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An example is given of an arrangement of eight pseudoplanes, i.e., topological
planes, in P°, and three points which do not lie in any pseudoplane compatible with
the arrangement; this provides a counterexample to the “Levi enlargement lemma”
in dimension >2.

An arrangement of pseudolines in the projective plane is a finite set of
simple closed curves with the property that any two meet at just one point,
where they cross. As such, they constitute a natural generalization of
arrangements of straight lines, and various authors have investigated the
question of which geometric properties of line arrangements carry over to
pseudoline arrangements; see, €.g., (4, 7], and above all {6] for an excellent
survey of the subject up to 1972,

An indispensable tool in working with arrangements of peudolines is the
so-called “Levi enlargement lemma,” which says that given any such
arrangement ., and any two points P and Q, there is a pseudoline L
through P and Q such that & U {L} is still a legitimate arrangement (see (6]
for a proof). This takes the place of the statement that two points determine
a line; of course for pseudolines “determine” means only “determine at least
one,” not “determine uniquely.”

An arrangement of pseudohyperplanes in P" may, analogously, be defined
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as a finite set .« of hypersurfaces, each homeomorphic to P"~', of which
any k < n meet as do k hyperplanes; i.e., if H,,..., H, € &, there are hyper-
planes H,.... H, in P" such that the cell complex determined by {H,,..., H,}
is isomorphic to that determined by {H,,..., H,}. (If the entire arrangement is
isomorphic, in this sense, to an arrangement of hyperplanes, it is called
“stretchable™; it is known, for example, that there exist non-stretchable
arrangements of k pseudolines in P? for k > 9 [8], while every arrangement
of <8 pseudolines is stretchable [3].) It is natural to ask whether the Levi
enlargement lemma holds for arrangements in dimension >2, and in fact this
question is posed in |5], where the authors point out that a positive answer
would be a key step in extending Helly’s theorem for pseudoline
arrangements from dimension 2 to higher dimensions. Surprisingly enough,
the answer turns out to be that it does not hold in dimension >2. The
purpose of this note is to exhibit an example of an arrangement of
pseudoplanes in P* and three points which do not lie on any pseudoplane
extending the arrangement.

We first note that the following indirect argument, due to Jim Lawrence
(private communication), shows that the Levi enlargement lemma could not
hold gencrallv in P': If it did, then we could start with an arrangement of
pseudoplanes that violates Desargues’ theorem and—by successively
adjoining (via Levi) new pseudoplanes connecting triples of points of inter-
section of our arrangement—build up a three-dimensional projective
geometry for which Desargues’ theorem would automatically hold, giving a
contradiction.

Here is an example. also making use of a Desargues configuration, but
constructed along somewhat different lines, of an arrangement of eight
pseudopianes, seven of them straight, for which the Levi enlargement lemma
does not hold: Let O. 4, B, C be four points in general position in P* and let
A4'. B'. C' be any new points on lines 04, OB, OC, respectively (see Fig. 1).
Let .+ be the arrangement consisting of the seven planes ABC, OBC, OAC,
OAB. AB'C'. A'BC’. and A'B'C. Define points P, Q, R by

P=ABCNOBCNAB'C' (=BCNB'C),
Q0 =ABCNOACNA'BC' (=ACNA'C),
R—ABCNOABNA'B'C(=ABNA'B").

We have P.(Q.R€E ABCMA'B'C’; hence there is a plane IT containing
0.P. Q. R. Let . # be the arrangement .« \U {[T}. Since planes I1. ABC, OBC,
and 4B'C’ arc all the members of .# which contain P, and since they meet
at P in general position (i.e., any three of them meet only at P). we still have
a legitimate arrangement if we distort IT slightly, in a neighborhood of P, by
pushing it away from P in a direction normal to itself, for example by
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FIGURE 1.

replacing a small circular neighborhood of P in /1 by a hemispherical cap of
the same radius centered at P. Let IT' be the resulting pseudoplane, and let #
be the arrangement & U {IT'}.

Now consider points 4’, B’, C'. Suppose there were a pseudoplane IT”
containing them, with % U {IT"} still an arrangement. One property of an
arrangement in P*, which follows immediately from the definition, is that if a
pseudoplane contains two points of the intersection of two other
pseudoplanes then it contains their entire intersection; we therefore have

hence P € IT";
hence Q € IT";
hence R € IT".

B',C' € OBCNAB'C'NIT",
A", C' € OACNA'BC'NIT",
A',B' € OABNA'B'CNIT",

But then P,Q,R€ ABCNI1"; so since @, R € I'" we must have PE r,
contradiction.

As a corollary, it follows that the arrangement # is non-stretchable: Ife
were isomorphic to an arrangement % = {/I,,...,II;} of planes, this
isomorphism could be extended, by a simple topological argument, to a
homeomorphism f: P* - P? which would map each member of # to one m..
the i1,. But then if [T were the plane through f(4’), f(B'). f(C"), S7'un
would be a pseudoplane through 4’, B’, C’ extending #, which is impossible
as we have seen. Hence # is a non-stretchable arrangement.

On the other hand, if there were a non-stretchable arrangement €' of only
seven pseudoplanes, the corresponding oriented matroid [2, Sect. iv] would
be nonrealizable (= “noncoordinatizable”), hence so would its dual; but the
latter corresponds {2, p.227] to a (stretchable) arrangement of seven
pseudolines in P2, which gives a contradiction. Hence no non-stretchable
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arrangement in P? can consist of fewer that eight pseudoplanes. In particular,
# is also extremal as an example of an arrangement for which the Levi
enlargement lemma fails, since it certainly holds for stretchable
arrangements.

Other non-stretchable arrangements of eight pseudoplanes in P’ are
known: for example one can realize the orientable Vamos matroid 1

p. 110] by an arrangement of pseudoplanes, using the machinery of [2].

We would like to express our appreciation to Jim Lawrence for several *

helpful discussions that led to the writing of this paper.
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It is shown that if s is a prime or a prime power with s =3 (mod 4), then there is
an (s(s + 1)/2) X (s(s + 1)/2) array of s* symbols whose rows and columns
together form a balanced incomplete block design.

. .

In this note, we construct a family of square designs, each having the
property that the rows and columns together form a balanced incomplete
block design (BIBD). This consideration arises from the theory of optimum
statistical designs. Kiefer [2] generalized the notion of BIBD to balanced
block designs (BBD), allowing the block size k to be bigger than the number
of symbols v. An arrangement of v symbols into b blocks of size k is called a
BBD if

(i) each symbol appears in each block [k/v] or [k/v]+ 1 times,
where [x] is the largest integer < x;

(i) each symbol appears bk/v times;
(iii) X%, n;n; is a constant, for all i #j, 1 <i,j < v, where ny, is the
number of appearances of symbol i in block L

Note that when k < v, a BBD is the same as a BIBD. Kiefer (2] also
defined a generalized Youden design (GYD) to be a b, X b, array of v
symbols which is a BBD when each of {columns} and {rows} is considered
as blocks. This generalizes the notions of Youden squares and Latin squares.
This kind of design was proved to have strong optimality properties as a
statistical design for the elimination of two-way heterogeneity. Cheng [1]
pointed out that when b, = b, =b, the same optimality property preserves as
long as the b rows and b columns together form a BBD. Such a design was
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