Begin with k linear polynomials /1, ...,l; in n variables. These define a
(noncentral) complex hyperplane arrangement, where #H; is the hyperplane
where [; vanishes. The lattice of flats, A, is a sublattice of the Boolean

lattice on {1,...,n} (we identify the element A C A with the flat (,c 4 Hi)-

Assume that I; # 0 for all . Let axes be the union of the coordinate
planes, let poles be the union of the hyperplanes in the arrangement, let
X := C" \ (poles U axes), and let H, (X, oc0) denote the middle-dimensional

homology of X relative to its intersection with a large sphere.

i=1 re(Z+)n /

the last equality holding as a formal power series, converging in a domain
D. We are interested in asymptotics for {a,} as r — co. We know that [
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where dz is the holomorphic volume form and T is a torus inside D.

By the use of Stratified Morse Theory, the torus T' may be replaced by -
a sum of quasi-local cycles. These all have the following form. Let A be a
flat of A. Fix r and let z(A,r) be the unique stationary point on A for the
function z* (the unique~point x € A such that V(z")(x) L A). We assume
throughout that r satisfies the genericity condition that z(B,r) is not on a
proper subflat of B for any B € A. Let j be the codimension of A (thus
j =1 for |A] = 1 and so forth). Then the local j-dimensional homology of
X at z(A,r) is independent of r and is generated by small tori near z(A4,r).
Let 2z’ = (1 — €)z(A,r), for some sufficiently small ¢, and let C(Z,r) be the

relative (n — j)-cycle

C:={z +a:ac (@R)¥NAY},



where A is the space spanned by {v; : i € A}, and v; is the vector of
coeflicients of {;, that is, [;(z) = b; + z - v. The quasi-local cycles at A are
the cartesian products § x C(A,r) where 5 is one of the local j-cycles at
z(A,r).

Let A4 be the sub-arrangement of hyperplanes containing the flat A,
that is the collection {#; : i € A}. Its complement (still removing the
axes as well) is denoted X 4. The inclusion of X in X4 induces a map on
homology which is an isomorphism on the local homology at z(Z,r). Our

job is therefore to compute

/ 2z " F(z) dz
BxC

on each quasi-local cycle. We compute it by first integrating over 3 then
over C. The second integral is a standard oscillatory integral, and it is the
integral over 8 which is interesting. So far this is what I told you when we
last talked.

To compute this, we need to determine a better representative for the
local cohomology class defined by 7 := z ¥ "1 F dz. By the above argument,
we assume without loss of generality that all the hyperplanes pass through
a common point, say for specificity through 1, and that their common in-
tersection is the single point 1. We rely on the following fact:

Fact 1: In the case of n hyperplanes whose common intersection

is 1, the asymptotics of a, are given by ¢(r) + R(r), where
g(r) = [det (vi:i=1,...,n) "

f in the convex cone spanned by the {v; : 1 <14 < n} and is zero
{] otherwise, and where R(r) is exponentially decaying on compact
H
x

sets away from poles U axes.



Let M be the matroid of linearly independent subsets of {v; : 1 <4 < n}.
It is known that one basis for the local cohomology is the No Broken Circuit
basis {Fa := dz[1;c4l; ', A € nbc}, where A ranges over B, the set of bases
of M not containing any circuit with its greatest element deleted. Given a
local cohomology element

w:= Gdz H li_di,
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it is not apparent to see how to write it in the above basis. That is, it should
be cohomologically equal to the sum of constant multiples of the Fu, A € B,

but we need to figure out how. There are two steps.

Step 1 is to use the dependence relations among the [; to get rid of /

minator ining forbidden products. Suppose B U {j} is a circuit

with greatest element j. Then there is a linear relation expressing [; =
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where B(i) is the exchange basis B U {j} \ {i}. If A, contains B, then
isolating a factor of Fp and applying this exchange replaces a factor of a
forbidden broken circuit in the denominator by a linear combination of terms

in which this factor has been exchanged for a non-forbidden factor. Thus

for example, if {1 + l> = I3 and one starts with (I;l3)7!, this process gives
l3/(l1l2l3) = (ll + lg)/(lllglg) = 1/(l213) + 1/(lll3) Iterating this process
yields a representation of w as the sum of terms where the set of linear ;

factors in the denominator (ignoring powers) contains no broken circuit. At

each step, the span of the factors in the denominator is preserved in each



new denominator, so for all of the terms once the iteration stops, the set of

linear factors in the denominator is in 5.

Step 2 is to get rid of the powers greater than 1. Given a term G/ [[;c4 l;ii
where A € B, we proceed as follows. Fix j € A. Let w be a vector orthogonal
to each v; with ¢ € A\ {j}. Let n be the wedge of forms v; - dz as 4 varies
over A\ {j}, so that dl; An is nonzero only when ¢ = j. Then the differential

of Gn is computed as:

dG A n G —d;
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Now use the fact that d(Gn) = 0 in the local cohomology ring to set
G _ —(1/d;)VwG

dité; — d;
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in the local cohomology ring. Thus whenever a denominator is not square-

free, one may lower the exponent by one, provided one multiplies by a con-
stant and differentiates the numerator in the appropriate direction. Iterating

this, one arrives at a linear combination of terms of the form

Gw1 ,...,wd_nFA

where the subscripts on G refer to repeated directional differentiation. Fi-
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nally, we use the fact that when G is analytic in a neighborhood of the point

1 where all the hyperplanes meet, then the asymptotics for the integral of
[ G Fsdz are known, and are the constant G(1) times a determinant, as

quoted above.

Recalling that we are interested in the case where G(z) = z "1, we

see that the derivative Gw,,  w evaluates to a sum of products of rising

d-n



factorials in the quantities 7; + 1, of total degree d — n. We have therefore
computed the integral we seek, modulo the exponentially decreasing terms,

and arrived at a polynomial of degree d — n in the coordinates of r.

As an example, I tried letting n = 3 and k = 5, with linear polynomials

h = 1—=z;
la = 1-y;
s = 1—2;

ls = 2—z—=2.

These are the tangent planes to the sheets of the toric variety in your example

in the paper. Some easy compuation (no computer needed) yields the sum
of polynomials over four different cones, the cones being a dual NBC basis
for the indicator functions of the five chambers mentioned in your paper.

While my generating function is different from yours, being a linearization,

I was hoping they might agree up to exponentially decaying terms, and

therefore that my asymptotic polynomials would be the same as yours. If
I did my computations right, they differ in some of the non-leading terms.
Thus my algorithm for producing asymptotics in the product linear case
does not extend to the toric case, at least not in this easy way. It does work'
to produce the leading term in each cone, which must be a much easier

problem.

I should add one more thing: the result of all this computation is
pretty easy to describe. Define an operation ¢ on polynomials by taking
each monomial z" to [[(z;)™, where this denotes the ascending product
(z; +1)---(2; + ;). Extend this linearly to all polynomials. Step 1 of
the algorithm results in a linear combination of terms all of which have
denominators which are monomials of degree k in the linear polynomials

;. Step 2 converts this to a linear combination of terms with numerators

ly = 2-2-y; / ]



that are mixed partials of G, all having order & — n, and denominators that
are monomials of order n in B. Applying Fact 1, we obtain ®(Q) for the
asymptotics, where () is homogeneous of degree k — n. I don’t have a good
proof at the moment, but Q may be describedc as follows. Map R¥ to R®
by mapping x to Zle z;v; (recall that [;(x) = b; + v; - x). Then @ is the
homogeneous polynomial of degree k£ — n which gives the density (with re-
spect to n-dimensional Lebesgue measure) of the image under this mapping

of k-dimensional Lebesgue measure.
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