.

In other words, » must lie in the dual of the cone spanned by the vectors

(v — v ) (vl -—'Uk) (v]1 —vf-),...,(v]l- —vf). (24)

An alternative geometrical interpretation is that the half space with outward pointing normal vector —r must
contain the vectors (24), i.e. the vectors (24) must lie on a specific side of a random hyperplane with normal
vector 7 (the same side as r). The probability that a given set of vectors lie on the same side of a random
hyperplane has been investigated recently by Karloff and Zwick [19] (at most 4 vectors) and Zwick [26] (general
case) in the context of MAX-SAT approximation algorithms. In what follows, we employ the same approach
as these authors.

For convenience of notation we define the unit vectors
1 q
q_ Vi

wi = q” q=2,...,k, i=1,...,n

llvf —

The w vectors can be viewed as a set of (2k — 2) points on the (2k — 3)-dimensional unit hypersphere
S(2k—3) . _ {:zr eR¥*? ||z =1},

and thus define a so-called spherical simplez (say S) in the space §Ek=3)

The Gram matriz of the w vectors (which has the inner products of the w-vectors — i.e. the cosines of the
edge lengths of S — as entries) is known explicitly, since the corresponding entries in the matrix Y in (19} are
known. In particular, it is easy to show that the Gram matrix is given by:

Gram(S) := ® (Ik—l + ek—1ez—1) ) (25)



—1

where p = =1

From a geometrical viewpoint, we are interested in the volume of the spherical simplex (say S) which is
dual to the spherical simplex S, as a fraction of the total volume of the unit hypersphere S (2k=3) This dual
spherical simplex is given by:

S* = {a: €83 T2 >0 Vze s} :

The Gram matrix associated with S* is given by taking the inverse of Gram(S) in (25) and subsequently
normalizing its diagonal. Straightforward calculations show that this matrix takes the form

. k 1 —p 1 A
Gram(S*) = —— ® (Teo1 — Ten-1eh1) - (26)
E-11_, 1 k y

P

The volume of a spherical simplex is completely determined by the off-diagonal entries of its Gram matrix.
Unfortunately, there is no closed form expression available for the volume function, and it must be evaluated
by (numerical) integration (see [19, 26, 1]). The integral which yields p: is given by [1}:

vol(S*) 1 7 /oo —yTGram(s)" 'y
= = dy1 - .. dyzk—2. 27
n vol (§(2k-3)) | /det(Gram(S))r?*—2 s ) ¢ yi. .- GY2k-2 (27)

By Theorem 6.1, the expression for p; must be equivalent to that given by Frieze and Jerrum:®

[ee]

pr=1(p) = / / f(@,y, p)F(z,y, )"~ dady, (28)

—00 —00

where

_ 1 z? — 2pxy + y?
fons) = s oo (-5 L) (29)

is the density function of the joint bivariate normal distribution in standard form and

F(z,y,p) = / /f(ﬁ,n,p)dndé (30)

— 00 — 00

the corresponding cumulative distribution function. (The notation I(p) was used by Frieze and Jerrum [9].)
The only difference is in the meaning of the parameter p: in Algorithm 1, p always corresponds to 3 0 5)1

—7; in
the algorithm by Frieze-Jerrum there is no simple relation between p and the ¥-function — one only knows
that p € [~1/(k — 1), 1] for each edge.

Both representations of p; are useful — (27) allows us to compute p; accurately for small, fixed values of k
and (28) is more suitable for asymptotic analysis where k — co.

8 On the MAX-k-CUT performance guarantees

We show here that the performance guarantee (say ax) of Algorithm 1 for the MAX-k-CUT problem is

bounded by
k 1—kI(p)
> (2
ak_k—l( T , (31)
where p = 19(—551_—1 as before, and I(p) is defined in (28). Since 9(G) € {2, 00), this bound becomes

1—kI(p)
> — _—
M= 1Sk 1-p

5The equivalence of the expressions (28) and (27) can also be shown analytically as follows: Rewrite (30) as the
double integral (say F;) with limits from O to infinity by substituting y; = £ — &, yi4x =y —7n. Rewrite Fk—1in (28) as
the product of the Fy's (i = 1,...,k — 1). Now change the order of integration and integrate with respect to and y.

10



This is very similar to the bound given by Frieze and Jerrum for their algorithm, namely

k . 1—kI(p)
JF

> —_ —_——
D = k-1 —1/(1?—1111)15,731 1-p

In fact, Frieze and Jerrum mention that the minimum will be attained at a negative value of p. This means
that the performance guarantee of their algorithm is bounded by
s _k i L_kHp) 5 o, (32)

— min
X = k—1-1/(k-1)<p<0 1—p

The first step in deriving (31) is to give an upper bound on the cardinality of a maximum k cut in terms of
the 9-function. To this end, we first give a reformulation of the MAX-k-CUT problem. Let ri,...,7% be a
(fixed) set of vectors in R™ (n > k) such that

1 ifi#g
riTrj — k-1 1# ] (33)
1 ifi=j.

(Such a set of vectors always exists — one can take the columns of the Choleski factorization of the positive

semidefinite matrix ﬁ] - leleeT, for example.)

We will associate these vectors with k different colours. Similarly we will associate n unit vectors y: (i =

1,...,n) with the set of vertices V. Thus we assign r; to y; if we wish to assign colour j to vertex 1.
OPT := max F—1 > (-viy), (MAX-k-CUT)
y1,0¥n k&
(i,3)eE
subject to
ij{T‘l,...,T'k} (j=1,...,n). (34)

After an assignment of colours to the endpoints of the edge (¢, j} € E we have

1 if (4,4) is non-defect
0 if (3,7) is defect.

k-1
—k-(l—yiTyj)=

Thus it is easy to see that we have given a valid mathematical formulation of MAX-k-CUT. We now use this
formulation to prove the following.

Lemma 8.1 Let a graph G = (V, E) and an integer k > 2 be given, and let OPT denote the cardinality of
the mazximum k cut, as before. One has

k-1 I(G)
OPT < = |E|(19(é)_1).

Proof: Let an optimal set of vectors ¥1, ..., %k be given for problem (MAX-k-CUT), and let { be such that
-1 1 _T_
— == ¥i G-
— = >
t-1 Bl (hj)EE
Note that «t:_—lf € [-,—cl_l—l, 1] and therefore there exist unit vectors 91,. .., §% such that

-1 AT o ..
leyiTyj v(i,j) € E.

(S

(For example, one can take the columns vectors of the Choleski factorization of the positive semidefinite matrix
i i T
;:—11 - ?_—166 )

It follows that

k-1 i
OPT = =—=|E|——.
A | It_1

11



Since the Gram matrix of §i1, ..., §x (say U) together with { give a feasible solution of problem (x), we obtain
t > 9(G), which in turn implies the result of the lemma. O

Let p = —1/(9(G)—1), and recall that the expected size of a k-cut given by Algorithm 1 is simply |E|(1-kI(p)).
The performance guarantee of Algorithm 1 is now bounded by

_ Bl —K((p))

OPT
[E1(1 = k(I(p))
> T——— 2 (by Lemma 8.1)
ELEI(1 - p)
_ _k 1-KI(p)
T k-1 1-p
In the next section we will compute this bound for k = 3,...,10 by solving for I{p) from (27). Moreover, we

will look at the asymptotic behavior of ax as k — oo.

9 Results for MAX-k-CUT

We will now calculate the MAX-3-CUT guarantee of Algorithm 1.
In this case (k = 3), the integral (28) can be solved analytically (see Appendix 1) to obtain:

_ _ 1, arccos(—p) — arccos’(p/2)
pl_l(p)_9+ 471_2 .

This function attains a minimum at p = =% = —1 on the interval p € [~1,0), and we obtain

_3I(—1
. 1—k1(p)>§<1 33
1-(=3)

“k-1 1-p T2
The bound a3 > 0.836008 was first obtained via numerical integration in an earlier version of this paper.
The same bound was independently obtained by Goemans and Williamson [13], who were the first to show
(indirectly) that the integral (28) is analytically solvable for k = 3.

) ~ 0.83600¢&.

Note that the worst guarantee occurs where 9(G) = k = 3. We cannot prove that this is also true for all
k > 3, but will show that it is true for £ = 4,...,10, and asymptotically (as k — oo). Based on this evidence
we make the following conjecture.

Conjecture 9.1 Let k > 2 be any integer. The worst-case performance of Algorithm 1 is attained for graphs
where 9(G) = k.

Thg conjecture would imply that the worst-case for the algorithm of Frieze-Jerrum is also attained when
HG) =k, by (32).

In order to prove the conjecture for k = 4,...,10, we evaluated the bound for ax in (31) numerically on the
interval p € (—1,0) (i.e. for 9(G) € (2,00)). The numerical integration of (27) (to obtain I(p)) was done
using the software MVNDST (for calculating multivariate normal probabilities) by Genz [10]. In each case
the minimum value of the bound in (31) was obtained when p = =L, i.e. when ¥(G) = k. The corresponding
approximate numerical values of the bound on ax (k =4,...,10) are shown in Table 2, together with values
listed in the paper by Frieze and Jerrum [9]. (The value for k = 3 is also included, for completeness.)

k: 3 4 5 6 7 8 9 10
This paper: | 0.836008 | 0.857487 | 0.876610 | 0.891543 | 0.903259 | 0.912664 | 0.920367 | 0.926788
From [9]: 0.832718 | 0.850304 | 0.874243 - - - - 0.926642

Table 2: MAX-k-CUT approximation guarantees for 3 < k& < 10

12



Asymptotic analysis

Now we investigate the asymptotic behavior of (28) for k — co and p < 0. We show the following in Appendix
2.

Theorem 9.1 Let I{p) be defined by (28) and let p € (—1,0). One has

D) (rin(k— 1) ™5

VIi-pP2  (k-1)TH

when k — oo, where I denotes the gamma function.

I(p) (35)

If we substitute (35) into (31) and differentiate with respect to p, we find that the minimum in (31) is attained
when p = —1/(k — 1), i.e. for graphs G with ¥(G) = k. In other words, we have shown that Conjecture 9.1
holds asymptotically as k — oo.

If p= —1/(k — 1) is easy to show that the performance guarantee becomes
—k 1, 2Ink
akNI—kle—E-i-—kz——,

as k — oco0. The ap ~1— % + %’iﬁ result was first shown by Frieze and Jerrum [9].

10 Approximate colouring of k-colourable graphs

We now turn our attention to the related problem of approzimate graph colouring, i.e. how many colours
are needed to give a legal colouring of a graph G = (V, E) with x(G) = & in polynomial time. We will use
Theorem 9.1 to derive the following result due to Karger et al. [18].

Theorem 10.1 (Karger et al. [18]) A k-colourable graph with mazimum degree A can be legally coloured

in polynomial time using 0] (Al_z/") colours.

The first step is to find a sufficiently large value of k (number of colours) so that a semicolouring® is obtained
(with high probability) when running Algorithm 1.

As shown by Karger et al. using a simple bisection argument, O(log n) successive semi-colourings (each using
k colours) suffice to give a legal colouring of the graph.

The total number of edges is upper bounded by |[E} < %nA, where A is the largest degree of any node

(valency).

By Theorem 9.1, the expected number of defect edges is therefore bounded via:
kpy|E| = kI(p)|E| < %kl(p)nA ~ %k%m.

A semi-colouring will be obtained with high probability if the number of defect edges is at most %n. This will

be true if -+
k> AT,

For x-colourable graphs we have 9(G) < k and consequently p := —i= < —1/(k — 1), and consequently we
1-9(G)

obtain a semi-colouring using O (Al_z/ ") colours, and subsequently a complete colouring using o) (A1_2/ ")

colours. This was the main result proved by Karger et al. in [18].

8 An assignment of colours to at least half the nodes of G without any defect edges is called a semi-colouring in [18].
An assignment of colours to all the nodes of G such that at most %n edges are defect yields a semi-colouring, by simply
removing the colour from one endpoint of each defect edge.
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11 Conclusions

The analysis in this paper linked different approaches where semidefinite programming is used for approximate
graph colouring and MAX-k-CUT algorithms. We have shown that the ¥-function is the common denominator
in all these approaches. In particular, we have shown how to compute the MAX-k-CUT approximation
guarantees for the algorithm by Frieze and Jerrum [9] more precisely for (small) fixed values of k, by employing
the lifting procedure of De Klerk et al. [6]. This lifting procedure arises naturally from the coding of graph
colouring as a satisfiability problem. We have also shown that one can derive both the results of by Jerrum
and Frieze [9] and the results by Karger et al. [18] in a unified way, by using a single theorem on the asymptotic
behaviour of the rounding scheme in Jerrum-Frieze MAX-k-CUT algorithm for large k.
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Appendix 1

Here we show that the integral in (28) can be solved analytically if K = 3 and p < 0.

In what follows we denote A = k — 1, and

_ exp(=2?/2)
9(@) = =7

denotes the density function of the standard normal univariate distribution,

o 14++/1-p2
p b

and

p ( 1 « )

J=4/— , |det J| = /1 — p2.

2(1 a1l

Setting
=J
Y t
leads to
#(s)o(t)

f(m»y,P)=\/T——p—2-,

where f is defined in (29). Denoting by C, the image of the negative orthant of R? under J, one has
A
1) = = [ [ ¢t | [[ s+ oot +vyaudv | o
- P —00 — 00 Cp

and by Fubini theorem
c

[ —
a times

I(p) = //// Oz, u)Q(y, v)durdvs . . . durdva,
Cp o
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where

o A
Qw) = Qz,w) = / 8(2) [] d(ws + 2)dz =
i=1

_ (Z:‘lwl Wy 2 Zz 1 2 =
- exp(__)n¢( : /¢< ViFT+ el

! (L, w
- \/‘ﬁe"p( 304D )H"b(“’l

Changing to polar coordinates for each cone C, = C,(us,v:), as follows: v; = risinw;, u; = 7icosw;, one
obtains

A
oo wi oo we ¥ Y rirj(COSWiCOSWj-+-SinuiSian') A
i=1j=1

. / el 20FD) H rip(ri)dridws ... dradwy
0

i=1

A
Ae1 00 wi o0 Wi 121 =}1: lrirj cos(wi-—wj) A
_ A+ 1)\) / / e X H rid(ri)dridws ... dradwx,
A
V21T A oo 4

i=1
m— e’
X times

where wo = 7+w, wy = 37/2—w, and w = arctan(—1/¢), as can be observed by applying (J~ 1T to the extreme
rays of the negative orthant. Substituting w; = 1; + wo and observing that w; — wo = 7/2 — 2w = arccos(—p),
one obtains

A—1 A
arccos{—p) arccos{—p) oo 00 rirj cos(n;—n;

1(s) (A + 1! / / S gminn ﬁ é(ri)dry ... dradm ... d

? \/27r>\)\>‘ / /e i:lr e am ” (36)
0 0 o 0

2 p—

A times A times

In particular, for A = 2 one obtains

arccos(—p) arccos(—p)
I(p) = -8%; / / K(cos(wi — wa))dwidws =
0 0
3(G(n/2 — w) — G(0))
4w !

where

K(z) = // “r1rag(r1)$(ra)dridra, G"(t) = K(cost).
00

Applying the standard change to polar coordinates, one obtains

2 S
sin’ycos'y/Re’ exp(—R*(1 — zsin~ycosv)/2)dRdy =

kg

~

K(z) = o

%o\

_ 1 / sin 2vdry _
2m J (1 — £sin2y)2
= (4— 22)—3/2(2\/4 — 2% — 2z arctan \/% +wz)/7m =

2 zarccos(——z/2)+ 1
ow Vi 2 4—22 )"
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Computing the double indefinite integral, one obtains

t? — arccos?(—cost/2)
3 '

G(t) =

Thus from (36) one obtains

1  arccos®(—p) — arccos?(p/2
1y = Ly s’ o) — e/

Appendix 2: Proof of Theorem 9.1

In this appendix we give a proof of Theorem 9.1. The method we use closely resembles the one of [24], where

an asymptotic expression for a similar univariate integral is derived.

We denote the standard normal univariate cumulative distribution by

(x) = / (t)dt

exp(—z°/2)
oz

where
¢(x) =
is its density function, as before.

Note that F' in (30) and & are connected as follows (see e.g. [22, Sect. 46.4]).
F(oo,y,p) =2(y);  F(z,00,p) = &(z).
It is well-known (see e.g. [8]) that as z — oo
gy~ )
Similarly, one has the following.

Lemma 11.1

T (= f(y.0)
Z / F(&m, pdnde ~ — o

for p <0 asx — o0 and y — oo.

Proof: Substituting ¢ =z + u/z, n =y + v/y gives

J= / / F(&,m,p)dnds = L (””)7 7 €1 dudy,
0o o

) = ul=py/z)+v(i-pr/y) u?/a? 4ol y? ~2puv/(zy)
where g(u,v) = s + ST

As q(u,v) ~ ¥3= ”y/’i)jp”(l £2/9)  one obtains

f(z,3,p)(1 = p*)?

dudv =

oCc 00
IMCTLYYES
Y

Finally, note that the denominator in the last expression equals —p(x? + y?) + (1 + p*)zy

Lemma 11.2

~InF(z,y,p) ~ 1 — F(z,y, p) ~ EE z) d’(!/)

Y
for p< 0 asz — o0 and y — oc.
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(39)

(40)

(41)



Proof: The first equivalence follows immediately from the fact that

—Int
m

lim —— =1

To establish the second equivalence, we write

J s ] Jrae-] ] s ] T

—00 — 00 —oc Yy

F(z,y,p)

1= (1= F(oo,9,0)) = (1- Flz,0 p)+//fdnd£
Using (38), (39), and (40), we derive

1-(1- &) - (1-8(z)) + / / fdnd ~

F(z,y,p) =
z y
SR € ) B € L0 W A CY.) B
z Y —p(z?2 +y2) + (1 + p?)zy
~ 1o 8@ 6
T y
as required. g

The following is straightforward to check.

Lemma 11.83 Let A:=k—1 and A= A1+ p)/vV2r and Z ~ /2InA — In(2In A). Then one has

Ap(E) 1
el e (42)

as A — oo. 0O

We note that one can show that (z*,y*) = (£, &) approximates a maximum of f(:c,y,p)F(z,y,p))‘, although
we do not use this fact.

Next, we compute the integral I, = f;jl f;jl fu,v, p)F(u,v, p)*dudv, that turns out to be asymptotically
the main contribution to I(p). Substituting u = Z + z/Z and v = § + y/%, one obtains

i 2 o0 00

- St NnF(+5.0+ 40~ SRR SR 43

. . St zdy. (43)
2\ /1-p2J J

As X grows, the integral in (43) converges to an integral that is not dependent on A.

Lemma 11.4 As A — oo,

P 9 o0 oo -
Lo 2rs) 71+p)/ /exp<_ te y*““’)d dy. (44)

Proof: As A — oo,




Hence for A >> 0 the integrand in (43) is equivalent to the integrand in (44).

Next, we show that on the domain of integration the integrand in (43) is bounded from above by an integrable
function for all A > Ao, for some constant Ag depending only on p.

For nonnegative z and y, integrand in (43) is bounded from above by e_ﬁ%.

Nowlet <2< 0. AsInF < F—1, using (41) (whichisvalidas Z+ $>Z—1and Z+ £ > Z — 1) gives
Ad(Z + %) Ad(Z + }‘)
2E+3)  2E+D)

_ (@) —o-s?y2s®) o €
2% 1+p P

Using this, one sees that, when y > 0, the integrand in (43) is bounded from above by the function

exp(_e_;—;p’_l) which is integrable on the upper half-plane.

AnFGE+2,5+2,p) < —
T T

e~

Similarly, the bound AIn F(Z + £,5 + %,p) < 3

the integrand in (43} is bounded from above by the function exp(_e_ly—_:f_l) which is integrable on the right
halfplane (i.e. for © > 0).

Again, a similar argument shows that for £ <2 < 0andZ <y < Oonehas AIn F(Z+£,§4+%,p) < —e™"—e77,
thus bounding the integrand in (43) by el=e" "—e7¥~24+9)/(1+0) which is integrable everywhere.

Now an application of Lebesque dominated convergence theorem establishes the equivalence of I; and the
RHS of (44) with the lower limits of the integrals replaced by —Z. It remains to analyze the ‘tail’ of the latter

o -
integral. For instance, it suffices to show that K = [ [ e T:F dzdy is asymptotically negligibly
oo oo e~ Tte~Yizty T &
small compared to [ [ e~ T+ dzdy. Indeed, K = O(e™* ), that converges to 0, as A — oco. 0
—00 —00

Now let us show that I; provides the main contribution to I.
Lemma 11.5 As A — oo, one has I ~ I.

Proof: Note that

CAIF(E—1,00,0) = ~Aln®(F — 1) ~ "’(‘5_1) ~ (45)

\/ﬁz,\qs(a:) 27 “/(1+p)

We apply this estimate to obtain an upper bound on

z—1 oo
I, = / / f(u,v,p)F(u,v,p)’\dudv.
We write -
L < / / f(u,v, p)F(z — 1,00, p) *dudv = exp(A In ®(z — 1)),

where C’ is a function of p that does not depend on A. In view of (45},
o < exp(—| ZeF)C"

for sufficiently large A. Now (44) implies that limyx—ec I2/]1 = 0.
The lemma follows from the observation (look at the limits of integration) that I < I + 21s. O

To complete the proof of the theorem, it remains to observe that the integral in (44) is the square of the
integral [ exp(—%i)dt that can be shown to be equal to T(1/(1 + p))(1 + p)*/*+#) (for instance, by

-t

substituting e”* = z), and make straightforward substitutions and asymptotic cancellations in (44).
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