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Approximating Shortest Paths on a Convex
Polytope in Three Dimensions

Pankaj K. Agarwal

Given a convex polytope P with n faces in R2, points s,t € 0P, and a
parameter 0 < ¢ < 1, we present an algorithm that constructs a path on
AP from s to t whose length is at most (1 + £)dp(s,t), where dp(s, ) is the
length of the shortest path between s and ¢t on 0P. The algorithm runs in
O(n-min {1/¢®, logn} + 1/€%) time, and is relatively simple to implement.
We also present an extension of the algorithm that computes approximate
shortest paths from a given source point on 9P to all vertices of P.



Video Presentation

Four-polytopes and a funeral

(for my conjecture)”

. +
Nina Amental Tamara Munzner+*

A four-dimensional polytope given as the intersection of f halfspaces has O(f?) vertices.
The (incorrect) conjecture of the title is that o( f2) of these vertices can appear on the outer
boundary of a projection to the plane (a “shadow”).

The video illustrates the construction of a four-polytope with an Q(f2) shadow [AZ]. It
uses an idea, due to Klee and Minty [KIMi] and applied by others, for constructing polytopes
with long simplex paths.

The projection of the polytope to R® is shown, as it rotates in R*, so that the four-
dimensional object is understood as a continuous family of deformations of a three-dimensional
object. Structure is shown by drawing only subsets of faces, related by the edge skeleton
which is always shown.

The video appears as part of an annual collection of computational geometry videos
[Am]. It was made at The Geometry Center on an SGI IRIS using Geomview [LMP] and
the StageManager scripting system [Ce] . The polytope models were constructed using the
convex hull program chD [Em].

References

[AZ] Nina Amenta and Giinter M. Ziegler. Deformed Products and Maximal Shadows, submitted
to Discrete and Computational Geomeiry: Ten Years Later, AMS Series in Contemporary
Mathematics. See also
Nina Amenta and Giinter M. Ziegler. Shadows and slices of polytopes, Proceedings of the
12th Annual ACM Symposium on Computational Geometry (1996), pages 10-19.

[Am] 5th Annual Video Review of Computational Geometry, Nina Amenta, ed. AMS (1996).
[Ce] Davide Cervone. Stagemanager, not yet available.
Em] Ioannis Emiris. chD, ftp://robotics.eecs. Berkeley.edu/pub/ConvexHull.

[
[KIMi] Victor Klee and George J. Minty. How good is the simplex algorithm?, Inequalities III, (O.
Shisha, ed.), Academic Press, New York, (1972), pages 159-175.

[LMP] Stuart Levy, Tamara Munzner and Mark Phillips. Geomview, ftp://geom.umn.edu
/pub/software/geomview.



Visibility with Multiple Reflections

Boris Aronov* Alan R. Davis! Tamal K. Dey?®
Sudebkumar P. Pal® D. Chithra Prasad?

Abstract

We show that the region lit by a point light source inside a simple
n-gon after at most k reflections off the boundary has combinatorial
complexity O(n?*), for any k > 1. A lower bound of Q((n/k)%*) is
also established which matches the upper bound for any fixed k. A
simple near-optimal algorithm for computing the illuminated region is
presented, which runs in O(n?* logn) time and O(n?*) space for any
k> 1.



Affine perimeter and limit shape

Imre Barany
Mathematical Institute, Budapest

We prove here that, given a convex compact set K C R?, almost all
convex %Z 2_lattice polygons contained in K are very close to a fixed convex
set Ko C K as n goes to infinity. The distinguishing property of Ky is
that it has the largest affine perimeter among all convex sets contained in
K. The methods can be used to determine the asymptotic behaviour of
the probability that k& random, independent points drawn uniformly from
K form the vertices of a convex k—gon. Actually, there is a limit shape to
these convex random k-gons as k increases and this limit shape is the same
set K.



Computing mixed discriminants, mixed volumes
and permanents

Alexander Barvinok

We present a probabilistic polynomial time algorithm that computes
the permanent of any given non-negative n by m matrix within a factor
20(n) . That is, for any given non-negative matrix A the algorithm com-
putes a number a which satisfies the inequalities ¢ per A < a < per A
with the probability at least 0.9, where ¢ > 0 is an absolute constant (one
can choose ¢ = 0.28). The algorithm solves a more general problem of
approximating the mixed discriminant of given n positive definite opera-
tors on R™. Similarly, the mixed volume of n given ellipsoids in R™ can
be approximated in polynomial time within a factor ¢™ for ¢ = 0.66. The
algorithms are based on a recursive application of the projective version
of the kinematic formula which allows us to represent the mixed discrimi-
nant (mixed volume) in R™ as the expectation of the mixed discriminant
(mixed volume) in a random hyperplane in R" 1. The paper is available at
http://www.math.lsa.umich.edu/~barvinok/papers.html



Bounding the topological complexity of
semi-algebraic sets

Saugata Basu

In this talk I will describe a recent result on bounding the sum of the
Betti numbers of semi-algebraic sets. This extends a well-known bound due
to Oleinik and Petrovsky , Thom and Milnor. In separate papers they proved
that the sum of the Betti numbers of a semi-algebraic set § C R*, defined
by P, > 0,...,P, > 0,deg(P;) < d,1 < i < s, is bounded by (O(sd))~.
Given a closed semi-algebraic set § C RF defined as the intersection of a
real variety, @ = 0,deg(Q) < d, whose real dimension is k', with a set
defined by a quantifier-free Boolean formula with no negations with atoms
of the form, P, = 0,P; > 0,P;, < 0,deg(P;) < d,1 < i < s, we prove
P, =0,P,>0,P; <0,deg(P) <d,1 <1< s, we prove that the sum of the
Betti numbers of § is bounded by s*'(O(d))*. In the special case, when S
is defined by Q@ = 0,P;, > 0,..., P, > 0, we have a slightly tighter bound
of ()(O(d))*. This result generalises the Oleinik-Petrovsky-Thom-Milnor
bound in two directions. Firstly, our bound applies to arbitrary unions of
basic semi-algebraic sets, not just for basic semi-algebraic sets. Secondly,
the combinatorial part (the part depending on s) in our bound, depends on
the dimension of the variety rather than that of the ambient space.

We also extend this bound to the case where the algebraic complexity
is bounded only in terms of the number of monomials appearing in the
system of polynomials (the degrees being unbounded). We also note that
these bounds are not obtainable by the Thom-Milnor technique and that a
new idea of separating the combinatorial part of the complexity from the
algebraic part plays a crucial role.



ISOPERIMETRIC INEQUALITIES AND THE
DODECAHEDRAL CONJECTURE REVISITED

KAROLY BEZDEK

Cornell University, Department of Mathematics
Ithaca, NY 14853-7901, USA
and
Eotvos University, Department of Geometry
1088 Budapest, Rakoczi ut 5, Hungary



The cd-index of zonotopes and arrangements

Louis J. Billera, Richard Ehrenborg and Margaret Readdy

We investigate a special class of polytopes, the zonotopes, and show that
their flag f-vectors satisfy only the affine relations fulfilled by flag f-vectors
of all polytopes. In addition, we determine the lattice spanned by flag f-
vectors of zonotopes. By duality, these results apply as well to the flag
f-vectors of central arrangements of hyperplanes.



FIXING AND HINDERING SYSTEMS FOR CONVEX BODIES
Vladimir Boltyanski

Let M C R™ be a compact, convex body and F C bd M. A vector v # 0 remuves the interior of M
from F if (Av+int M) N F = @ for any A > 0. The set F C bd M is a fizing system [8] for M if there is
no nonzero vector v which removes int M from F. A fixing system F is primdtive if no proper subsystem
F’' C F is a fixing system for M. Evidently, a fixing system of the least cardinality is primitive. Denote the
minimal cardinality of fixing systems for M by p(M). B. Griinbaum established [7] that for any compact,
convex body M C R" the estimate n+ 1 < p(M) < 2n holds.

A vector v £ 0 remuves the body M from F if (Av + M)NF = { for any A > 0. The set F C bd M is a
hindering system [9] for the body M if there is no nonzero vector v which removes M from F.

Finally, let v(t), 0 < ¢ < 1, be a continuous family of vectors in R™ such that v(0) = 0. We say that
the family v(t) remuves the body M from F if for 0 < ¢t < 1 the equality (v(¢) + M) N F = 0 holds. The set
F C bd M is a strict hindering system [3] for the body M if there is no continuous family v(t) with v(0) =0
which removes M from F.

In the talk, the following new results by H. Martini, E. Morales and the speaker [3, 4, 6] are formulated
(the estimates hold for any compact, convex body M C R"; the functional md M is introduced in [2]):

2<o(M) <o (M)<mdM+1<n+1, ([3],1996)

n

md M

For mazimal cardinalities of primitive fixing and hindering systems of planar, compact, convex figures,
the complete analysis conducted by L. Fejes Téth {8] and P. Many [9].

In the case of the bodies M C R™ for n > 3 the situation is in a sense unexpected. Denote by
Omax (M), opax(M), op . (M) the maximal cardinalities of primitive fixing, hindering, and strict hinder-
ing systems for the body M, respectively. As B. Bollobds [1] showed, for any integer & > 4 there exists a
body M, C R® with Orax(Mr) > k. In our joint paper with H. Martini [5], this result is improved. Namely,
consider in R® the body P = conv(B U {a}), where B is a ball and a ¢ B. Then g, (P) = oo, i.e., for
any integer k > 4 there is a primitive fixing system Fy, C bd P that consists of k points. The same holds for
hindering and strict hindering systems [3].

n+1<n+

<o(M)<2n+1-mdM < 2n. ([4, 6], 1995)
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On the difficulty of vertex and facet enumeration

David Bremner* Raimund Seidelf
McGill University University of California Berkeley
and

Universitat des Saarlandes

A convez polytope P can be specified in two ways: as the convex hull of the vertex set V of P, or
as the intersection of the set H of its facet-inducing halfspaces. The vertez enumeration problem is
to compute Y from H. The facet enumeration problem it to compute H from V. These two problems
are essentially equivalent under point /hyperplane duality. Although there are efficient algorithms
for non-degenerate input, it is open whether vertex/facet enumeration for arbitrary input can be
solved in time polynomial in |H| + |V|.

Known methods for facet enumeration (and in the dual setting, vertex enumeration) fall into
one or more of the the following categories:

1. lattice producing algorithms compute the entire face lattice,

2. triangulation producing algorithms compute a triangulation of the boundary complex (pos-
sibly by perturbation), and

3. incremental algorithms compute the final output by inserting the input points one at a time
and maintaining a series of intermediate polytopes.

Each of these methods has a weakness: the face lattice, triangulation, and intermediate polytopes
can all have size superpolynomial in |H| + |V|. In this talk we present a number of families of
polytopes hard for one or more of these methods and several families that are hard for all three.
This talk summarizes two recent papers: “How good are convex hull algorithms?” by Avis,
Bremner, and Seidel, will appear in Computational Geometry: Theory and Applications; “Incre-
mental convex hull algorithms are not output sensitive.” by Bremner is currently in preparation.
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A polynomial time approximation
technique for Norm-Maximization

Andreas Brieden*
Department of Mathematics, University of Trier, D-54286 Trier, Germany

brieden@uni-trier.de

Let K C R¢ be a convex body (i.e. a compact, convex and full-dimensional

1

set) and define for z = (21,..,24)" € R? and p € N, |jz]|, = (Ele Ixilp)”.

Then the problem of computing the p** power of max,cx |||, is NP-hard

even if K is a parallelotope centered at the origin (Bodlaender, Gritzmann,
Klee and van Leeuwen).

In the realm of the algorithmic theory of convex bodies developed by

Grotschel, Lovisz and Schrijver, it can be inferred from work by Bdrdny and
Firedi that for p=2 it is not possible to compute in (oracle-) polynomial time

the maximum within an error of y;4/d/log d, 71 a constant independent on
d, for convex d-dimensional bodies given by separation oracles.

Inspired by work of Kochol we use a ‘good’ spherical code to show that
maXqck ||¢||, can indeed be approximated within an error less than
v21/d/log d (72 a constant independent on d).

A similar technique can also be applied in general [,-spaces. The result
can further be used to give optimal approximative algorithms for certain
immner and outer radii of convex bodies, particularly for inradius.
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Computational Geometry: The Next 10 Years

Bernard Chazelle

The last 10 years have been the most exciting in the history of com-
putational geometry. Stunning progress has been made in many areas: the
asymptotic complexity of basic geometric computations such as convex hulls,
Voronoi diagrams, polygon triangulation, motion planning, low-dimensional
optimization, has been resolved. Randomization and a new theory of geo-
metric sampling have produced simplifications and improvements for a large
array of geometric algorithms. Computational topology and computational
algebraic geometry, as well as the theory of line and surface arrangements
have reached a very high level of sophistication.

Less successful has been the application of these theoretical advances to
the practice of geometric computing. We will argue that the emphasis on
foundations and theoretical investigations was the right course to follow, but
that the next decade should see a broadening of the computational-geometric
base to encompass problems of practical as well as theoretical relevance.
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Some Exotic Species of Aperiodic Tilings in Two
and Three Dimensions

Ludwig Danzer

First some basic notions are introduced:
The protoset T := {T1,T>, ..., Tx} (T; are the prototiles);
the species S(7,cond), the family of all global tilings P, such that every
tile of P is congruent to some prototile, and P satisfies some condition cond
(e.g.: inflation, local matching rule). A species S is said to have property
(I) if S can be defined by an inflation infl (the inflation factor is denoted
by 1),
(D) if (T) and def1:= inf17! is unique,
(PV) if (I) and ¢ is a PV-number,
(LMR) if S can be defined by a local matching rule Imr.

The following example are discussed:
1) AMMAN’S chair. (I), (D), (PV), (LMR), n% = 7.
2) A species S with (I), (D), (PV) (n? = 2) but a singular inflation matrix
(not (LMR)).
3) A species S with three prototiles (3 = 1¢(7)) each a triangle with all
angles of type kn /7 satisfying (I), (D) and (LMR) (but not (PV)) and 7 of
degree three.
4) BOROCZKY’s example in the hyperbolic plane.
5) SCD, a biprism that tiles 2, but S({SCD},—) is aperiodic (cf. problem
1 of the problem session).
6) S({P},infl), where P is a triangular prism and infl is such that in every
tiling belonging to § the copies of P occur in infinitely many orientations,
which form a dense subset of O*(R,3) (due to J. H. CONWAY and Ch.
RADIN).
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Intersection Graphs of Jordan Arcs

H. de Fraysseix and P. Ossona de Mendez *

Abstract

An intersecting family of Jordan arcs is a family of Jordan arcs, such
that two arcs are neither sharing more than one point nor tangent, and
such that one crossing point belongs to exactly two arcs. Such a family
defines an intersection graph, whose vertices are the arcs, and whose edges
are the crossing points. Deciding wether a given graph is the intersection
graph of some intersecting family of Jordan arcs is known to belong to the
NP-complete class. It has been a challenge for long to prove or disprove
that all planar graphs have this property.

Up to now, only those planar graphs representable by contacts (e.g.
bipartite and outerplanar graphs) are known to have this property. We
extend here this result to 4-connected maximal planar graphs which are
either 3-colorable or free of Cy4 separating cycle.

Leading Strand

Arc intersection problems arise topological difficulties that vanish when arcs are
only in contact.

Recall that a contact family of Jordan arcs is a family of Jordan arcs, such
that two arcs share at most one point, and such that any point is interior to at
most one arc. Besides an intersection graph, called contact graph in this context,
such a family defines a planar bipartite point-arc incidence graph, whose vertices
are the arcs and the contact points, and whose edges are defined by inclusion of
a contact point into an arc.

We fully characterize, by a pure combinatorial property, those bipartite pla-
nar graphs which are point-arc incidence graphs.

To a 4-connected maximal planar graph, either 3-colorable or free of Cy sep-
arating cycles, we associate a bipartite planar graph. Then the result follows
from the proof that this graph is a point-arc incidence graph : from the as-
sociated contact family, local deformations around the contacts give rise to an
intersection family which represents the original graph.

Whenever the graph is not 3-colorable, the proof relies heavily on the four
color theorem.

14



Computing combinatorial models of real smooth
hypersurfaces

Jesis A. de Loera
School of Mathematics-The Geometry Center
University of Minnesota

Hilbert’s 16th problem concerns the classification of topological types
of smooth real projective hypersurfaces. An important component on the
classification efforts is to have effective methods to produce examples of new
topological types. During the 1980’s Oleg Viro and his students developed a
technique, based on convex triangulations of Newton polytopes, to construct
examples. In this talk we present partial results about Viro’s construction
when it is extended to arbitrary triangulations. The guiding question is
whether Viro’s construction still produces combinatorial models of real hy-
persurfaces when the triangulations of the Newton polytopes are not convex
(also called regular). We have proved some results hold in dimension two,
such as Harnacks inequality and some consequences of Bezout’s theorem.
We have written software that allowed us to compute several millions of
examples that indicate Petrowsky and Arnol’d inequalities could be valid
as well for non-convex triangulations. This is joint work with Frederick
Wicklin.
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Computational Topology

Herbert Edelsbrunner

The speaker believes there is or should be a reasearch area appropriately
referred to as ‘computational topology’. A more accurate but also more
cumbersome title would emphasize the intended relation to discrete and ge-
ometric methods. Its agenda includes the identification and formalization of
topological questions in computer applications and the study of algorithms
for topological problems. It is hoped this talk can contribute to the cre-
ation of a computational branch of topology with a unifying influence on
computing and computer applications.

The talk illustrates the interaction between application problems, geo-
metric models, and topological methods with four case studies:

1. Molecular conformation; Voronoi complexes, alpha shapes; holes,
homology, filtrations.

2. Imperfect holes; Delaunay complexes, pockets; vector fields, stable
manifolds.

3. Molecular surfaces; Pedoe vector space, skin; topological duality.

4. Deformation; Minkowski sum, convexification principle; preimage
theorem, Morse theory.
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Recent Progress on Packing and Covering

Gabor Fejes Téth

In the talk we give a survey about new developments in the theory of
packing and covering. We start with an account about recent plans for
proving Kepler’s conjecture concerning the densest packing of congruent
balls in three-dimensional Euclidean space. We continue with the discussion
of bounds for the packing and covering densities of a convex body. The most
important new result on this topic is Rush’s construction of dense lattice
packings via codes for a special metric. For certain bodies his construction
yields considerable improvement upon the Minkowski-Hlawka bound. We
also address the question about the regularity of optimal arrangements.
Roger’s conjecture that for sufficiently large d the densest packing of equal
balls in E? cannot be lattice like, is still open. On the other hand, A. Bezdek
and W. Kuperberg showed that for d > 3, there is an ellipsoid E in E? such
that the densest packing of congruent copies of E cannot be realized in a
lattice arrangement. We mention some further results indicating that, in
general, optimal arrangements are not very regular.
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Algorithms for prediction of indoor radio
propagation

Steven Fortune
Bell Laboratories

The design of indoor wireless communication networks requires predic-
tion of radio propagation inside a building. Radio propagation inside a build-
ing is complex, because each building wall can act both as an obstruction,
attenuating a propagation path, and as a mirror, providing an additional re-
flecting path. We describe two algorithms that simulate radio propagation,
a ray tracing algorithm that uses a discrete sample of propagation direc-
tions and a beam tracing algorithm that enumerates reflection cones defined
by building walls. The two algorithms are compared experimentally and
analytically. With a triangulation-based spatial data structure, both algo-
rithms are fast enough to provide propagation simulations in a few minutes
of computing time, even for large buildings.
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Polygons and polyhedra

Branko Grinbaum

The theory of convex polygons, polyhedra and polytopes is a well-developed
discipline. However, even the simplest results of this field have not been ex-
tended to more general objects. The main purpose of the talk is to present
some of the concepts that may form a suitable starting point for an exploration
of not-necessarily- convex polyhedra. The exposition centers on polyhedra, since
polygons will be discussed in more detail elsewhere, and the information avail-
able on higher-dimensional polytopes is too meager.

Polyhedra are considered not as “solids”, but as families of polygons (faces),
satisfying certain natural conditions. If the faces of a polyhedron are simple
Jordan polygons, and if the faces intersect only along common edges or ver-
tices, the polyhedron is called acoptic. Acoptic polyhedra are closely related to
maps on orientable 2-manifolds. One of the most challenging problems is the
General Realizability Conjecture, which makes precise the claim that any rea-
sonable cell-complex decomposition of any orientable 2-manifold can be realized
by an acoptic polyhedron. Various recent discoveries (such as those by Szilassi,
Schworbel, Wills, Ljubié and others) of acoptic polyhedra realizing maps that
cannot be realized by polyhedra with convex faces provide support for the con-
jecture, although there are also maps of a rather simple character that so far
have not been realized.

Other challenging problems are: (i) What is the analogue for acoptic poly-
hedra of Steinitz’s theorem for convex polyhedra? In other words, which graphs
are graphs of acoptic polyhedra? (ii) The enumeration of the types of acoptic
polyhedra with a given number of faces (or vertices). This depends, naturally,
on the definition of type”. It is proposed to distinguish between ”combina-
torial equivalence” and various levels of "isomorphism”, the latter taking into
account the geometric features at different levels of detail. (iii) What are the
appropriate extensions of Cauchy’s rigidity theorem” to acoptic polyhedra? In
particular, how can the movable polyhedra be characterized?

Generalizations to polyhedra with selfintersections, possibly with selfinter-
secting faces, are also of interest. Again, it is convenient to distinguish several
levels of generality. Part of the interest in such polyhedra stems from the most
widely known examples of this kind, the Kepler-Poinsot regular polyhedra, as
well as from other regular polyhedra that can be constructed using non-simple
polygons; but even more relevant is the appearance of polyhedra with selfinter-
sections as polars of many acoptic polyhedra. Some of these aspect are discussed
in other venues.
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Recent Progress on the Kepler Conjecture

Thomas C. Hales

The Kepler conjecture asserts that the density of a packing of spheres
of equal radius in three dimensions cannot exceed that of the face-centered
cubic packing.

Recently, there has been significant progress toward a proof of this con-
jecture, which will be described in this talk. _

Two earlier approaches to the Kepler conjecture are based respectively
on the Voronoi and Delaunay decompositions of space. This work combines
these earlier approaches by defining a hybrid of the Voronoi and Delaunay
decompositions. This hybrid appears to retain the best attributes of the
earlier approaches, and manages to avoid many of their complexities.

This recent work brings methods of global nonlinear optimization to bear
on the Kepler conjecture. This talk will describe these methods and how
they have been applied to the Kepler conjecture.

20



Computational Convexity

Victor Klee

There was a discussion of the relationship of Computational Convexity to the rest of Computational
Geometry. Here are some of the main points.

(1) Computational Convexity is the common meeting ground of Convex Geometry, Mathematical Pro-
gramming, and Computer Science. Rather than being motivated by intrinsicaly low-dimensional problems
such as those from computer graphics, its most important problems are intrinsically high- dimensional.

(2) As a consequence of (1), it seems appropriate to focus on the case of variable dimension (i.e., the
dimension is part of the input) rather than on an arbitrary fixed dimension.

(3) As a consequence of high dimensions, it seems necessary at present to focus on problems concerning
bodies that are convezr. Extensions to non-convex bodies may come later, but at present the convex case
provides plenty of important challenges.

(4) Since (to exaggerate slightly) no computer ever saw an irrational number, it seems appropriate to
use the binary (Turing machine) model of computational complexity (supplemented when necessary by a
carefully specified oracle), rather than the model of infinite-precision real arithmetic.

(5) Because of the difficulty of its problems, the present status of Computational Convexity may be
described as ”largely qualitative.” There has been considerable success in classifying problems as to their
polynomial-time solvability or NP-hardness, but very few optimal algorithms are known. The task remains
to find optimal exact algorithms for problems that have been found to be solvable in polynomial time, and
to find good heuristics or useful approximation algorithms for problems that are NP- hard.

(6) Significant challenges for the future are provided by several important problems that are, by some,
already regarded as ”well-solved” because for each fized dimension there is an algorithm of low worst- case
complexity. However, when the exponent or the multiplicative constant in the complexity estimate increases
exponentially with the dimension, such "good” solutions, still leave room for much improvement from the
viewpoint of Computational Convexity and also from the viewpoint of actual use.

After presenting the above motivation, some results and probems from specific areas of computational
convexity were presented. These appear (along with much additional material) in the following two survey
articles:

P. Gritzmann & V. Klee, On the complexity of some basic problems in computational convexity: I.
Containment problems, Discrete Math. 136 (1994) 129-174;

P. Gritzmann & V. Klee, On the complexity of some basic problems in computational convexity: II.
Volume and mixed volumes, in Polytopes: Abstract, Convex and Computational, Kluwer, Boston, 1994,
373-466.

For more detailed studies of inner and outer j-radii, and of largest j-simplices in d-polytopes, see the
following papers:

P. Gritzmann & V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces,
Discrete Comput. Geom. 7 (1992) 255-280;

P. Gritzmann & V. Klee, Computational complexity of inner and outer j- radii of convex polytopes,
Math. Programming A 59 (1993) 163-213;

P. Gritzmann, V. Klee & D. Larman, Largest j-simplices in n-polytopes, Discrete Comput. Geom. 13
(1995) 477-515;

M. Hudelson, V. Klee & D. Larman, Largest j-simplices in d-cubes: Some relatives of the Hadamard
maximum determinant problem, Linear Algebra Appl. 241-243, 1996, 519-598.
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Randomization and derandomization in
computational geometry

JIRf MATOUSEK

In the first part, we discuss mainly randomized incremental algorithms
in computational geometry. We formulate several axiomatic frameworks for
such algorithms, and point out differences among them. We mention related
open problems (analyzing randomized incremental constructions for highly
degenerate point configurations, etc.).

In the second part, we discuss techniques for replacing randomized al-
gorithms by deterministic ones with a similar asymptotic running time.
All successfully derandomized algorithms are essentially of the divide-and-
conquer type. If we allow for an n’ extra factor (§ > 0 an arbitrarily small
constant) in the running time, then derandomization is usually easy using
known techniques (computation of e-nets and e-approximations). Only par-
tial results and techniques of a limited applicability are known for optimal
derandomization, and the successful examples are fairly complex.
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Combinatorics of
Visibility and Illumination:
36 Open Problems

Joseph O’Rourke*

Abstract

A compendium of thirty-six open problems is presented: on point visibility,
floodlight illumination, and visibility graphs.

*Department of Computer Science, Smith Colﬁa?ée, Northampton, MA 01063, USA.
orourke@cs.smith.edu. Supported by NSF grant CCR-9421670.



Extremal Problems in Combinatorial Geometry

Janos Pach

We survey several recent developments in combinatorial geometry. The
results presented are divided into four categories. (A) Quantitative Helly-
Erd6s-Szekeres-Tverberg-type theorems, (B) Distribution of distances among
n points, (C) Bounds on the number of incidences between points and curves
or surfaces, (D) Crossing numbers of graphs.

As an example of a problem belonging to (A), we present a detailed proof
of the following result. Let Py, ..., Pyy; be pairwise disjoint n-element point
sets in general position in d-space. Then there exist a point O and suitable
subsets @; C P; (¢ = 1,...,d 4+ 1) such that |Q;| > c4|P;| and every d-
dimensional simplex with exactly one vertex from each @); contains O in its
interior. Here ¢4 is a positive constant depending only on d. This generalizes
a theorem of Vredica and Zival_jevié. The proof is based on the Szemerédi
Regularity Lemma.
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Universality Theorems for Oriented Matroids and
Polytopes

Jirgen Richter-Gebert

The realization space of a rank d oriented matroid M is the set of all
point configurations X € R4 that have M as underlying oriented matroid
(modulo linear equivalence). The realization space of a d-dimensional poly-
tope P is the set of all polytopes in RY that have the same face lattice
as P (modulo affine equivalence). The Universality Theorem for rank 8
oriented matroids (Mnév, 1988) states that for every basic primary semial-
gebraic set V (over Z) there is a rank 3 oriented matroid whose realization
space is stably equivalent to V. The Universality Theorem for 4-dimensional
Polytopes (Richter-Gebert, 1995) is a similar statement in the category of
4-dimensional polytopes.

The proof in the oriented matroid case can be performed by starting
with the defining inequality system of V, performing a (non-trivial) alge-
braic translation into a Shor normal form, and then modelling elementary
multiplications and additions by the classical von Staudt constructions (this
is, in essence, Mnév’s construction). The proof for the case of 4-polytopes
proceedes in a similar way. However the role of von Staudt constructions
must be replaced by a relatively complicated polytopal construction.

We demonstrate that it is possible to derive a relatively simple proof for a
Universality Theorem for 6-dimensional Polytopes by directly making use of
Mnév’s construction. The proof proceeds as follows. Starting from a (basic
primary) semialgebraic set V we take the corresponding point configuration
X (V) that is constructed by Mnév’s proof. The corresponding zonotope
Z = Z(X(V)) is a 3-dimensional polytope. In the category of zonotopes
the realization space of Z is stably equivalent to V. The property of Z
beeing a (generalized) zonotope can be fixed by applying connected sums
and Lawrence extensions. By this we end up with a 6-dimensional polytope
P = P(Z(X(V))) that contains Z as a 3-face. Every realization of P the
face Z is projectively equivalent to a (generalized) zonotope. The realization
space of P is stably equivalent to V.
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Cinderella, a program for geometric drawing and
automated theorem proving (demonstration)

Jurgen Richter-Gebert

Cinderella is a program for doing (projective) incidence geometry inter-
actively on a computer. There are two main tasks for which Cinderella is
designed:

¢ Interactive drawing

The system provides facilities to construct geometric configurations
containing points, lines and conics by performing mouse actions on
a drawing surface. The construction sequence is memorized and can
be changed by moving the base elements of the construction. Differ-
ent ports allow to view the same configuration simultaneously under
different aspects (primal, polarized, etc.).

e Automatic proving

The system is equipped with an algebraic theorem prover that allows
one to generate short (and readable) proofs for many projective inci-
dence theorems. The prover is based on the method of binomzial final
polynomials that was originally developed to prove non-realizability of
oriented matroids. Using invariant theoretic methods & la F. Klein
the scope of theorem prover that can be extended also to euclidean,
elliptic and hyperbolic geometry.
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Interactions between real algebraic geometry and
discrete and computational geometry
Marie-Frangoise Roy
IRMAR (URA CNRS305 ) ,Université de Rennes, FRISCO (ESPRIT LTR )

The realization space of an order type is a basic semi-algebraic (which we abbreviate as “sa” ) set of
R (i.e. a set defined by a finite conjunction of sign conditions on polynomials). It looks like a very special
sa set, but according to Mnev’s Universality theorem, every basic sa set is (up to multiplication by an affine
space) homeomorphic to the space of configurations of an order type. A consequence is that the answer to
the isotopy conjecture is no, as a basic sa set may have many connected components.

Sa sets have a lot of remarkable stability and finiteness properties: Projections of sa sets are sa ; a sa set
has a finite number of connected components, each of which is sa; sa sets can be finitely stratified; a sa set
is sa homeomorphic to a simplicial complex; given a sa family, the set of parameters where the topological
type is fixed is sa; sa families have finite VC dimension .

Because of these properties, sa sets are useful in modeling various problems. For example the Piano
Movers Problem, (robot motions planning in a sa environment (roadmap construction), or the visual aspects
of a sa set in space.

Explicit bounds in sa geometry are frequently based on the following result which follows from results
by Petrowsky, Oleinik, Thom and Milnor: The number of connected component of a real algebraic set of
degree d in k variables is O(d)*. The number of connected components of sign conditions defined by a list
of 5 polynomials in k variables of degree d on a variety of dimension k' can be proved to be (O,gf))O(d)k
( Basu-Pollack-Roy 1993). This is useful to get bounds on the number of isotopy types of configurations
of n points in R? and to the number of geometric permutations induced by k transversals to a family of
k + 1—separated compact, convex bodies in R? (Goodman Pollack Wenger 1993).

In recent work, the complexity of algorithms for sa sets can be separated into an algebraic part (de-
pendence on the degree) and a combinatorial part (dependence on the number). Also, the degrees of the
polynomials output is independent of the number of polynomials. These features are useful in discrete and
computational geometry, where d = 1, or d, k are fixed.

Finding a point in every connected components of sign conditions defined by a list of s polynomialsin k
variables of degree d on a variety of dimension k' can be done in time (0,5,’)) sdO¥) (Basu-Pollack-Roy 1996)

Given ®(Y) = (QwX[“’]) . (QlX[l])F(Pl, ..., Py), it is possible to compute an equivalent quantifier-
free formula in s(+DI(Ri+1) JUADIIOK:) arithmetic operations in the ring generated by the coeflicients of the
input polynomials. The degrees in the output are bounded by dm0(k) which is independent of s. (Basu
Pollack Roy 1994).

It is possible to compute a road map on a semi-algebraic set of dimension k' defined by s polynomials
in k variables with each polynomial of degree at most d with complexity (Ok(,’)) sdO*”) (Basu-Pollack-Roy
1996).

All these results are based on the critical point method (first introduced by Grigor’ev and Vorobov) and
various perturbation tricks.

Software efforts (Canny’s toolkit, Rouilliers’ Real Solving (POSSO FRISCO project)) are made to
implement the critical point method. The challenge is to be able to decide whether or not a small (written
on half a page) system of equalities and inequalities is consistent.

The central open algorithmic problems are: Compute the real dimension of a real algebraic set or of a
semi algebraic set with algebraic complexity d°®), Compute stratifications of sa sets in single exponential
time.

Various quantities associated to sa sets can be used to give lower bounds for many problems in discrete
and computational geometry concerning sorting, element distinctness (Ben-Or, Bjorner-Lovasz- Yao, Recio
et al), polytope membership (Grigor’ev- Karpinsky-Vorobjov) linear algebra, sign determination (Lickteig,
Lickteig-Roy). The idea is that small sa decision or computation trees cannot define sa sets with many
connected components, huge sum of Betti numbers, or high geometric degrees.

Finally, the Signed Newton Diagram is a fascinating object connecting discrete geometry to the topology
of real algebraic sets. Two examples have been developed: Viro’s method for curves, and a conjecture
generalizing Descartes’s law of signs (Itenberg-Roy).
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Periodic and Aperiodic Tilings

Marjorie Senechal

The rapid and extensive development of tiling theory since 1986 can
be traced in large measure to the influence of “Tilings and Patterns”, by
Branko Griinbaum and Geoffrey Shephard. We show, in particular, how
subtle aspects of the relations between local configurations in and the global
structure of both periodic and aperiodic tilings are elucidated by consider-
ations developed in that work.
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Complexity of Arrangements

Micha Sharir
Tel Aviv University and New York University

We survey recent progress on the problem of bounding the combinatorial
complexity of various substructures in arrangements of n algebraic surface
or surface patches of constant maximum degree in d > 3 dimensions. (Infor-
mally, such an arrangement is the subdivision of space into cells of various
dimensions induced by the given surfaces.) Arrangements of this kind are
a central construct in computational geometry, and arise in many applica-
tions, such as motion planning in robotics, ray shooting and visibility in
three dimensions, Voronoi diagrams, transversals, geometric optimization,
and more. In these applications, we are usually interested not in the full
arrangement (whose complexity is in general 0©(n?)), but in various por-
tions, such as the lower or upper envelope of the surfaces, a single cell of the
arrangement, a ‘zone’ of another surface, etc.

To show that such portions have smaller combinatorial complexity, has
been a major open problem for nearly a decade, ever since analogous re-
sults have been obtained for 2-dimensional arrangements, using the theory
of Davenport-Schinzel sequences (which we also briefly review). Consid-
erable progress has been made in the past 3-4 years, where almost tight
bounds (close to O(nd_l)) for the complexity of such arrangement portions
have been obtained, including many related results. In the talk we sur-
vey these recent developments, demonstrate some of the analysis techniques
on some simple examples, and present some combinatorial and algorithmic
applications of the new bounds.
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New Results on Packings in Grassmannian Space and
Connections with Quantum-error-correcting Codes

N. J. A. Sloane

AT&T Research, Murray Hill, New Jersey 07974

This work began when R. H. Hardin, J. H. Conway and I set out to investigate the
question: How should N n-dimensional subspaces of m-dimensional Euclidean space be
arranged so that they are as far apart as possible? The results of extensive computations
for modest values of N,n,m are described, as well as a reformulation of the problem
that was suggested by these computations. The reformulation gives a way to describe n-
dimensional subspaces of m-space as points on a sphere in dimension (m — 1)(m + 2)/2,
which provides a (usually) lower-dimensional representation than the Plicker embed-
ding, and leads to a proof that many of the new packings are optimal. The results have
applications to the graphical display of multi-dimensional data via Asimov’s grand tour
method.

In the past few weeks some astonishing connections have been discovered between
this problem and the problem of constructing quantum-error-codes, which has led to
further discoveries in both fields. The latter is joint work with A. R. Calderbank, E. M.
Rains and P. W. Shor.
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Geometric Discrepancy Theory
Joel Spencer
Abstract

The discrepancy of a family A is the least K for which there ezists a
two coloring x : @ — {—1,+1} so that |x(A4)| < K for each A € A. Here ()
is the set of underlying vertices and x(A) = Y ,c4 x(a). We compare and
contrast three settings: general set systems, where one gets upper bounds
on the discrepancy in terms of ||, the |A|, deg(z), etc., number theory,
with Q@ = {1,...,n} and A the family of arithmetc progressions, and our
core topic geometry, with @ C RY and A the half spaces, balls, or whatever.

The basic Erdés Existence argument is described and it is noted that
the bounds are far from best possible in the number theoretic and geometric
realms. The Floating Colors method of Beck and Fiala is given and applied
to axis parallel boxes in the geometric setting to give a polylogarithmic
bound. A classic 1964 paper of K.F. Roth uses Fourier analysis to give a
lower bound Q(nl/ %) in the number theoretic setting and this is contrasted
with this author’s version of Janos Pach’s version of Bernard Chazelle’s
version of Alexander’s 1990 lower bound of Q(nl/ %) for half spaces in the
plane. In both cases an appropriate variance of a random set is shown to be
high.

An Entropy argument inaugurated by this author and both expanded
and simplified by Ravi Boppana and Jiri Matousek is given. It is shown that
under certain conditions on the |A| and |Q| there exists a partial coloration
(x:Q — {-1,0,+1} with the |x(A)| small and a positive proportion of the
x(v) # 0. One can then sometimes iterate this procedure to give a good full
coloring. In the initial 1985 application this author showed that any n sets
on n vertices have discrepancy O(nl/ ?). With Matousek this author showed
in 1994 that the number theory case has discrepancy O(n'/*) and Matousek
showed that half spaces in the plane have discrepancy O(nl/ 4.
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Proof of Reay’s conjecture on certain 1-dimensional
intersections

Helge Tverberg
University of Bergen
5020 Bergen, Norway
tverberg@mi.uib.no

In 1979 John Reay conjectured (see Israel J. Math. 34 (238-244) or con-
jecture 9.12 in Eckhoff’s chapter 2.1 of Handbook of Convex Geometry):

Let 2d(r — 1) 4+ 2 points be given in d-space. Then they can be grouped
into r parts so that the intersection of the corresponding convex hulls is at
least 1-dimensional.

This is proved, and the problem of finding the cases in which one cannot
do with one point less, is discussed.
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Geometric Transversal Theory

Dr. Rephael Wenger
Department of Computer and Information Science
The Ohio State University

A k-transversal to a family of convex sets in R? is an affine subspace of
dimension k (such as a point, line, plane or hyperplane) which intersects every
member of the family. This talk covers some of the major results in the past ten
years on k-transversals and poses open questions related to these major results.
In particular, I discuss necessary and sufficient conditions for the existence of
transversals, Tverberg’s Helly-type theorem for line tranversals of translates
in the plane, piercing or Gallai numbers, the combinatorial complexity and the
topological structure of the space of transversals, the order in which transversals
intersect a family of sets, and a theory of convexity on the affine Grassmannian
developed by Goodman and Pollack.
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Sphere Packing and Crystal Growth

Let B¢ denote the unit ball in euclidean d-space E¢, d > 2. For a convex body K C E¢ let
V(K) denote its volume. For a finite set C,, = {c1,...,¢c,} C E¢ with ||c;—¢;|| > 2,1 # 5
we call Cp, + B a finite sphere packing or briefly a packing. If L C E? is a packing lattice
for B* and C,, C L, then C,, + B% is a lattice packing. For p > 0 the parametric density
of C,, + B% is defined by

§,(B%,C,) = nV(B%)/V(conv C, + pB?).

Further
6,(B% n) = max{6,(B% C,)|C, + B packing}.

The optimal C, with §,(B%,C,,) = §,(B%,n) are denoted by C, .

If conv C), is a segment of length 2(n — 1), we write C,, = S,, and call S,, + B¢ a sausage.
For each d > 2 and each n > 3 there is a critical radius pg,, with C,, , = S, for 0 < p < pa,
and C,, , # S, for p > pan.

The parametric density 4, the critical radii pg,,, the optimal shapes C,,, and their ana-
logues 6{;, pﬁ”n, Crﬁp for restriction to lattice packings are the main objects of finite sphere
packings. Omne can show their asymptotic close relation to classical sphere packing, lat-
tice and nonlattice. One can further show how the classical theory fits together with the
typical phenomena of parametric density as sausages and sausage catastrophes.

Here we show that for large n and suitable p the normalized CL e n ~1/4 conv CL

tend to Wulff-shapes, i.e. to shapes of real crystals. If one replaues V(conv C,, + pB‘j)
by V(conv C,, + pC) with a suitable convex body C, one can control unisotropies, which
occur in crystals by bonds. This gives a much richer variety of shapes. Even extreme
shapes of crystals (e.g. whiskers) can be realized via parametric density.

J.M. Wills (Siegen)
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Giinter M. Ziegler
(TU Berlin)

Recent Progress on Polytopes

We outline five very active and important areas of research concerned with the (combinato-
rial) theory of (convex) polytopes, report about recent progress, and present five “challenge”
problems that we hope to see solved soon.

Universality Theorems for polytopes of constant dimension: see Richter-Gebert’s recent
work! Challenge: Provide a Universality Theorem for simplicial polytopes of constant
dimension.

Triangulations and subdivisions of polytopes. Challenge: Decide whether all triangula-
tions on a fixed point set in general position can be connected by bistellar flips.

0/1-polytopes and their combinatorial structure. Challenge: Are the numbers of facets
of 0/1-polytopes bounded by an exponential function in the dimension?

Neighborly polytopes. Explicit constructions and extremal properties.

Paths. The existence and construction of short monotone paths to the “top vertex” of a
polytope is a crucial problem in the analysis of the simplex algorithm for linear pro-
gramming. We report about joint work with Nina Amenta on “deformed products” of
polytopes, a new construction that all the known examples of linear programs with ex-
ponential lower bounds. Challenge: Decide whether there is a polynomial upper bound
for the expected running time of the RANDOM-EDGE simplex algorithm. Challenge:
The “Monotone Upper Bound Problem”: What is the maximal number of vertices of a
monotone path on a d-dimensional polytope with n facets?
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Discrete and Computational Geometry: Ten Years Later, Mount
Holyoke College.
Open Problem Session, July 15, 1996

(Collection of open problems in order of presentation, edited by E. Welzl)

Ludwig Danzer office@steinitz.mathematik.uni-dortmund.de

Does there exist a “strong Einstein”? More precisely: Is there a tile T
in ¢ or H* with the following properties:

o int (T') connected,
o T =cl (int (T)),

o T is compact,

T does tile the space,
e if P is a T-tiling, then the symmetry group Sym(P) is finite;
or — somewhat weaker —

e Sym(P) is finite for every facet-to-facet T-tiling P (0T dissected into
“facets” forming a cell-complex)?

Rephael Wenger wenger.4Qosu.edu

Let P be a set of n points on a horizontal line / in ®3 labelled p1, ps, . - . Pn
although not necessarily in order. We wish to connect the points in the order
P1,P2,P3, - - - Pn by a simple curve (not self-interseetings) which has minimum
number of intersections with the line I. In the worst case, @(n?) intersections
are necessary and sufficient.

Give a polynomial time algorithm to find the optimal solution or prove
the problem is NP-complete or give an approximation algorithm.

Victor Klee klee@math.washington.edu

Determine the smallest number r that has the following property: When-
ever a 3-dimensional convex body can be passed through a circle of radius
1 (with “turning” permitted), it can also be passed through a long circular
cyclinder of radius 7. (It is known that » > 1.)
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Jack Snoeyink snoeyink@cs.ubc.ca

Let S be a set of n lines in the plane and 7' = |J S be their union. Let p
and ¢ be points in T'. Given S, can one determine in o(n?) time, the shortest
(Euclidean) path in T from p to ¢?

Using a real RAM model of computation that can compute distances,
O(n?) time can be achieved by constructing the arrangement and using stan-
dard techniques. The problem is to find and exploit some metric structure
in an arrangement of lines to obtain a subquadratic algorithm. Simple ar-
guments lead to an O(nlogn) algorithm for a path that is within factor of
2 of the shortest. (See [Bose et al., Canadian Conf. Comp. Geom. 1996])

Rade Zivaljevié ezivaljeQubbg.etf.bg.ac.yu
The fact that the graph K3 g is not planar can be abbreviated as follows

(K373 — ]Rz) — (2 > O-dzm) or
(K3,3 — Rz) —— ><

where 2 — 0-dim means that the images of some two independent edges
of K33 intersect, i.e. have a common 0-dimensional transversal.

It is also known that
(Ks — R%) — 1

which means that for any embedding K¢ < R3, there exist two linked
triangles in the image, [1].

PROBLEM: Find the characterization in terms of forbidden graphs (minors)
of all graphs G with the property

(G — R®) = (4 — 1-dim)
where 4 +— 1-dim means that some four independent edges of G have a

common line transversal.

[1] P. Seymour, Progress on the four-color theorem, Proc. Int. Cong. Math.
Zurich, Switzerland, Birkhduser, 1995.

[2] R. Zivaljevi¢, The Tverberg-Vreéica problem and the Combinatorial
Geometry on vector bundles, preprint.
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Jeff Erickson jeffe@cs.berkeley.edu

How many non-simplex facets can an n-vertex 4-polytope have?

Examples with Q(n) non-simplex facets are easy to construct, and an
upper bound of O(n?) follows immediately from McMullen’s upper bound
theorem. As far as I know, these are the tightest known bounds, even for
polyhedral 3-spheres.

The best construction I know of is the connected sum of n/5 — 1 copies
of a bipyramid over a cube, which has n vertices and 11n/5 — 10 facets, each
a square pyramid. Is 3n achievable?

There is an asymptotically tight bound of ®(n?) in five dimensions. The
lower bound is achieved by the convex hull of a set of integer points on the
“weird moment curve” (t,t%,¢%,1%,t%). For example, when n is even, the set
{-n,2—mn,...,~4,-2,1,2,...,n/2} induces a polytope with n vertices and
n?/16 + ©(n) bipyramidal facets.

More generally, in d dimensions, we have an upper bound of O(nLd/ 2J),
and a generalization of the weird moment curve construction gives us a lower

bound of Q(n["/21-1). Which bound is correct when d is even?

I am particularly interested in the case of quasisimplicial polytopes, each
of whose (d — 2)-faces is a simplex. The weird moment curve examples are
quasisimplicial. See [J. Erickson. New lower bounds for convex hull prob-

lems in odd dimensions. In Proc. 12th Ann. ACM Symp. Comptuational
Geometry, pp. 1-9, 1996].

Raimund Seidel seidel@cs.uni-sb.de

Is there an infinite family of combinatorial types of 4-polytopes P with
the property that the sum of the number of vertices and facets of P is
asymptotically smaller than the sum of the faces of other dimensions, i.e.

fo(P) + f3(P) = o f1(P) + f2(P)) ?
Such classes of “fat-lattice” polytopes are known to exist for dimension

d > 6. For dimension d = 3 such classes cannot exist because of Euler’s
relation.

Peter Mani-Levitska (with Nicolai Mnév)math@math-stat.unibe.ch

Are there two triangulations of the 7-simplex without a common stellar
subdivision?
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Jacob E. Goodman jegcc@cunyvm. cuny . edu

Given a family £ of directed lines through the origin in R% no two
orthogonal, its acuteness graph A(L) (as defined in joint work with Boris
Aronov and Richard Pollack) is the graph whose vertex set is £ in which
two vertices are joined by an edge if and only if the corresponding directed
lines make an acute angle. It is not difficult to see that every graph G can
be realized as the acuteness graph of some family of directed lines, and the
lowest dimension d such that the lines can be chosen to lie in R? is called
the acuteness number a(G) of G.

If C,, is the n-cycle (the graph with n vertices joined in cyclic order), it
is not hard to see that a(C3) = 1, a(Cs) = a(Cs) = a(C7) = 2, a(C4) =
a(Cg) = 3, and a(Cyp) = 4, and that in general a(C3q4y2) = d. But the
value of a(C,,) is not clear for odd n > 9 (it is either (n—1)/2 or (n - 3)/2,
so that «(C,,) is monotone for n > 5), and the problem we propose is to
determine (at least) a(Cy).

Comment: After the problem was presented, Peter Shor and Egon Schulte
independently worked out the value of a(Cy) for n even.

Marshall Bern (Problem from Steve Vavasis) bern@parc.xerox.com

Let P = $135...5, be a simple polygon in the Euclidean plane. Assume
you are given the following information about P: (1) for each ¢, the measure
of the angle at s;, (2) the “names” of all the diagonals in a triangulation of
P, that is, di = $;,55,, d2 = 84,8555 + -+, An_3 = Siy_3Sjn_s> and (3) for each
d;, the cross-ratio of the quadrilateral formed by the two triangles bounded
by d;. The cross-ratio of a quadrilateral is the product of the lengths of one
pair of opposite sides divided by the product of the lengths of the other pair.
(For specificity, we may assume that the numerator is always the product
of the two sides clockwise from d;.)

ProBLEM: Does this information uniquely determine P, up to similar-
ity?

Bernard Chazelle chazelle@cs.princeton.edu

Given finite S C R? a point p € R? is an S-maximum if p € S and
there is no ¢ € S, ¢ # p, such that p, < ¢, and p, < ¢q,. Given ¢ € R2,
let S, = {p € S|ps < g, and py < gy }. Let B(S,q) denote the number of
S,-maxima. Finally, let B(S) = max, B(S, g).
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PROVE OR DISPROVE: For any S C RZ, |S| = n, there exists T C R?,
|T| = O(n) such that B(S UT) = O(logn).

Komei Fukuda fukuda@ifor.math.ethz.ch

PROVE OR DISPROVE the following generalization of the Sylvester-Gallai
Theorem: Given n points in the plane not all of which are colinear, and given
any balanced non-Radon partition (P, Q) of the point set, there exists an
ordinary line containing exactly one point from each of P and Q7

Note. A partition (P, Q) is called non-Radon if there is a line strongly
separating P and @, and is balanced if their sizes differ at most by one.
It is not difficult to see that neither “balanced” nor “non-Radon” can be
eliminated for generalization.

Emo Welzl emo@inf.ethz.ch

PROBLEM: Are there positive constants c, cz, such that every set P of
n points in the plane allows a matching of size ¢14/n with no line crossing
more than c, edges of the matching? (A line crosses an edge {p, ¢}, if the
points p and ¢ lie on opposite sides of the line.)

WHAT 1s KNowN? It is always possible to choose a matching of size \/n
with no line crossing more than O(logn/loglogn) edges. And for any fixed
positive ¢ < 1/2, there is a matching of size n(1/2)=¢ with no line crossing
more than O(1) edges. (See [E. Welzl, On spanning trees with low crossing
numbers, Lecture Notes in Computer Science 594 (1991) 233-249].) An
old result by Erdds and Szekeres on subsets in convex position [Compositio
Mathematica 2 (1935) 463-470], gives a matching of size @(logn) with every
line crossing at most two edges. Is ©(logn) optimal for “2”7
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DISCRETE AND COMPUTATIONAL GEOMETRY: TEN YEARS LATER
Mt. Holyoke College, July 14-July 18, 1996
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