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0. Introduction.

One historical trend in geometry has been to proceed from the study of objects of lower
dimension and codimension to those of higher. Thus, in algebraic geometry, from roots of
polynomials to curves to surfaces to higher-dimensional varieties, and from hypersurfaces
to varieties of intermediate dimension; or in combinatorial geometry from configurations
of points to arrangements of lines in the plane to arrangements of hyperplanes in R? and,

only recently, to arrangements of intermediate-dimensional flats.

The starting point for the present paper is the following question, which—in the same
spirit—asks whether points can be replaced by flats (translates of linear subspaces of

arbitrary dimension) as the basic objects in a convexity structure on R9:

Is there a simple convezity structure for lines in R3, or, more generally, for k-flats in
RY, that eztends the standard one for points in R? in a natural way, and that is invariant
under the action of the affine group?

Since the parametrizing space for k-flats in R? is the “affine Grassmannian”, QBI,M, whose
points represent k-flats and whose topology is inherited from that of R? in the natural way
(a neighborhood of the k-flat spanned by points zg,.. .,z in general position consisting of
all k-flats spanned by points yo, ...,y with y; in a neighborhood of z; for each 1), what we
are asking is whether there exists a convexity structure on Qi;c‘d that extends the convexity
structure on R? (= Qﬁ;’ 4) given by the usual convex hull operator conv S, and that satisfies
the same basic properties that conv does on R®.

Surprisingly, the answer turns out to be “yes”; the purpose of this paper is to describe
this convexity structure and to develop its most important properties.

This is not mere “generalization for its own sake”: there are many questions involving
configurations that have been answered in the case of points, or in the case of hyperplanes,
but that become difficult or intractable when the points are replaced by intermediate-

dimensional flats, such as lines in R®. Among those that come to mind are problems in

2



geometric transversal theory such as finding a generalization of the higher-dimensional
Hadwiger theorem on hyperplane transversals [7] to transversals of intermediate dimen-
sion, or of recent topological results on the space of common tangent hyperplanes to a
separated family of convex sets [4] to lower-dimensional tangents, or of the recent proof
of the Hadwiger-Debrunner conjecture [2] and its hyperplane generalization [1] to the
intermediate-dimensional case. Qur aim, in generalizing the basic concepts of convexity
so as to encompass these higher-dimensional flats, is to make it possible for the tools of
convexity theory to be applied to questions such as these.

Why QSIk‘d? Convexity is an affine concept, not a projective one: To talk about the
convex hull of a pair of points as being the linear segment between the points, one must
have a distinguished “hyperplane at infinity”. For this reason @;,d, rather than the (full)
Grassmann manifold B 4, is the natural space to which to extend the standard convexity
structure on RY.

What properties do we want in a convex hull operator “conv” on subsets of 6;’4? Ob-
viously conv should be monotone (increasing) and idempotent, i.e.,

(Ao) F C conv F for F C @lk’d

(A1) ;i C F2 = convF; C conv F,

(A2) conv(conv F) = conv F

In addition, the following “anti-exchange” property is usually required of a convex hull
operator, which says essentially that conv induces a (partial) ordering on the complement
of a convex set:

(A3) Hz,y € (’5;“1 and F C QSI,:,d such that z,y ¢ convF, y € conv(F U {z}), and
z € conv(F U {y}), then y = z.

Since the usual operator conv, on subsets of R, is defined with reference to line segments:

The convez hull of a set F is the smallest set G containing F with the property that the
line segment joining any two points of G lies in G

it commutes with affine transformations; i.e.,
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(A}) If o : R* - R? is affine then conv(aF) = o(conv F)
When we extend conv to sets of k-flats in R%, however, it no longer makes sense to talk

about conv(oF) since o F may include flats of various dimensions. On the other hand, the

affine group

A(d,R) = {[g ‘1’] | L €GL(4,R), a € R“}

induces an action on @Ikd since the image of a k-flat under any nonsingular affine trans-
formation is again a k-flat. We shall therefore restrict property (A}) to nonsingular affine
transformations o, and require, for the sake of compatibility with the underlying linear
structure,

(Ag) Hog: @Ik‘d — @lk’d is induced by o € A(d,R), then conv(oxF) = oi(conv F) for
FC Oy

The standard operator conv on subsets of R?, which satisfies these conditions, can be
characterized in various ways, not all of which are available for extension to 6;‘4 for
k > 0. For example, to mimic the definition above, we would need nonsingular-affine-
invariant geodesics (to replace the line segments in the standard definition). Now while
rigid-motion-invariant geodesics do exist on Q§Ik’d (see, for example, [6]), it is easy to see
that these are not preserved under nonsingular affine transformations, nor is there a unique
geodesic joining every pair of points.

Instead, we will define a convex hull operator on subsets of 6;", by means of a duality
operator * that assigns to each set F of k-flats the set of all convex point sets meeting all
the members of F, and that, likewise, assigns to each set S of convex point sets the set
of all k-flats meeting all the members of S (the so-called “common transversals” of S).
The convex hull conv F of a set F of k-flats will then be defined to be the double dual
F** of . With this definition, which agrees trivially with the usual definition in the case
where k£ = 0, it turns out that conv satisfies all the conditions (A¢) through (A4), and
in fact—as we will see—extends many of the other properties of the standard convexity

operator on R? to e'k,d-



The convex hull operator obtained in this way also turns out to have a quite different-
looking geometric description, which captures the idea that the convex hull of a set should
consist of all the objects that the set “surrounds” in a suitable sense.

Let us say that a point z € R? is surrounded by a set S of points if there is some flat
G of dimension k (0 < k < d) containing z within which the following holds: If H C G is
any flat of dimension k — 1 containing z, then H lies strictly between two parallel (k — 1)-
flats, H, and H,, also contained in G, each of which contains members of S. (For k = 0,
we interpret this to mean that z itself belongs to S.) Thus in the plane, for example, S
surrounds z if either

(i) no line H containing z can be translated continuously to infinity without passing
through some point of S, or

(ii) there is a line G containing z within which z cannot escape to infinity without
passing through some point of S, or

(iii) z itself belongs to S.

One sees easily that a point z lies in the convex hull of a set S if and only if S surrounds
z in this sense.

This concept of a point being “surrounded” by a set of points generalizes in a straight-
forward way to the idea of a k-flat being “surrounded” by a set of k-flats, and turns out
to be equivalent to the “double-dual” definition of the convex hull operator on le’d. This
equivalence is proved in Theorem 1.1, where we also characterize the convex hull operator
in terms of k-semispaces (maximal convex point sets disjoint from some k-flat) and in
terms of the values of linear functionals on k-flats (appropriately defined). In particular,
given a k-flat F' and a set F of k-flats, we define the “face FF' of F on the side of F'”
and show that F' € conv F if and only if F' € conv FF . Theorem 1.1 leads immediately
to the definition of a convez set in GIk’d as a set F for which conv F = F.

The double-dual characterization of the convex hull operator is interesting also from the

point of view of its connection to geometric transversal theory. Recall (8] that what we are
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calling the k-dual of a family of convex point sets is also known as its set of k-transversals.
A good deal is known about these transversals for £ = 0 and d — 1, but relatively little
for intermediate values of k; we have in mind here combinatorial results, results on the
geometric complexity of the space of transversals, and results of a topological nature on
this same space [4]. The convexity structure defined in the present paper provides an
answer to the question “What conditions does a family of k-flats have to satisfy in order to
be the set of all common transversals to some family of convex point sets”, and hopefully
will make it possible to help solve some of the other open problems in this area.

In §2 we present ten examples of convex sets, ranging from rulings on a hyperboloid to
affine Schubert varieties in QSIk‘d, each exhibiting some features of interest. (Example 2.1,
for instance, shows explicitly the connection between convex sets of k-flats and geometric
transversal theory.)

Perhaps the most surprising of these is Example 2.8, a finite set of mutually non-parallel
lines in R®, which turns out always to be convex(!). How can a finite, disconnected set
turn out to be convex? The answer lies in the fact that the lines in question are mutually
non-parallel; for points in R?, this phenomenon cannot arise, since any two points are
automatically parallel, in the sense that there is a translation of R% taking one into the
other!

Another reason why this anomaly is inevitable is given by

PROPOSITION 0.1. There is no nonsingular-affine-invariant convexity structure on k-flats
in R? that satisfies the anti-exchange axiom (As) and in which every convex set is con-

nected.

PROOF: It is enough to prove this for k = 1 and d = 2. Consider two intersecting lines
l1,12 in the plane. If the convex hull of the set {l1,12} is connected, it must include either
a third line through I; N, or else a third line cutting [; and I, at distinct points. In the

former case, it would follow from the non-singular-affine-invariance that given any three

6



concurrent lines the convex hull of of any two of them would contain the third, thereby
violating the anti-exchange axiom; in the latter case, the same would follow for any three
lines in general position. (Notice that just as any simple 3-line arrangement in the plane
can be mapped to any other by a nonsingular affine transformation, the same holds for

any pair of non-simple 3-line arrangements.) O

Although Example 2.8 shows that a convex set of k-flats with & > 0 may not be con-

nected, if the k-flats are parallel their convex hull is always connected, and is in fact exactly

the set we would expect it to be—see Example 2.4.

§3 continues the development of the basic properties of general convex sets in le’d: their
closure under intersection, nonsingular affine transformations, restriction to subspaces, and
restriction to direction, and develops the relations between convex sets in Qilk,d and @;’d for
l # k. We also extend to convex sets of k-flats the property of convex sets of points that
the complement of such a set is connected if and only if the set contains no hyperplane
(Theorem 3.2).

In §4 we restrict our attention to compact convex subsets of Qi’k‘d, and prove that any
such set has the Krein-Milman property of being the convex hull of its set of extreme
points (Theorem 4.1). Along the way we define the concept of a supporting hyperplane to
a compact convex set F of k-flats, which plays a role in the proof.

While the portion of Theorem 1.1 that characterizes sets of k-transversals in terms of the
intrinsic “surrounding” criterion can be viewed as an existence theorem for solutions to the
“inverse problem of geometric transversal theory” ( When is a set of k-flats the complete set
of k-transversals to some family of convez point sets?), §5 contains what can be thought
of as a “uniqueness” result about the same inverse problem: Can we find a “canonical”
family of convex point sets whose dual is a given set of k-flats? Here, “canonical” is taken

to mean both “maximal” and “irredundant”: mazimal in the sense that no convex point
set in the family can be shrunk without costing us transversals, and irredundant in the

sense that no convex point set can be discarded without our gaining transversals. It is
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easy to see (Proposition 5.1) that for F the dual of a finite set of compact convex point
sets, we can find such a minimal, irredundant presentation of F, and in particular, in
the special case where F is a finite set of hyperplanes in general position, such a finite,

minimal, irredundant presentation can be explicitly constructed (Theorem 5.1).

Sets of k-flats closed under parallels are considered in §6, where we describe a simple
geometric condition that is necessary and sufficient (Proposition 6.1) for such a set to be
convex. This, in turn, yields a “non-decomposition theorem” (Corollary 6.1) about the
impossibility of partitioning 6;‘4 into fewer than d — k + 1 parallel-closed convex sets. In
Proposition 6.3 we extend this to arbitrary convex sets in Q)’m, leaving open the question
of its extendibility to arbitrary k and d.

Finally, in §7, we discuss several problems that still remain to be resolved.

One important property of convex sets in R? that does not extend to convex sets in @;’d
for k£ > 0 is Helly’s theorem. For 6;’2, for example, the existence of a Helly number would
imply, when restricted to “principal” convex sets of lines (the duals of single convex point
sets) the existence of a number h such that if every A members of a family of compact
convex point sets have a common transversal line then there is a line meeting the entire
family. But this is known to be false, in general [10, 16], and even Hadwiger’s extension
of Helly’s theorem to lines in the plane, which requires the additional hypothesis that the
lines meet the convex sets in a consistent order, is false beyond dimension 2 (8].

The reason for the failure of Helly’s theorem on QS;’d for k > 0, and—for that matter—of
Carathéodory’s theorem and Radon’s theorem, can be traced to the fact that our convex
hull operator is not “domain finite” in the sense of Hammer [12], in general, i.e., conv F
is not simply the union of the convex hulls of the finite subsets of F. If a point z € R? is
surrounded by points of a set S in a flat G of dimension [, then z is already surrounded
by points of S in a “simplex set of directions” around z; i.e., a point of S that prevents an
(I —1)-flat through z from escaping to infinity will prevent nearby flats through z as well.

But the corresponding fact does not hold for k-flats with k > 0: we may need infinitely
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many to surround a single one. Of course if we retain the hypothesis—automatic for
points—that our k-flats are parallel, then all of these combinatorial theorems are trivially
true, since they hold for the projections of our k-flats to R4~* and there we have only to
deal with points.

Let us mention, finally, that there have been several previous attempts to define a
convexity structure on higher-dimensional Grassmann manifolds, the most notable being
that of Busemann, Ewald, and Shephard. In a substantial series of papers written in the
1960’s [3], they explored several notions of convexity for real-valued functions defined on
Grassmann cones of a-vectors in a real projective space. But the goals they were after
were different from ours, and their results—while quite extensive—do not include the kind
of affinely invariant convexity structure developed here.

We would like to express our gratitude to Anders Bjorner, whose invitation to the
Mittag-Lefler Institute made it possible for us to work out our early ideas uninterruptedly
and in pleasant surroundings, to Janos Pach and Giinter Ziegler, for several stimulating

conversations, and to Herman Gluck, for explaining the structure of geodesics in &, 4.



1. Basic definitions and properties.

We work in R? for some d > 0, and fix a value of k with 0 < k < d. Let 6;,4
denote the affine Grassmannian consisting of all k-flats in R?, with its natural topology: a
neighborhood of a k-flat F' is obtained by choosing k + 1 points of F in general position
and taking all the k-flats passing through neighborhoods of these points. We will define
several conditions relating a k-flat F' and a set F of k-flats, and prove them equivalent
in Theorem 1.1; this equivalence will then be used to define our convex hull operator on
5 u

We begin by defining a duality operator, **, or simply * if k is understood, between

subsets of G'k.d and families of convex point sets in R?, as follows:

DEFINITION 1.1. Let F be a set of k-flats and S a family of convex point sets in R%. Then
(i) F* = {S|Sis convex and SN F # QVF € F}, and
(i) S*=8*={Fe®,,|FNS £0VS e S}

This duality between sets of k-flats and sets of points satisfies the following conditions:

ProPOSITION 1.1. (i) R CF, = Ff D F3; 851 C S = 87D S;
(i) FCF*; ScS*
(iii) F*** = F*; §*** = §*
(iv) F = 8" for some S <= F** =F; S = F* for some F <> S** = §.

PROOF: (i) is immediate from the definitions; (ii) follows from (i); (iii) follows by applying
(ii) to F* (resp. S*) and (i) to the inclusion in (ii); and the direct implications in (iv) follow
by taking the double dual of both sides and applying (iii). O

The concept of “surrounding”, which is central, is perhaps most easily visualized in the
context of & ;, lines in R®. For a line L' to be “surrounded” by a family £ of lines means
that either (i) every plane through L’ strictly separates two members of £ (this is the

“generic” way in which £ can surround L'), or (ii) L’ itself strictly separates two members
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of L parallel to it in a plane containing all three, or (ili) L' actually belongs to L.

In general, we have:

DEFINITION 1.2. Given F C ®, , and a particular k-flat F' € &, ; contained in some [-flat
G, we say that F' 1s surrounded by F in G if every (I — 1)-flat containing F' and lying in
G strictly separates two members of F also lying in G. (In the degenerate case in which

G = F' we interpret this to mean that F' itself is a member of F.)

Next, we generalize the notion of a “semispace”, as defined in {11] or [14], where this
term is used to mean a convex point set maximal among those not containing a given
point.

DEFINITION 1.3. A convex point set in R? that is maximal among those not meeting a
given k-flat F is called a k-semispace at F. The set of all k-flats meeting a k-semispace at
F is called a co-flat of F.

ProPoOSITION 1.3. If F € Qilk‘d and § is any convex point set not meeting F, there exists
a maximal convex set S containing S and not meeting F. Moreover, any such § must have

the following form: Choose a (partial) flag
F=F CFi1C---CFy=R*

of flats with dim F; = i and, for each i, k < i < d, choose one of the two open half-spaces
in F;y, determined by Fj; call it F'.+. Then

d—1
S=JF
i=k

is a k-semispace maximally disjoint from F'.

PROOF: The first part is an easy consequence of Zorn’s lemma. The second follows by

projecting along F and applying the characterization of (0-)semispaces in [14]. O
As in Definition 1.1, we can dualize sets of k-flats with respect to k-semispaces, rather

than arbitrary convex point sets:
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DEFINITION 1.4. Let F C @;‘d. The restricted dual F! of F is the set of all k-semispaces

meeting all the members of F.

As in Proposition 1.1, we have F/; ¢ F, = F! < F}. It is also clear from the
definition that F1 C F*.

We can relate these ideas to £¢, the space of linear functionals of R4, as follows.

DEFINITION 1.5. If g € £? and F € ®, ,, we define g(F) by

g(z) for z € F, if g is constant in F

g(F)={

—o00 otherwise.

Given a k-flat F' and a set F of k-flats, the set
Lr = {g € L*|gis constant on F' and g(F') > g(F) for all F € F}
is called the set of F'-mazimizing functionals with respect to F. The set
FF' ={F e F|g(F)=g(F')forall g € Lp 5}
is called the face of F on the side of F'. (Intuitively, FF' consists of the flats of F that
“keep up with” F' in every direction in which F' “leads” all of F.)

We then have

THEOREM 1.1. If F' is a k-flat, and F a set of k-flats, in R?, the following are equivalent:
(i) F' € F**
(i) F' € Ft*
(iii) there exists an I-flat G, for some k < | < d, such that F' is surrounded by F in G
(iv) there exists an l-flat G, for some k < | < d, such that F' is surrounded by FF' in G.

In (iii) and (iv), moreover, G can be taken to be the same l-flat.

PROOF: We prove (i) == (i) = (ili) = (i) and (ili) <= (iv).

(i) = (ii) by Proposition 1.1 (i), since Ft C F*.
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(i) == (ili): Suppose F' is not surrounded by F in any [-flat G. We proceed, as
follows, to construct a k-semispace S meeting all the k-flats in F but missing F'. Since
F' is not surrounded by F in R%, we can find a (d — 1)-flat G4—; containing F' that has
no member of F entirely on one side; i.e., the other side, call it GI_I, together with G4_;
itself, meets (or contains fully) every member of F. Since F' is not surrounded by F in
G4-1, we can find a (d — 2)-flat G4—2 C G4-; containing F' that has no member of F
entirely on one side, i.e., the other side, call it GI_z, together with G4_; itself, meets (or

contains fully) every member of F. Continuing in this way, we construct a flag
R =Gy D Gy D2+ DGr=F'

such that the associated k-semispace
d-1
s=JaG!
i=k

meets every member of . But since, by construction, S does not meet F' itself, we have
a contradiction.

(i) = (i): Suppose first that G = R%. If S is a convex point set meeting all the
members of 7, we must show that § meets F' as well. If not, then extending S to a

maximal k-semispace S disjoint from F', as in Proposition 1.2, we get a flag
F'=GkC°'-CGd=Rd,

as in that proposition, with § = |J G} meeting all the members of F. Then, in particular,
F' € G4-1, yet no member of F lies entirely in G4_,, which contradicts the assumption
that F' is surrounded by F in G.

If G is an [-flat with | < d, replace R¢ by G, S by SN G, and F by the subset consisting
of all k-flats of F lying in G. The conclusion then follows as above.

(i) == (iv): Since F' is surrounded by F in G, for any functional g € Lr r we

must have g(z) = g(F') for all z € G: otherwise G would be transversal to the hyperplane
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g(z) =0, and then F' would not “lead F in the direction g”, because of the surrounding.
Thus G is contained in the intersection of the hyperplanes through F' corresponding to
the functionals in Lp/ r, so that any flat of F lying in G also lies in FF'. Hence, since F'
is surrounded by F in G, it is also surrounded by FF' in G.

(iv) = (iii): Since FF' C F, this is trivial. 0

!
We can now define our convex hull operator on &, ;.

DEFINITION 1.6. If F is a set of k-flats in R?, the convez hull conv F of F is the set of all

k-flats F' satisfying the equivalent conditions of Theorem 1.1.

COROLLARY 1.1. If F C &, ,, the following are equivalent:
(i) conv F = F
(ii) F = 8* for some family S of convex point sets

(iii) F is an intersection of co-flats of dimension k.

PRrROOF: This follows immediately from Propositions 1.1 and 1.2 and Theorem 1.1. O

DEFINITION 1.7. A set F C Q)lk.d is convez if it satisfies the equivalent conditions of

Corollary 1.1.

This concept of convexity clearly extends the usual one for point sets, since criterion
(i) of Theorem 1.1, applied to a point z and a point set S, says simply that every convex
point set containing § also contains z, i.e., that z lies in the (usual) convex hull of S. It
is easy to see, as well, that the monotonicity, idempotence, and anti-exchange properties
that hold for the convex hull operator on point sets continue to hold in this more general

setting:

PRroPOSITION 1.3. (i) If F,,F, C Qﬁl,c‘d, then 71 C F2 = convF, C conv F,

(i) if F C 6;'4, then F C conv F and conv(conv F) = conv F

(i) if F C 6;'4 and Fy, F; are k-flats such that F,F; ¢ convF, F; € conv(F U {F1}),
and Fy € conv(F U {F,}), then F, = F}.
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PROOF: (i) and (ii) follow immediately from Proposition 1.1, (ii) and (iii) respectively.
(iii) is seen as follows:

Suppose first that F; is generically surrounded by F U {F;}. Since F; is not surrounded
by F alone, some hyperplane H O F, “escapes” F in some direction but is “trapped” by
FU{F}, hence by Fi, in that direction. It follows that the translate of H passing through
F) escapes not only F, but F; as well, giving a contradiction.

Now suppose F3 is surrounded by F U {F;} within some flat G; in particular, F; C G.
Letting F' be the set of all flats of F lying in G, and observing that F3 is still not surrounded
by F' in G, hence that Fi C G as well, we see that we can apply the previous argument
to F', F1, and F, to obtain the desired conclusion. d

If a convex set F of k-flats is given as the dual S* of a family S of convex point sets, we
will see in §2 (Example 2.4) that there need not be a finite family S of this kind. If there

is, we call F “finitely presented”:

DEFINITION 1.8. If F = §* with S finite, F is said to be a finitely presented convex set.

In particular, if 7 = §* with |S| = 1, F is said to be a principal convex set.
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2. Examples.

We present next a number of examples that we have found useful in guiding our intuition
when thinking about convex sets of points proved inadequate. Many of the examples
involve lines in R?, since that setting is already rich enough to illustrate a number of the
phenomena arising in our generalization. We omit the verification of the properties of the

example, which is usually straightforward.

EXAMPLE 2.1. Let § = {S}, with S a convex body in R?, and let F = S*'. Then F,
consisting of all the lines meeting S, is a principal convex set. If S = {S),...,S,}, each
S; convex, and F = 8™t = (|, {S:}*', so that F is the set of convex (line) transversals of
the S;, then F is finitely presented. Similarly, $** = ();_,{S:}*? is the set of hyperplane

transversals of the S;, and is a finitely presented convex family of planes in R3.

EXAMPLE 2.2. Let Q be the one-sheeted hyperboloid obtained by rotating the line F :
z = 1,z = y in R® about the z-axis. @ has equation z? + y? = 22 + 1, and contains, in
addition to the family F of disjoint rulings consisting of the rotates of F, also the family
G consisting of the line z = 1,z = —y and all its rotates; notice that each line in F meets
each line in G except the unique line parallel to it.

Then, by the surrounding criterion, it is easily seen that a line F' € conv F if and only
if either F’ € F or F' is disjoint from Q. Thus conv F consists of F together with all the
lines strictly “inside” the hyperboloid Q, i.e., those cutting the open disk z2 +yt<1,z=0

and having slope > 1.

EXAMPLE 2.3. If we remove one or more rulings from the family F in Example 2.2, the
new family Fy obtained is convex: We can find a plane through any line previously in the
convex hull (but not in F) that can now “escape” through a missing line. (Notice that if
we remove three rulings from F, the resulting family F;, which is again convex, now has
a particularly simple (finite) presentation: it is the dual of the three rulings in G parallel

to those removed!)
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In particular, if we let 7, (0 < t < 27) be the family of rulings cutting the circle
z =cosf,y =sinf,z = 0 at the points parametrized by all values of § with 0 < 6 < t, we
see that F, is an increasing chain of convex sets of k-flats whose union is nevertheless not

convex; this is an important difference from the situation for points.

EXAMPLE 2.4. In R4, consider any family F of mutually parallel k-flats, and let o :
R? — R?-F be projection in the corresponding direction. Then it follows immediately
from the “convex dual” criterion that convF = {F' € &, ,|0(F') € conv o(F)}, so
that in particular F is a convex set of k-flats if and only if o(F) is a convex point set.
Hence, for example, the set of all lines in R® parallel to the z-axis and cutting the disk
z2 + y2 < 1,z = 0 is convex, as is the set consisting of two parallel lines and all the
parallels lying between them. It is easy to see that this last example, for instance, is not
finitely presented: Any finite set of convex point sets meeting all the lines in the family

would have to meet additional lines that “spread out” far away.

EXAMPLE 2.5. Let F be a planar pencil of lines, considered as a subset of 6'1’3. Then F
is convex, since the lines of F surround no line not in F. (It is also easy to see that F is
finitely presented, in fact by two convex point sets.) The same holds, more generally, for

any so-called “spread” of lines [9], or continuous planar family, one in each direction.

EXAMPLE 2.6. If C is a convex body in a plane II, however, and F is the set of all lines
in II that support C, again considered as a subset of 6;‘3, then conv F includes not only
the members of F but also all the lines passing through interior points of C, whether these
lines lie in II or not. (If such a line lies in II it is surrounded by F in I, and if it is

transversal to II it is surrounded by F in the full space R3.)

EXAMPLE 2.7. As a consequence, if F is the set of all lines lying in a plane II, considered
as a subset of @, ;, then conv F consists of all the lines that cut (or are contained in) II.
More generally, if F consists of all the lines lying in a “slab” between two parallel planes,

conv F consists of F plus all the lines transversal to that slab. This extends immediately to
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all the k-flats in R? lying on or between two parallel hyperplanes, or in a single hyperplane,
plus all the k-flats crossing those hyperplanes. Such a convex set will, by extension, also be
referred to as a closed slab. An open slab, similarly, consists of all the k-flats lying strictly

between two parallel hyperplanes, plus all the k-flats crossing them.

EXAMPLE 2.8. If a family F of mutually non-parallel lines in R® surround a line F' ¢ F,
there must be at least a semi-circle of directions around F' in each of which a plane through
F' can be translated to contain a line of F; if no member of F is parallel to F', there is
in fact an entire circle of such directions. In particular, it follows that no finite (or even
countable) set F of mutually non-parallel lines in R* can surround another line, hence that
every such set F is convex. (Notice that this phenomenon does not occur in the usual

convexity structure for points, since any two points are parallel!)

EXAMPLE 2.9. Let F be a (necessarily discontinuous) section of the tangent bundle to a
2-sphere in R3, i.e., choose a line tangent to S? at each point. Then conv F consists of the
original family F together with all the lines meeting the interior of the sphere. (Here it

does not matter whether F includes any parallels.)

EXAMPLE 2.10. Let ®: Fy C Fy C --- C Fyi, where the inclusions are strict, be a (partial)
flag of flats in RY. The affine Schubert variety Q(Fy,...,F:) determined by & (see [13,
15] for the corresponding definition in the projective case), which consists of all the k-flats
F' e QSIk’d with dim(F' N F;) > i for all { = 0,...,k, and the algebraic set Q°(Fy,..., F})
determined by the strict Schubert conditions coming from ®, which consists of all the
k-flats F' € ®, , with dim(F' N F;) =i for all i =0, ...k, are both convex.

Notice that these are affine, not projective, Schubert conditions: If F' and F; are parallel
for some %, then F' cannot belong to Q(Fy, ..., Fi)or to Q°(Fy,..., Fi). In R3, for example,
if Fy is a point and F; a plane, Q(Fy, F) and Q°(Fy, Fy) each consist of the planar pencil
in Fy through Fy; if Fy is a line and F; a plane, Q(Fy, F1) consists of all the lines in F}

meeting Fy and Q°(Fy, F}) of the same lines with the exception of F, itself.
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3. Further properties.

We collect here some additional properties of convex sets of k-flats, dealing principally
with topological questions, with the relationships among convex sets of various dimensional
flats, and with the preservation of convexity by various operations.

We begin with a transitivity property that holds for the “surrounding” relation.

PROPOSITION 3.1. Suppose F' C G C H with F',G, H flats of dimensions k,l,m respec-
tively, and suppose F C Q)Ik'd. Let og : R — R?~! be projection along G. If (i) F' is
surrounded by F in G, and (ii) ¢G(G) is surrounded by ag(F||g) in og(H), where Fl|g
consists of all the flats of F parallel to G, then F' is surrounded by F in H.

PROOF: Let Hy C H be any (m — 1)-flat containing F'. If Hy D G then apply og; the
result then follows from (ii). If Hy 7 G then Hyg N G must have dimension [ — 1, and the
result follows from (i). a

Just as for point sets, convex subsets of Q}’k’d are closed under intersection. (Example
2.3 shows, however, that—unlike the situation for point sets—the union of an increasing

chain of convex sets of k-flats may not be convex.)
ProrosIiTION 3.2. If F; C @Ik‘d is convex for each + € I then nie] F; is convex.

PROOF: Since F; = F*, we have (N F; = (|JF})*; the result then follows from Theo-

13

rem 1.1. a

Moreover, convex sets are preserved under nonsingular affine transformation, under re-

striction to subspaces, and under restriction to direction:

PROPOSITION 3.3. Let F C @Ikd be convex.
(1) If o : QS',:'d — Q}Ik‘d is induced by o € A(d,R), then oi(F) is convex.
(ii) If G is an I-flat in R?, the restriction F|g of F to G, consisting of all the members

of F that lie in G, is a convex subset of 6;,,.

19



(iii) If G is an {-flat in R? with | < k, then the set F||g of all flats in F parallel to G is

convex.

PRrROOF: (i) follows, for example, from Corollary 1.1 ((i) <= (ii)) and the fact that the
affine image of a convex point set is convex.
(ii) is immediate, by the surrounding criterion. a

(iii) follows from the fact that any k-flat surounded by F|/¢ must also be parallel to G.
Notice that in Proposition 3.3 (ii) it is not true, in general, that F|g is a convex subset
of @Ik_d; see Example 2.7 above. The same example also shows that (iii) does not hold, in

general, for [ > k.

DEFINITION 3.1. If §;,5; are sets of convex point sets, we say that S; and S; are k-
equivalent, S; ~p S,, if S;* = S,*. The corresponding equivalence class of a set S is

denoted by [S]k.

Thus a convex set F C @;’ 4 1s principal (resp. finitely presented) if 7* ~; {S} for some

convex point set S (resp. F* ~i {S1,...,S5} for some Si,...,S,).
DEFINITION 3.2. If 51, S, are sets of convex point sets, we say that S; <i S if S;* C Sp*.

Thus this weak partial order becomes a strong partial order, which we denote as well by
<k, on k-equivalence classes of sets of convex sets, by letting [S1]x < [S2]i if S; < Ss.

It is easy to see that, in general, there is no implication between k-equivalence and I-
equivalence for sets of convex point sets; for example a convex point set may miss a point,

yet meet every line through that point! But for closed convex point sets we have

PROPOSITION 3.4. IfS; and S; are sets of closed point sets, then S; ~ S; => 81 ~1 S,

forl < k.

PROOF: If §; has some I-flat F (I < k) as a transversal, then any k-flat G containing F

is also a transversal to S;. But if S; did not have F as a transversal, then there would

be a k-flat (in fact even a hyperplane!) G through F that missed S, (since S; is closed),
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a

contradiction.
Thus for sets of closed sets, at least, the equivalence relation ~ gets finer as k goes up.

Related to this is the notion of the core of a convex set.

DEFINITION 3.3. If F is a convex set in Q‘)’k_d and I < k, the l-core Fi of F is the set of all

flats of dimension [ whose entire pencils of k-flats are contained in F.

We then have

THEOREM 3.1. (i) If F C @Ik.d is convex and | < k then F; C ®;.d is convex;
(i) (Traasitivity:) If F C @Ikd is convex and m < I < k then (Fi)m = Fp;

(iii) If S consists of closed convex point sets and | < k then (S**); = S™.

PROOF: (i) Suppose L is an l-flat surrounded by F; within some flat G O L; we must
show that L € F, i.e., that every k-flat F containing L lies in F.

If F lies in G, first, we claim that F is surrounded within G by members of F. Take any
codimension 1 subspace H of G containing F. Since L itself is surrounded by F; within
G, there are codimension 1 subspaces H' and H" of G parallel to and on both sides of H
that contain /-flats L', L" (resp.) in F;. But then, by the definition of F, they also contain
k-flats F', F" € F, which proves the assertion in this case.

On the other hand, if F' does not lie in G, we claim that F is generically surrounded
by members of F. Take any hyperplane H in R? containing F. Since H does not contain
G, Hy = HNG is a codimension 1 subspace of G. Hence, as above, it lies between
parallel subspaces Hy and Hy in G, each containing an I-flat L', L" (resp.) belonging to
Fi1. But then, by parallel extension, there are hyperplanes H' and H” on both sides of H
as well, containing L' and L" (resp.), so that (again, as above) the assertion follows by the
definition of F;.

(i) follows from the definitions, and (iii) is immediate from Proposition 3.4. a
Notice that (iii) = (i) if F is the dual of a set of closed convex point sets, but—as

we have shown—(i) holds in general. (It is easy to see that (iii) does not.)
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Finally, we have the following result, which extends a property of convex point sets; for

the definition of a “slab” see Example 2.7 above.

THEOREM 3.2. If an open convex set F C Q’)’k‘d, with k < d — 2, is not a slab, then the

complement of F is connected, and conversely.

PROOF: The converse is immediate, since a slab splits the set of k-flats parallel to it into
two disconnected sets. For the direct implication, suppose F;,F; ¢ F. Then there is a
hyperplane H; containing F; that “escapes to infinity”, i.e., such that one open halfspace,
say H, contains no flat of F. If H; || H; then letting H! be the hyperplane parallel to
H; and one unit away that is contained in Hf, we see that each of Fy, F5 can be moved
continuously to H{ N H; by a path of k-flats in H;t (resp. H;), so that F; and F, can be
connected to each other by a path that stays outside F.

Suppose, then, that H; || Hp. If there is any k-flat F C H; N H, with F ¢ F such
that some hyperplane H containing F' “escaping to infinity” is not parallel to H; and H,,
we can connect each of F1,F; to F as above. Hence we may assume that every k-flat
F C H N H, with F ¢ F has an escaping hyperplane H D F with H parallel to H; and
H; (and lying between them). Replacing one of H;, H> by H, and continuing (and passing
to the linit) if necessary, we arrive at the following situation: F; C H;, H{ n Hf =9, and
every k-flat F C H{ N H; belongs to F. But then F contains the open slab determined
by H; and H, and it follows that F must, in fact, be this slab, since no member of H i

belongs to F. O
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4. Compact convex subsets of &, ,.

The fact that convexity in 6;:.4 is not “domain finite” [12] for £k > 0, i.e., that the
convex hull of a set F of k-flats is not the union of the convex hulls of its finite subsets,
means that several standard facts valid for convex point sets do not hold for convex sets
of higher-dimensional flats. For example, the closure of a convex set need not be convex
(consider the set F in Example 2.3), and the convex hull of a compact set of k-flats need
not be compact (Example 2.6).

The dualizing operator on point sets, moreover, does not preserve closed sets in general.
IfS={(z,y) €R?*|zy >1and z > 0} and S = {S}, then $** contains the lines y = ¢ for
¢ > 0, but not the line y = 0.

It does, however, preserve compactness: If S is a set of compact convex point sets in
R¢, then S** is a compact convex subset of ley 4 since for any S € S the set of all k-flats
meeting S is compact.

In addition, the Krein-Milman property for convex sets of points, that a compact convex

set is the convex hull of its extreme points, holds for convex sets in @Ik’d as well.

DEFINITION 4.1. A k-flat F' is an eztreme flat of a convex set F C le,d if (i) F' € F and

(i) F' ¢ conv(F \ {F'}). The set of all extreme flats of F is denoted by ext F.

For convex sets of points, this definition is equivalent to the one more commonly seen,
that a point z is an extreme point of a convex set S if z is not contained properly in the
convex hull of any pair of points of S. For k-flats, however, the corresponding condition
would not be equivalent to the one in the definition, again because of the absence of
domain-finiteness. This can be seen by looking at a slight modification of Example 2.2.
In that example, replace the single ruling F by the line z = 2,z = y (keeping the rest
of F), and call the new family F'. It is then easily seen that the resulting convex set

conv F' contains the line £ = 0,y = 0, but that this line does not liec between two parallels

belonging to conv F'.

23



DEFINITION 4.2. For a compact convex set F of k-flats we define a supporting hyperplane

H to be one that contains at least one member of F and which is such that one of the

halfspaces determined by H meets all the members of F.

LEMMA 4.1. If F is a compact convex subset of Q};_d and H is a supporting hyperplane

to F, then ext Fly C ext F.

PROOF: Recall (Proposition 3.3 (ii)) that F|g is a convex set in the ambient space H.
Suppose F' € ext Fly. Then F' € Fly, and F' ¢ convy(F|y \ {F'}), where convy
means the relative convex hull in H. In particular, F' € F, and we must show that
F' ¢ conv(F \ {F'}).

To begin with, F cannot be generically surrounded by F \ {F"}, since F' € H and H
supports F. For the same reason, F' cannot be surrounded by F \ {F'} within any flat G
transversal to H. But if F' were surrounded by F \ {F'} within a flat G C H, then the
surrounding flats would lie in H as well, and we would have F' convy(F \ {F'}). Hence
F' ¢ conv(F \ {F'}). O

LEMMA 4.2. Every non-empty compact convex set F of k-flats contains at least one ex-

treme flat.

PROOF: This follows from Lemma 4.1 and Proposition 3.3 (ii) by induction on the dimen-
sion d of the ambient space. If d = k + 1, any k-flat F € F can be translated as far as
possible (in either direction) to an extreme k-flat. For d > k +1, choose a k-flat F € F and
a hyperplane H containing F, and translate H as far as possible to a supporting hyper-
plane H'. Proposition 3.3 (ii) (applied to the set F| H'), the induction hypothesis (applied
to H', which is of dimension d — 1), and Lemma 4.1 (applied to the resulting extreme flat)

then give the result. a
THEOREM 4.1. If F is a compact convex subset of é;d then F = conv(ext F).

PROOF: Since ext F C F and F is convex, it is immediate that F > conv(ext F). For the
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opposite inclusion, we must show that each F' € F is surrounded by extreme flats of F in
some flat G.

If F' is extreme, we are done. If not, then by definition F' € conv(F \ {F'}). Suppose
first that F' is generically surrounded by F \ {F'}, i.e., in R%. Then any hyperplane H
through F’' can be moved a positive distance in either direction so as to contain some
member of F\ {F'}. Choose either direction; then—by the compactness of F and the fact
that H is moving away from F'—we can move H to a farthest hyperplane H' in the same
direction that contains members of ' \ {F'}. H' will thus be a supporting hyperplane of
F, hence by Lemmas 4.1 and 4.2 and Proposition 3.3 (ii) will contain at least one extreme
flat of F. Since this holds for every hyperplane H through F’, we have shown in this case
that F’ is surrounded by ext F.

Now suppose F' is surrounded by F \ {F'} in some flat G of dimension < d, but not
in R%. Then, in particular, some hyperplane H through F' must support . Now G
must be contained in H, since otherwise G would extend on both sides of F, and the fact
that F' is surrounded by F \ {F'} in G would contradict the fact that H is a supporting
hyperplane. Let F|y be the set of all members of F lying in H; in particular, F' € F let-
By Proposition 3.2 (ii), F|g is a convex set of k-flats in the ambient space H. Notice that
F' is still surrounded by F|x \ {F'} in G. By induction on the dimension of the ambient
space, it therefore follows that F' € convy(ext F|g). But by Lemma 4.1 we therefore have

F' € conv(ext F), and the theorem is proved.
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5. Minimal and irredundant presentations.

DEFINITION 5.1. If F is a convex set of k-flats in R? and S a family of convex point sets,
we say that the presentation F = S* is irredundant if F G S; for every proper subset S,
of S. On the other hand, if S* becomes strictly smaller whenever any S € S is replaced
by a proper subset, we say that the presentation F = S* is minimal.

It is easy to see that not every convex set F C @lk‘d has a presentation that is both
minimal and irredundant: In R?, for example, let F consist of two parallel lines, I; and
l2, together with all the lines lying between them; then one sees easily that any set of
segments joining points of /; and l; and going to infinity in either direction gives a minimal
presentation of F, but that such a presentation can never be irredundant since we can
always remove a finite subset of it without enlarging the dual beyond F.

If 7 is finitely presented by compact convex point sets, however, we can prove

PROPOSITION 5.1. If F C 6;‘4 is the dual of a finite set S of compact convex point
sets, then S can be refined to a family S, of compact convex point sets giving a minimal,

irredundant presentation of F.

PROOF: The fact that each S € S can be reduced to a minimal set follows easily from
Zorn’s lemma if we observe that the intersection of any descending chain of compact
convex point sets each transversal to F is also transversal to F, by the compactness of the
intersection of each set with each member of F.

Notice that if we replace ea.cI; member of S by such a minimal compact convex set, and
call the resulting collection Sp, then we still have S; = F; this is clear since Sg C F on
general principles, yet each member of S, is transversal to all of F.

Finally, removing redundant members of Sy one at a time, we reach an irredundant set

S1 C So, each of whose members is still a minimal compact convex point set meeting all

the flats in F. [

In the special case where F is a finite subset of 6;_1'4 consisting of hyperplanes in
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general position (such a set is convex by the surrounding criterion), we have

THEOREM 5.1. If F is a finite subset of @;_l‘d consisting of hyperplanes in general po-

sition, then F has a finite, minimal, irredundant presentation by compact convex point

sets.

PROOF: By Proposition 5.1, it is enough to show that F is finitely presented by compact
convex point sets. We will actually describe such a presentation that is minimal.

Let F1,..., F, be the members of 7, and let us assume to begin with that each F; € F
passes through the origin O. In that case let I;, # = 1,...,n be the line through O orthog-
onal to F;, and let {z;,z+i} be the intersection of I; with the unit sphere S¢~! centered
at O. By straightforward techniques, we can find a centrally-symmetric triangulation of
S?-! having the points zi,...,z3, as its complete vertex set. For each facet A; of this
triangulation (j = 1,...,2N, with antipodal facets numbered Aj, Any ), choose a point
y; € int A; (taking care to choose the antipodal point ¥ +j for the facet antipodal to A;)
and let G; be the hyperplane through O orthogonal to the line y;yny;. The resulting
hyperplanes G1,...,Gn have the following properties: (i) G; ¢ F for j = 1,...,N; (ii)
every hyperplane G in general position with respect to F is equivalent to a unique G j in
the sense that the line [ through O orthogonal to G cuts S¢~! in a pair of points belonging
to the same antipodal pair of facets (A, Any;) as the intersection with S4~! of the line

through O orthogonal to G;.

For each j =1,...,2N, let H; be the hyperplane tangent to S¢-! at y; (so that H; and
Hp 4 are each parallel to G; and on opposite sides of it), and let T;, YN+ be the simplices
formed by intersecting these two hyperplanes with the hyperplanes F; whose normals I;
pass through the vertices of Aj; each £; (j = 1,...,2N) is the projection from O into
H; of the simplex on S9~! polar to A;. For each j = 1,...,2N, choose a point on every
(relatively open) facet of ¥;, and choose these points so that each lies sufficiently close to

a distinct vertez of X;. Then the convex hull S; of these points is itself a simplex inscribed
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in ¥;, and approximates X;. Let S = {S1,...,52n}. We claim that F = §* and that the
sets in S are minimal with this property.

It is clear from the construction that each §;, j = 1,...,2N, meets every member of
F: §; has for its vertices points chosen from the flats F; that provide the boundary of ¥;,
and meets the remaining flats F;, all of which cut ¥;, since §; approximates I;.

It is also clear that if we shrank any S; to a smaller set S7, S’ would miss some F; € F
that provides one of the bounding facets of ¥;.

To finish the proof (in the case where each F; € F passes through O) we must therefore
show that any hyperplane G ¢ F misses some S;.

Suppose first that G passes through O and is in general position with respect to F.
Then, as observed above, G is equivalent to one of the hyperplanes G;, j = 1,...,N.
Since the line ! through O orthogonal to G can be moved continuously to the line I;
without leaving the simplex pair Aj, Any;, it follows that G can be moved continuously
to G; without passing through the simplex-pair X;, En4;. Since S;, S+ ; are inscribed in
¥;, ¥ n+;j respectively and G; separates them, it follows that G misses both S; and Sn4;
and separates them as well.

If G passes through O but is not in general position with respect to F, the same result
follows from the observation that while G may now “touch” Y and Yy j, it still misses
S; and Sn+j, and in fact still separates them, since S;,SN+; are “strictly inscribed” in
Yj, XN+ ;j respectively: Since each vertex of S; is a point in the relative interior of & j, the
only way a hyperplane through O missing int £; can pass through that vertex is to contain
a full facet of X;, i.e., to belong to F.

Finally, if G does not pass through O, it is parallel to a hyperplane G’ that does, hence—
assuming that G’ lies between §; and Sy, ; and misses both—G will have to miss either
Sj or Sn4j. (If G is parallel to F € F then we need only observe that if any S; touches
F on one side then Sy ; touches it on the other, hence G misses either S; or Snyj.)

We have now proved the theorem in the special case where all the F; € F pass through
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O. If they do not, by rescaling we may assume that all the F; € F pass within some ¢ < 1
of O and, rescaling further, that the intersections of any subset also pass within € of O. We
now proceed as before, choosing our triangulation of S9! based on the directions of the
planes in F, but choosing each representative hyperplane G; (7 = 1,...,N) so as to pass
through the intersection v; of the hyperplanes whose normals pass through the vertices of
Aj. Any plane in general position is then parallel to a plane equivalent to one of the G,’s.
We again choose H; and Hy4; at unit distance from Gj, and £; and S; (7 = 1,...,2N)
as before. The argument is then the same as before, except that O is replaced by v;. O
REMARK 5.1. One sees easily that if F consists of n hyperplanes then the construction
in the proof of Theorem 5.1 yields a presentation of F by precisely 2(d — 1)(n — d) + 2¢

convex point sets.

In general, as we have seen (Example 2.7), a set F of k-flats lying in an [-flat G in R¢

may “surround” flats not contained in G. But if F is finite we have

COROLLARY 5.1. If F is a finite set of k-flats in (relatively) general position in a (k + 1)-
flat G, then F has a finite, minimal, irredundant presentation by compact convex sets,

and these can be chosen to lie in G as well.

PROOF: This follows immediately from Theorem 5.1, with d = k+1, as soon as we observe
that if a k-flat not contained in G met all of the convex point sets constructed in the proof
of that theorem then its intersection H with G, which has dimension < k — 1, would also
meet them, and the same would then hold for the entire infinite pencil of k-flats in G
through H, contradicting the finiteness of F. |

In the special case of lines in the plane we have the following particularly “pretty”

presentation:

COROLLARY 5.2. If F is a set of n lines in the plane, no two parallel, then F has a
minimal, irredundant presentation by 2n line segments forming a 2n-pointed star if n is

even and two n-pointed stars if n is odd.
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PROOF: We carry out the construction of Theorem 5.1 in a special way. Number the lines
from 1 to n in order of their slopes, and let the two half-lines on I; based at (say) the closest
point of [; to O be r,7,4;, with the numbering from 1 to 2n being in order of direction.
Let ' be a large circle centered at O, and for each i, 1 <1 < 2n,let p; = »; N I. For each
J» 1 <5 < 2n,let §; be the line segment joining p; and pn;. As in Theorem 5.1, the
set S consisting of these segments S; provides a minimal presentation of F by compact
convex point sets, which is in fact already irredundant in this case, since removing S; from
S would allow the line extending Sy j to meet all the remaining sets in S. If one draws the
figure, one sees immediately that if n is even the segments §,...,S,, form a 2n-pointed

star inscribed in I', while if n is odd they form two “opposite” n-pointed stars inscribed in
PP P

I. O

We do not know if the result corresponding to Theorem 5.1 holds more generally in 01,:’ &

fork <d-1.
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6. Parallel-closed sets and convex partitions.

One phenomenon that distinguishes convexity for higher-dimensional sets of flats from
convexity for point sets is the existence of non-trivial parallel-closed convex sets. In the
case of point sets, since all points are parallel, there are no parallel-closed sets beyond
the empty set and the entire ambient space; in ka,d there are many between these two

extremes. Proposition 6.1 provides a characterization of those that are convex.

DEFINITION 6.1. A set F of k-flats in R is called parallel-closed if F,G ¢ Q)Ik‘d, F e F,
G || F = G € F. The direction set §(F) of F is the set of all (k — 1)-flats in
P<-! obtained by applying to the flats in F passing through O the canonical mapping
§ : R4\ {0} — P41,

PROPOSITION 6.1. A parallel-closed set F C Qﬁ;’d is convex if and only if every (k —1)-flat
not in §(F) is contained in a hyperplane in P?~! that contains no members of §(F). (In
particular, a parallel-closed set F C 6'1'3 is convex if and only if §(F) is the complement

of a union of lines.)

PROOF: By Corollary 1.1, if F is convex then for any F ¢ F there is a co-flat of F that
contains F, hence a hyperplane H containing F that has no members of F strictly on one
side of it. Since F is parallel-closed, it follows that no member of F can be paralle] to H,
so that the hyperplane in P¢~! corresponding to H contains no members of 8(F).
Conversely, given any F ¢ F it follows from the given condition that there is a hyperplane
H in R? parallel to F and containing no members of F y and—since F is parallel-closed—H
can be taken to pass through F itself. Again, since F is parallel-closed, any co-flat of F
with hyperplane H will also contain no member of F, and the convexity of F again follows
from Corollary 1.1. a

We get, as an immediate corollary, that it is impossible to partition 6;’4 into fewer than

d — k + 1 parallel-closed convex sets.
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COROLLARY 6.1. If @;_d = JI_, Fi is a partition of @;_d into parallel-closed convex sets,

then eithern=1o0orn>d—-k+1.

PROOF: If n > 1 then since each F; provides at least one hyperplane in P4~! containing
no member of §(F;), n < d — k would imply that the intersection of these hyperplanes,
which has dimension at least (d —1) —n > k — 1, would be large enough to contain at least
one (k — 1)-flat, so that the sets F; could not cover 6;‘4. O

On the other hand, it is not difficult to see that ®, , can be partitioned into (dzl) +1
parallel-closed convex sets. The following decomposition of P¢~! into Schubert cells pro-

vides such a partition.

PROPOSITION 6.2. Let Go C Gy C --- C G4-1 be a flag of subspaces of P%~1, with
dimG; = ¢, and set G_; = 0. Let S be the set of all subsets {g,...,ik—1} withig < --- <
ik—1 of the integers 0,...,d—1, and let S;_; consist of all k-setsig < -+ < ix_y in S with
tk—1 = d — 1. For each element o = {iy,...,i¢~1} of S, puti_; =1 and iy = d and let ®,
be the Schubert cell defined by

P ={p€Br14-1|dim¢pNG;=jfori; <i<ijyy, ~1<j<k-1}
Let Fo = §71(®,). Then each F, is a parallel-closed convex set of k-flats, as is the union

Fa-1 = U Fiorinoz.d—1s

and

Bha = ( U %) uFa,

UGS\S‘_]_

is a partition of Qilk’d into (dzl) + 1 parallel-closed convex sets.

PROOF: This follows from Proposition 6.1; we omit the details, which are straightfor-
ward. d
REMARK 6.1. The partition of Qﬁ;‘d provided by Proposition 6.2 is not full-dimensional,

i.e., the sets F,, for ¢ € §\ S4_;, all have lower dimension than F;_;; in particular

32



this holds even for Q’;'s, where Proposition 6.2 yields a partition into three parallel-closed
convex sets (the minimum attainable, according to Corollary 6.1). It is possible also to
describe a partition of ®] , into three full-dimensional parallel-closed convex sets. This
can be achieved by appropriately 3-coloring the faces, edges, and vertices of an octahedron
centered at the origin in R3, and taking for Fy, F;,F2 the sets of lines joining the origin to
the points in each color class, so as to satisfy the condition at the end of Proposition 6.1.
The conditions needed on the coloring turn out to be that (i) the color of each vertex
agrees with that of some incident edge; (ii) the color of each edge agrees with that of some
incident face; and (iii) whenever a vertex and an incident face have the same color then
every edge incident to both has the same color as well. We do not know whether this

construction can be generalized.

In the case of @;'3, Corollary 6.1 can be strengthened to show that there is no partition

into two convex subsets, parallel-closed or not.
PROPOSITION 6.3. The lines in R® cannot be partitioned into two non-empty convex sets.

PROOF: Suppose 6'1‘3 = F1 U F; is such a partition, and suppose F; € F; and F; € F,
are such that Fy || F;. By Proposition 3.3 (iii), the members of each set F; parallel to
F; themselves form a convex set of lines; call these sets F],F, (resp.). Since the two
convex point sets obtained by projecting Fj,F; into a plane orthogonal to Fj are disjoint,
they can be (weakly) separated by a line in that plane. Hence F},F; themselves can be
(weakly) separated by a plane H in R?; i.e., the lines of F; lie in one closed halfspace
of H, say H*, and those of F; in the other, H~. It follows that if F! (resp. F}) is any
member of F; (resp. ;) parallel to H then F; C H* (resp. F; C H™), for otherwise, if
(say) Fi C int H~, any member of F; sufficiently close to H would be surrounded by the
lines in F; U {F]}, hence would have to belong to ;. Thus H (weakly) separates all the
lines parallel to it: those of F; lie in H*, and those of 5, in H~. But then any line that

crosses H is surrounded by both F; and F,, which is impossible.
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Hence each direction contains only lines from one of the sets F;,F;, so we are done by

Corollary 6.1. 0

In addition to narrowing the gap between the results of Corollary 6.1 and Proposition
6.2, it would also be interesting to know whether Proposition 6.3 can be extended to the

corresponding statement for le.d. We venture

CONJECTURE 6.1. Qﬁlkd cannot be partitioned into fewer than d — k + 1 non-empty convex

sets.
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7. Open questions.

In addition to several questions and conjectures posed earlier, we list here six problems

whose solution will be important for the further development of the ideas presented here.

PROBLEM 7.1. Probably the most important problem to resolve concerns the separation
theorem for convex sets, which—for point sets—asserts (in one version) that any two
disjoint convex sets can be separated by a hyperplane; if one adds the assumption that the
sets are compact, the conclusion can be strengthened to “strictly separated”.

Is there a corresponding “separation theorem” for convex sets in QS',:_ dl

The point-set version of the theorem can be stated: If 5,5, are disjoint convex sets,
each S; can be enlarged to a convex set S; so that Sy, S, partition R%. But as Proposition
6.3 shows, already in the case of 6'1‘3, no such partition of Qﬁlk‘d into two convex sets may
be possible for k > 0. Perhaps the fact that a partition into (dzl) + 1 convex sets can
always be found (see Proposition 6.2 and Remark 6.1) can be used to find the “correct”

generalization of the separation theorem to k-flats.

PROBLEM 7.2. A second open problem relates to connectedness. We have observed above
(Example 2.8) that convex sets on Qﬁ'kd need not, in general, be connected. But what if
we take the convex hull of a connected set of k-flats—must such a set be connected? It is
not hard to see that this question is equivalent to asking whether a connected component

of a convex set must necessarily be convex.

PROBLEM 7.3. As pointed out in §4, the closure of a convex set in @Ik'd need not be convex,
and the convex hull of a closed (even a compact) set need not be closed. To define the

“closed convex hull” of a set F of k-flats, we must therefore take the limit of the sequence

... (cl{(conv (cl(conv F))))....

Does this sequence of iterations stop after a finite number of steps, the number depending

only on k and d?
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PROBLEM T7.4. A question about the relation between compact point sets and their k-
duals that we have been unable to answer is: If a finitely presented convex set of k-flats
is compact, must it have a finite presentation by compact sets of points? (It is easy to see

that the converse is true.)

PROBLEM 7.5. Corollary 5.2 shows that a finite set of lines in the plane without parallels
is finitely presented. Does the converse hold, in the sense that a finitely presented set of
lines in the plane without parallels must be finite? More generally, if a set of hyperplanes
in R? in general position is finitely presented, must it be finite? (This would be a converse

to Theorem 5.1.)

Finally, here is a problem of a combinatorial nature about lines in “convex position”:

n—2
points in general position in the plane one can always select n points in convex position,

PROBLEM 7.6. A result of Erdés and Szekeres [5] says that from any set of <2n B 4)

l.e., extreme points of some convex body (e.g., their convex hull). Does a similar result
hold for lines in R? (or, more generally, for k-flats in R%?): is there a number f(k,d,n)
such that from any set of f(k,d,n) k-flats in general position in R? we can always select n

which are in “convex position”, i.e., which support some convex body?
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