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We classify nondegenerate plane configurations by attaching. to each such con-
figuration of n poinis. a periodic sequence of permutations of t1.2....n} which
satisfies some simple conditions: this classification turns out to be appropriate for
questions involving convexity. In 1881 Perrin stated that every sequence satisfying
these conditions was the image of some plane configuration. We show that this
statement is incorrect by exhibiting a counterexample. for n = 5. and prove that for
n < & every sequence essentially distinct from this one is realized geometrically by
giving a complete classification of configurations in these cases. there is 1 com-
binatorial equivalence class for n = 3. 2 for n=4. and 19 for n = 5. We develop
some basic notions of the geometry of “allowable sequences™ in the course of prov-
ing this classification theorem. Finally. we state some results and an open problem
on the realizability question in the general case.

1. INTRODUCTION

An outstanding problem of combinatorial geomewy has long been to
classify, in a reasonable and effective way, nondegenerate configurations of n
points in the plane—indeed in Euclidean space of any dimension—into
finitely many “essentially distinct”™ classes. Any classification scheme can be
described by mapping the set of nondegenerate configurations of n points
into some finite set A and identifying configurations with the same image.
The utility of such a scheme depends of course on (1) how faithfully and
simply properties of interest are represented by the objects of 4., and (2) how
well we know the image of the map. ie. which objects of A are
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geometrically realizable. What makes a property interesting, in turn, is deter-
mined by what kinds of problems one wants to resolve.

Our primary concern is with problems related to convexity, such as the
Erdés—Szekeres conjecture [1. 2]. Suppose. for example, one wanted to ask a
computer to test each nondegenerate plane configuration of 17 points to
determine whether it contained the vertices of a convex hexagon. How could
the computer, even in principle, generate finitely many 17-tuples of points
such that any two were “essentially distinct,” and any 17-tuple “essentially
the same™ as one of those generated? For this purpose, a natural classifica-
tion scheme would be to associate with a configuration of points P,...., P, all
those subsets {i,.... i} of {1.n]. called semispaces, for which P, ..., P, lie
on one side of a line and to consider two configurations equivalent if, after a
possible relabeling of the points, they each have the same family of
semispaces. Here 4 can be taken to be the family of subsets of |i, n]. While
it is not hard to see that all questions pertaining to convexity are easily read
off from a realizable element of A4, it is far from clear which elements of 4
are realizable. We shall return to the question of the realizability of
semispaces in a subsequent paper [3|. In this paper, which is the first in a
series on the classification problem. we shall examine a finer classification
scheme for which the question of realizability is somewhat more tractable
and which also sheds light on the realizability question for semispaces.

This classification results from the assignment, to each nondegenerate
configuration of n points in the Euclidean plane, a periodic sequence of
permutations of the set |1, n] which is determined by projecting the points of
the configuration orthogonally onto a rotating directed line. The sequence
determines the semispaces as initial or final segments of the various
permutations and thus reflects the convexity properties of the configuration,
as well as the classification by semispaces. we shall call two configurations
“combinatorially equivalent” if—possibly after renumbering or reflec-
ting—they give rise to the same sequence of permutations. Sequences
obtained in this way satisfy a simple necessary condition (see Remark 2.3).
and we call any sequence satisfying this condition an “allowable sequence of
permutations.” Our main concern in this paper is with the question of the
geometric realizability of these allowable sequences.

In |5]. Perrin. writing on the “probléme des aspects™ which had been
proposed by Halphen, asserted—in reference to the sequnce of permutations
associated to a nondegenerate configuration—"L’ordre dans lequel ces per-
mutations se présenteront n’est pas complétement arbitraire, puisque. pour
passer d’'un aspect au suivant, on ne peut permuter que deux nombres con-
tigus: mais c'est la seule condition ¢ remplir. comme il est facile de s'en
assurer...” |italics ours]. The condition he refers to is essentially what we
call allowability, and so he asserts that all allowable sequences are
realizable.
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This assertion, which has apparently gone cznzm:m:mma for nearly 100
years, is in fact false. We shall give an example. for n =5, of an allowable
sequence which is not realizable (Theorem 3.3), for an amusing geometric
reason. and establish a further necessary condition for realizability
(Corollary 3.2 of Theorem 3.1). On the other hand. all allowable sequences
for n < 5 which are essentially distinct from this one are realizable, and
are—it turns out—realized 9 precisely 1, 2, 19 combinatorially distinct
configurations for n =3, 4, 5. respectively (Theorem 4.1). Along the way
toward proving Theorems 3.3 E.a 4.1, we are led naturally to develop some
notions of the geometry of nondegenerate configurations purely in terms of
their associated sequences (Section 2): this offers an interesting subject for
further investigation.

We would like to express our gratitude to William Sit for several valuable
conversations while this work was in its formative stages, and to Thomas
Zaslavsky for making us aware of another assault on the classification
problem—one involving oriented matroids. Finally. we would like to thank
Herman Hanisch for coming up with a proof (we now have four in all!) of
the “amusing geometric fact” mentioned above, which we were later able to
generalize to Theorem 3.1.

For an excellent bibliography on configurations of points, see [4].
particular the comments on p. 112.

Added in proof. The classification of nondegenerate configurations
presented here can be extended to a classification of arbitrary plane
configurations, and this turns out to be a key step in settling the conjecture
of B. Griinbaum that every arrangement of eight pseudolines is stretchable;
see our forthcoming paper “Proof of Griinbaum’s conjecture on the
stretchability of certain arrangements of pseudolines.” to appear in J.
Combinatorial Theory, Ser. A.

2. SoME GEOMETRY OF ALLOWABLE SEQUENCES

DEerFINITION 2.1. A nondegenerate configuration of n points is an ordered
n-tuple of distinct points in the plane with no three points collinear and no
two pairs of points lying on parallel lines. We shall think of the points of the
configuration as labeled by the numbers 1. 2....n. Given a configuration C
of n points and a directed line / which is not orthogonal 1o any line deter-
mined by two points of C, the orthogonal projection of C on [ determines a
permutation of 1, 2....,n in an obvious way. As the line / rotates counter-
clockwise about a fixed point we obtain a sequence of permutations of period
2 ,C,=n(n—1), which we shall call the circular sequence of the
configuration.

i

NONDEGENERATE CONFIGURATIONS IN THE PLANE 223

EXAMPLE 2.2. Associated with the quadrilateral of Fig. 1 we have the
circular sequence

a2 12 43 13
a2 a2 2 B
: X (2.1)
3 2 1
2341 B a Paam B B it

Here we have indicated which “switches™ take us from each permutation to
the next. (We distinguish the ordered switch ij from the ordered switch ji in
that the former indicates that i originally precedes j.) Note that the sequence
of ordered switches in line (2.1) is nothing more than the sequence of vectors
@‘ in Fig. 1 arranged in counterclockwise order.

N

FIGURE |

Remark 2.3. In the circular sequence of a configuration, (1) successive
permutations differ only by having the order of two adjacent numbers
switched. and (2) any ,C, consecutive permutations make use of all
possible switches in passing from each to the next. Property (1) corresponds
to the switching of the projections of 7 and j on [ as [ rotates through the
direction orthogonal to the line through i and j, while property (2) stems
from the fact that as the line / rotates through an angle of 7 it passes
orthogonally to each of the ,C, lines determined by the points of C. It is an
immediate consequence of (1) and (2) that the ordered switch occurring ,C
steps after {j must be ji. and that the permutation ,C, steps after a given one
must be its reverse.

DEFINITION 2.4. A sequence (..., P_,.P,.P,...) of permutations of the
numbers I...., n which satisfies properties (1) and (2) of Remark 2.3 (hence is
automatically of period n(n — 1)) is called an allowable circular sequence.
We say that two allowable circular sequences (..,P_,,P,, P,...) and
(s Q_,» Qo Q,..) are equal if, for some k. Q;,, = P, for all i.

DerFINITION 2.5. The restriction of an allowable circular sequence S to 2
subset i, <i,< - <i, of [1,n] will mean the sequence of permutations
obtained by (1) deleting the numbers not in this subset from each
permutation of S, (2) omitting repeated permutations. and (3) renaming |,
(j=1,.. k) simply j. This clearly yields an allowable sequence. and the
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result corresponds to the subconfiguration ...t of {l.n] if § is
realizable.

Clearly the circular sequence of a configuration is allowable. Equally
clearly. an allowable circular sequence determines its periodic sequence of
ordered switches. Our first proposition shows that the converse is also true.

ProrosiTION 2.6, An allowable circular sequence is determined by its
sequence of ordered swiiches.

Proof. We use induction on n. If n=3 (the cases n=1 and n =2 being
trivial). there are only two allowable sequences:

12 13 23 21 31
:.Hmulw:lnmm_|w§||n:u|_wwwwwmw.: (2.2)

and

23 13 12 3
:.Eu.luuwlemlluwume_Mw..:wwlw;w:; (2.3)

and their sequences of ordered switches are distinct. Suppose n > 3 and
consider any switch involving n, say in. If 7 is the preceding permutation, it
is sufficient to reconstruct =, for the sequence of switches—applied one at a
time—will then determine the rest of the sequence. But if we restrict the
sequence of switches to [1,n — 1], the induction hypothesis allows us to
determine the restricted sequence. hence the restriction 7, of n. To get n, we
just insert n after i in 7.

Remark 2.7. 1If a nondegenerate configuration is reflected about a line,
the sequence of switches of the new configuration is the reverse of that of the
old: hence the same is true of the sequence of permutations. It is clear that
this operation. henceforth called reflection, when applied to any allowable
sequence, vields another allowable one.

Since we do not wish to distinguish between configurations which are
merely numbered differently. nor between those which are reflections of each
other. we choose not to make the corresponding distinctions among
sequences either. Hence

DerFiniTioN 2.8, Two allowable circular sequences are combinatorially
equiralent if. by a suitable permutation of the numbers 1,.... n or a reflection
or both. one is transformed into the other. Two configurations are com-
binatorially equivalent if they have combinatorially equivalent circular
sequences.

We now introduce some geometric language which will facilitate our
discussion of allowable sequences: it is motivated. of course. by the

tJ
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corresponding terminology for the configurations from which some of our
sequences arise.

DEFINITION 2.9, The numbers in our permutations will generally be
referred to as points. An allowable sequence involving n points will often be
called simply an n-sequence. If S is an n-sequence and J. ... 1, € f1.n). we
say j is in the convex hull of i,.....i;. written j € conv({i, ... i), if j is one of
i) i, oF if j is preceded. in each permutation of S. by one of 7,..... i, (hence
followed as well). We say j is an extreme point of S if j occupies position 1
in some permutation of S. i.e.. if j is not in the convex hull of the other
points of S. (Note that every sequence with 7 > 3 has at Jeast three extreme
points.) If the extreme points of an n-sequence S occupy position | in the
(circular) order [ Iy 1 o we call that the counterclockwise order of
the extreme points. The set of points in any initial (hence in any terminal)
segment of a permutation of S is called a semispace of S. If {i,.i,} is a
semispace of S consisting of two extreme points, we call {i,,i,} an edge of
S. A triangle, (convex) quadrilateral..... (convex) k-gon is an n-sequence with
n=23,4... k respectively, all of whose points are extreme: the points are
called the vertices. The 2-point subsets of a k-gon which are not edges are
called diagonals. 1f the vertices of a k-gon are iy,.... i, in counterclockwise
order. we say that the edge or diagonal {i,.is} is parallel to the edge or
diagonal {i,_,.i;.,} (with the indices read modulo k).

Remark 2.10. If j € conv(i,... i,) in an n-sequence S, then the same is
true in any restriction or extension of S to a set containing j and i,,... ;.
Hence if j is an extreme point of S. it is an extreme point of any restriction
of S to a set containing j. Similarly. the intersection of any semispace of S
with a subset {i,....1,} gives a semispace of the restriction of § so that
subset.

DEFINITION 2.11. If the ordered switches i, j,..... i, j, occur in that order
in S, with i, j, not recurring before i, j,. we shall write (i, j, <+ < i Jo
Note that if this holds in a sequence S it holds in any restriction or extension
of S to a subset containing the points in question.

DErFvITION 2.12. Suppose 1, 2. 3. 4 are the vertices of a quadrilateral,
in counterclockwise order. We say that lines 12 and 43 meet on the side of
points 2 and 3 if (43 < 12 < 34): otherwise they meet on the side of points |
and 4.

DeriNiTiON 2.13. If 1. 2. 3, 4 are the points of a 4-sequence, we say that
line 34 separaies points 1 and 1. or culs segment 12. if the following
semispaces exist: {1 ¢1.31 (1. 4% and {l. 3.45. (Since the complement of
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one semispace is another. this condition is obviously symmetric in the points
1 and 2.)

In the rest of this section we give some ‘‘geometric” properties of
allowable sequences which are needed for the classification theorem in
Section 4. The proofs of all but Proposition 2.18 follow immediately from the
definmitions.

Remark 2.14. Suppose the extreme points of an n-sequence S are /..., i,
in counterclockwise order. Since in order to get from position 1 to position n
such a point must make n — 1 interchanges. each with a point initially to its
right, it is clear that each extreme point moves monotonically left-to-right
unti] it is in position n, then returns monotonically to position 1. It therefore
makes sense to talk about the direction that the extreme point is moving in at
some stage when it is not at either end of a permutation: by convention we
shall also say it is moving to the /eff when it occupies position 1 or position
n. Because of the monotonic motion in each direction, it is clear that no two
extreme points moving in the same direction can change places: hence i,..., I,
follow each other in their back-and-forth motion, changing places with each
other only when two are moving in opposite directions. (Note: This
“monotonicity in a half-period” does not hold, of course. for the nonextreme
points. since if a point is in position p at its leftmost extreme, with p > 1, it
must make p — 1 moves to the left and n — p moves to the right by the end of
a half-period.)

ProPOSITION 2.15. Suppose the extreme points of an n-sequence are
i, iy in counterclockwise order. Then
() ()i =<iyiy< <ddy <)
ASQLMA::A/Q.:.»AN.Z.L.

(c) Every i; belongs to exactly two edges—{i; ;. band {100, )

PROPOSITION 2.16. (a) (i,j,~ - < i jo)= (i, < <Jidy)
() I (i), = <ipJi<Jiiyh (i Ja <oy Jusy <Jili)s and (i, 7, <
:..,_.\.»L.Ai. < ~.s.\.3A.\.Z.L. then CT\._ < \/N.s.\.sA.\.Z._v.
(©)  (if < jk ~<ji) = (ij < ik < jk < ji).
() () <ipa< o <bdy<Jih)) = )y < <iji<Jiiy <Jjafz)

ProposiTioN 2.17. If 1, 2. 3 are the extreme poinis, in counterclockwise
order. of a 4-sequence. then the sequence musi be

L 1423-1243-2143-2413-2431-2341-3241~---. (24)

The next proposition says that the convex hull of an n-sequence may be
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“triangulated” by joining any one of the extreme points to each of the others:
each nonextreme point will then belong to precisely one of the triangles
formed.

ProposITION 2.18 (“Triangulation lemma™). Suppose the extreme points
of an n-sequence S are i,,..i, in counterclockwise order, and suppose
| Ca< k. Ifjis any point other than i, ..., 1,, there is a unique f (1 < B <k,
B#a, f+1+#a) such that j&€convli,,lz. iy, ). (B+1 is understood
modulo k. of course.)

Proof. Let P be the permutation of S immediately preceding the switch
i, j, and let i, and iy, be the successive left-moving extreme points (see
Remark 2.14) which surround j in P; they exist, by virtue of our convention
about the endpoints of P. (Note that i, cannot be the initial point of P
because of the switch that is about to take place: j is not an extreme point.)
In other words, P has the form

ﬁﬂxﬁl_, (2.5)
where the arrow indicates the direction in which the corresponding extreme
point is moving. We claim j € conv(i,, i, i5, ). It is sufficient to show that
one of i,. iy, iy,, is always to the left of j. Since the (circular) order n
which these three points reach position 1 is i, i;. i;,,. we can argue as
follows: For the half-sequence immediately preceding the switch i, j. i, is to
the left of j. From that switch until i, returns to j and the switch i; j takes
place, i, is to the left of j. When the switch i, j occurs, i,_, is still to the left
of j, since it is “following” i;. and it remains so until the end of the half-
sequence. for the position then is exactly the reverse of the one shown in
(2.5). To prove uniqueness, consider an index y#f. If j is always
surrounded by two of i,. i,. i, ;. then since i, switches with j as we go from
P to the next permutation, P must have the form

T —
R P R P L T I P )
which is impossible since i,., is the successor of i, among the left-moving
extreme points in P.

COROLLARY 2.19  (Carathéodory’s theorem in the plane). If
j € conv(i, ..., i) then for some a, B, y we have j € conv(i,. ig. I,).

Remark 2.20. It may be shown, using the above, that if a line passes
through a point inside a triangle, it cuts one side of the triangle: that any line
cutting one side cuts a second side; and that no line cuts all three sides. This
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is Pasch's axiom. and we mention this fact to show that some standard
theorems of ordered geometry can be proven for our “generalized con-
figurations.”

3. UNREALIZABLE SEQUENCES

THEOREM 3.1. If 1.2....n are the vertices of a convex n-gon (numbered
modulo n) listed in counterclockwise order, and if a. k >0 and a + 2k <n,
then it is impossible that the diagonals (or edges) i.i+a and the “parallel”
diagonals (or edges) i — k. i+ a + k intersect on the side of points i + a and
i+ a+k for all i (Fig. 2).

FiGURE 2

Proof. Let « be a unit vector normal to the plane of the polygon,
respecting the counterclockwise order of the vertices. Let us denote by t;
(i=1,..n) the vector i— 1.1 Suppose i.i+a and i —k.i+ a+ k meet on
the side of points i + a and i + a + k for all /. Then i — k is farther from line

i.i+athan i+ a+kis. e,

-t T T o —
~I>.L;L+mx§v~+m+?~+m.¢L+mx§

for i = 1...., n. Rewriting, we have

CI»Lx~;+m+~+m;+m+»xi+3.Svo,

or

i+a i+a+k i+a

i
AM v, X N U+ N $XM§V.€VO.
i—k+1

is1 iva-1 i1
Rewriting the last twe sums in descending order. we get
k

; a
AM?-_.LX./If 4+ Ny
p=1 g=1 p=1 G- 1 7
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which vields

‘= » :
AV! VI Vn ~.no_\>X@,c‘._nf~,1Q4»4~|wx~,~.4n¢_|nv EVO

i~1p=1g¢g=1
when we sum over i. If we interchange the order of summation we have

n

k a n
Ml A A/ v »Xw.nn._l.r N w.m»m»»ouvuXﬁTno_\cv CVO

— p-i- —

potg=1 Vi=1 i=1

Since the numbering is modulo n. we may add p+g—a—k—110 each
subscript in the second summation, getting

k a ;on
4/J

p=1g=1

n
AM T i a X Tt M ~.,Q:.x~,?1v cw >0,

Q=1 i=1

which contradicts the fact that this sum obviously vanishes.

COROLLARY 3.2. If an allowable circular sequence S is a convex n-gon
with points 1,..,nin counterclockwise order, and if—for each i = 1...., n—the
diagonal (or edge) li,i+ a} and the diagonal (or edge) {i—k, i+a+k|
intersect on the side of points i + a and i + a + k for all i, where a. k > 0 and
a + 2k < n. then S is not geometrically realizable.

We can now give a counterexample, in the case n= 5. t0 Perrin’s assertion
(5, p. 119] that every allowable sequence is geometrically realizable:

TueoreM 3.3.  The allowable sequence

12 53 54 13 23
:mw».lm;wu||N5uullwﬁﬁulwwim||

14 15 24 4 25
wNKmluwﬁm‘uﬁElwANS wlhwwmu IAwMNH.

—
(8]
—_—

is not geometrically realizable.

Proof. Suppose (3.1) were realizable. Since each point is extreme, the
configuration would be a convex pentagon. Moreover since {1,2}, {2,3},
{3.4}, {4,54, and {5. 1} are the edges of (3.1), they are the edges of the
pentagon as well. and the vertices appear in the counterclockwise order 1. 2,
3, 4. 5 (in both senses). Finally. since (12<53<21). (23 <14<32),
(34 <25 < 43). (45<31<54), and (5! < 42 < 15), each side and its
“parallel” diagonal must meet as in Fig. 3, i.e., 12 meets 53 on the side of !
and S...51 meets 42 on the side of S and 4, again in both senses (see
Definition 2.12). Corollary 3.2 therefore yields the result.
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FiGURE 3

This gives us a great many unrealizable sequences for n > 5, since we have
only to extend the “impossible pentagon™ sequence in an arbitrary way to an
allowable sequence, in order to get another unrealizable sequence:

COROLLARY 3.4, If the restriction of an allowable N-sequence S to any
subset of n points satisfies the conditions of Corollary 3.2, then § is not
realizable.

We believe it is not the case, however. that the possession. by an allowable
N-sequence S, of an n-subsequence in which two systems of “parallel”
diagonals and/or edges meet as in Corollary 3.2 is the only obstruction to the
realizability of S. We therefore pose the following problem, whose solution
seems essential. to us. for a thorough understanding of plane configurations:

PROBLEM 3.5. What further obstructions. if any, are there to the
geometric realizabilitv of an allowable sequence of permutations, besides
those given by Corollary 3.47

4. CoMBINATORIAL CLASSIFICATION FOR n < 5§

TueoReM 4.1. For n=1. 2. 3, 4, 5 there are precisely 1. 1. 1, 2, 20
(respectively) combinaiorial equivalence classes of aliowable sequences. of
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which 1. 1. 1. 2. 19 (respectively) are geometrically realizable. the
realizations for n =4 and 5 are as shown {schematically) in Fig. 4.

Proof. In order to prove that for a certain n there are precisely N(n)
combinatorial equivalence classes. of which precisely R(n) are realizable. we

| realization
(a)

] realization 2 realizations 8 realizations
(<) (d) (e}
/1y

s
7 \

-
4 realizations ] realization
() (g}

1 realization
(h)

! realization 1 realization
(i} o (k)

FIGCRE 4

{no realization)

In (d). (e). and (f). lines x and x’ can meet in either direction: in (h). (i) (). and (k). each
side meets the “paraliel” diagonal in the direction indicated.

must do three things: (1) give N(n) n-sequences and show that any n-
sequence is equivalent to one of them, (2) show that they are pairwise
inequivalent, and (3) show that at least R(n) of them are realizable and at
least N(n) — R(n) unrealizable. Since in our case all but one of them (for
n=5) will be realizable and we will actually give the realizations. (2) will be
immediate by inspection of the pictures. It is therefore enough to do (1) and

3).
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For =1 and 2 there is nothing to do. and for # = 3 there are only the
two {equivalent) sequences (2.2) and (2.3). each of which is realized by an
appropriately numbered triangle

For n = 4. there may be either three or four extreme points. In the first
case Proposition 2.17 shows there is onlv one equivalence class (see Fig. 4a).
while in the second case—after renumbering so that 12 and 43 meet on the
side of 2 and 3. and 23 and 14 on the side of 3 and 4 (see
Definition 2.12 +—Propositions 2.15 and 2.6 show that only the sequence
realized in Fig. 5 is possible

If n =3 there are either three, four, or five extreme points.

Case 1. Three Extreme Points

We have seen (Proposition 2.17) that—up to relabeling—there is only one
possible restriction to those three points plus either “'inside™ point. Thus if 1,
2. 2 are extreme. the orders of all switches are determined with the exception
of 45. and i4 vs i5 (and of course 4i vs 5i). Clearly 45 can be inserted
anywhere. and 54 at the corresponding position. as is shown by the fact that
the line 45 in Fig. 6 can have any desired direction; by Proposition 2.16(c).
this choice determines i4 vs iS5 for all i. Now apply Proposition 2.6 to
determine a sequence. This argument shows at the same time that every such
sequence is realizable. and it is clear that by a cyclic relabeling of points 1.
2. 3. followed by a reflection if necessary. we may transform any realization
into the one shown in Fig. 6. This gives one equivalence class in Case I.

Y

1

n

FiGURE 6

Case 2. Four Extreme Points

We have already seen that up to relabeling. any 4-sequence with four
extreme points must be unique and is realized by Fig. 5 above. Then point 5

r
)
el
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must be in one of the four regions the quadrilateral is cut into by its
diagonals. in the following sense: By the triangulation lemma.
Scconvil.2.3) or S€conv(l,3.4); also S€conv(Z.3.4) or
5 € conv(2.4.1). By reflecting and renumbering. if necessary, making use of
the symmetry about the diagonal 13 apparent from Fig. 5, we may assume
5€ convi{l.2.2).

Case 2a. Suppose S € conv(2.3.4). Then the position of switch 51 in
relation 1o the remaining switches is determined, by Proposition 2.17. except
for 53 vs 14. It is clear from Fig. 5 that point 5 can be chosen so that 53 and
14 meet either on the side of 3 and 4 or on the side of 5 and 1 (for the
former near line 23, for the latter near line 13): hence there are precisely two
inequivalent sequences in this case, and both are realizable.

Case 2b. Suppose S € conv(2.4, 1) (see Fig. 7). Then only the position
of switch 51 is determined relative to the rest (namely, (21 <51 <31)),
while 52 vs 43, 53 vs 14. and 54 vs 23 are all undetermined. What is not
clear from Fig. 7. however. is that all three pairs of alternatives may be

2

FIGURE 7

realized independently. i.e.. that there are as many as eight inequivalent
sequences in this case. That this is so. and that in fact all eight sequences are
geometrically realizable. follows from Fig. 8. in which the four locations of
point § with (23 < 54 < 32} are indicated by the dots in Fig. 8(a), while the
dots in 8(b) give the four locations for which (54 < 23 < 45). (The dotted
lines in Fig. 8 are parallels.)' Case 2 thus yields a total of 10 inequivalent
sequences. all realizable.

FIGURE 8

" Figure 8 also shows an interesting property of realizations. and one which makes the
whole guestion of realizability so difficult: Figures 8(a) and (b} are each realizations of the
same 4-sequence: vet one allows a fifth point to be placed so as to realize certain ¢xiensions of
that sequence. while the other does not.
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Case 3. A Convex Pentagon

Here we must distinguish a certain type of vertex. We shall call vertex 1 of
pentagon 1, 2. 3, 4. 5 (numbered counterclockwise) special if edges 23 and
54 meet on the side of points 2 and 5.

The proof in this case proceeds by a breakdown into the number of special
vertices; it is not hard to see. using Propositions 2.15 and 2.16, that a convex
pentagon can have no more than two special vertices. and that if it has two
they must be adjacent. The case of only one special vertex resolves itself into
the four realizations shown schematically in Fig. 4f, that of two special
vertices into the realization of Fig. 4g. and that of no special vertices into
Fig. 4h—which is realized by the configuration {(0,9). (1,0), (10, 0),
(10. 3). (2, 10)}, 4i—which is realized as in Fig. 9, 4—which is realized as

FIGURE 9

in Fig. 10. and 4k—which is the sequence of Theorem 3.3 and therefore has
no realization. In every case, Propositions 2.15 and 2,16 turn out to be all
that is needed to enumerate all the possibilities: we omit the details, which

>

ny

3 “

FiGURe 10

are similar to those of Cases 1 and 2 above. This gives a total of 20
sequences. of which all but one are realizable, and completes the proof of the
theorem.
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