Benzel -Beil regionse, - CC # Foundations of a Theory of Convexity on Affine Grassmann Manifolds JACOB E. GOODMAN* RICHARD POLLACK** # **Table of Contents** | 0. | Introduction | 2 | |----|--|----| | 1. | Basic definitions and properties | 10 | | 2. | Examples | 16 | | 3. | Further properties | 19 | | 4. | Compact convex subsets of $\mathfrak{G}_{k,d}^{'}$ | 23 | | 5. | Minimal and irredundant presentations | 26 | | 6. | Parallel-closed sets and convex partitions | 31 | | 7. | Open questions | 35 | | | References | 37 | ^{*}Supported in part by NSF grant DMS-9122065, NSA grant MDA904-92-H-3069, PSC-CUNY grant 662330, the Mittag-Leffler Institute, and the Fulbright Commission. ^{**}Supported in part by NSA grant MDA904-92-H-3075, NSF grant CCR-9122103, and the Mittag-Leffler Institute. ### 0. Introduction. One historical trend in geometry has been to proceed from the study of objects of lower dimension and codimension to those of higher. Thus, in algebraic geometry, from roots of polynomials to curves to surfaces to higher-dimensional varieties, and from hypersurfaces to varieties of intermediate dimension; or in combinatorial geometry from configurations of points to arrangements of lines in the plane to arrangements of hyperplanes in \mathbb{R}^d and, only recently, to arrangements of intermediate-dimensional flats. The starting point for the present paper is the following question, which—in the same spirit—asks whether points can be replaced by flats (translates of linear subspaces of arbitrary dimension) as the basic objects in a convexity structure on \mathbb{R}^d : Is there a simple convexity structure for lines in \mathbb{R}^3 , or, more generally, for k-flats in \mathbb{R}^d , that extends the standard one for points in \mathbb{R}^d in a natural way, and that is invariant under the action of the affine group? Since the parametrizing space for k-flats in \mathbb{R}^d is the "affine Grassmannian", $\mathfrak{G}'_{k,d}$, whose points represent k-flats and whose topology is inherited from that of \mathbb{R}^d in the natural way (a neighborhood of the k-flat spanned by points x_0, \ldots, x_k in general position consisting of all k-flats spanned by points y_0, \ldots, y_k with y_i in a neighborhood of x_i for each i), what we are asking is whether there exists a convexity structure on $\mathfrak{G}'_{k,d}$ that extends the convexity structure on \mathbb{R}^d (= $\mathfrak{G}'_{0,d}$) given by the usual convex hull operator conv S, and that satisfies the same basic properties that conv does on \mathbb{R}^d . Surprisingly, the answer turns out to be "yes"; the purpose of this paper is to describe this convexity structure and to develop its most important properties. This is not mere "generalization for its own sake": there are many questions involving configurations that have been answered in the case of points, or in the case of hyperplanes, but that become difficult or intractable when the points are replaced by intermediate-dimensional flats, such as lines in R³. Among those that come to mind are problems in geometric transversal theory such as finding a generalization of the higher-dimensional Hadwiger theorem on hyperplane transversals [7] to transversals of intermediate dimension, or of recent topological results on the space of common tangent hyperplanes to a separated family of convex sets [4] to lower-dimensional tangents, or of the recent proof of the Hadwiger-Debrunner conjecture [2] and its hyperplane generalization [1] to the intermediate-dimensional case. Our aim, in generalizing the basic concepts of convexity so as to encompass these higher-dimensional flats, is to make it possible for the tools of convexity theory to be applied to questions such as these. Why $\mathfrak{G}'_{k,d}$? Convexity is an affine concept, not a projective one: To talk about the convex hull of a pair of points as being the linear segment between the points, one must have a distinguished "hyperplane at infinity". For this reason $\mathfrak{G}'_{k,d}$, rather than the (full) Grassmann manifold $\mathfrak{G}_{k,d}$, is the natural space to which to extend the standard convexity structure on \mathbb{R}^d . What properties do we want in a convex hull operator "conv" on subsets of $\mathfrak{G}'_{k,d}$? Obviously conv should be monotone (increasing) and idempotent, i.e., $$(\mathrm{A}_0)$$ $\mathcal{F}\subset\operatorname{conv}\mathcal{F}$ for $\mathcal{F}\subset\mathfrak{G}_{k,d}^{'}$ $$(A_1) \ \mathcal{F}_1 \subset \mathcal{F}_2 \implies conv \, \mathcal{F}_1 \subset conv \, \mathcal{F}_2$$ $$(A_2) \operatorname{conv}(\operatorname{conv} \mathcal{F}) = \operatorname{conv} \mathcal{F}$$ In addition, the following "anti-exchange" property is usually required of a convex hull operator, which says essentially that conv induces a (partial) ordering on the complement of a convex set: (A₃) If $x, y \in \mathfrak{G}_{k,d}^{'}$ and $\mathcal{F} \subset \mathfrak{G}_{k,d}^{'}$ such that $x, y \notin \operatorname{conv} \mathcal{F}, y \in \operatorname{conv}(\mathcal{F} \cup \{x\})$, and $x \in \operatorname{conv}(\mathcal{F} \cup \{y\})$, then y = x. Since the usual operator conv, on subsets of \mathbb{R}^d , is defined with reference to line segments: The convex hull of a set $\mathcal F$ is the smallest set $\mathcal G$ containing $\mathcal F$ with the property that the line segment joining any two points of $\mathcal G$ lies in $\mathcal G$ it commutes with affine transformations; i.e., (A_4') If $\sigma: \mathbb{R}^d \to \mathbb{R}^d$ is affine then $\operatorname{conv}(\sigma \mathcal{F}) = \sigma(\operatorname{conv} \mathcal{F})$ When we extend conv to sets of k-flats in \mathbb{R}^d , however, it no longer makes sense to talk about $\operatorname{conv}(\sigma\mathcal{F})$ since $\sigma\mathcal{F}$ may include flats of various dimensions. On the other hand, the affine group $$\mathbf{A}(d,\mathsf{R}) = \left\{ \left[egin{array}{cc} L & lpha \ 0 & 1 \end{array} ight] \ \left| \ L \in \mathrm{GL}(d,\mathsf{R}), \ lpha \in \mathsf{R}^d ight. ight\}$$ induces an action on $\mathfrak{G}'_{k,d}$ since the image of a k-flat under any nonsingular affine transformation is again a k-flat. We shall therefore restrict property (A'_4) to nonsingular affine transformations σ , and require, for the sake of compatibility with the underlying linear structure, (A₄) If $\sigma_k : \mathfrak{G}_{k,d}^{'} \to \mathfrak{G}_{k,d}^{'}$ is induced by $\sigma \in \mathbf{A}(d,\mathbb{R})$, then $\operatorname{conv}(\sigma_k \mathcal{F}) = \sigma_k(\operatorname{conv} \mathcal{F})$ for $\mathcal{F} \subset \mathfrak{G}_{k,d}^{'}$. The standard operator conv on subsets of \mathbb{R}^d , which satisfies these conditions, can be characterized in various ways, not all of which are available for extension to $\mathfrak{G}'_{k,d}$ for k>0. For example, to mimic the definition above, we would need nonsingular-affine-invariant geodesics (to replace the line segments in the standard definition). Now while rigid-motion-invariant geodesics do exist on $\mathfrak{G}'_{k,d}$ (see, for example, [6]), it is easy to see that these are not preserved under nonsingular affine transformations, nor is there a unique geodesic joining every pair of points. Instead, we will define a convex hull operator on subsets of $\mathfrak{G}'_{k,d}$ by means of a duality operator * that assigns to each set \mathcal{F} of k-flats the set of all convex point sets meeting all the members of \mathcal{F} , and that, likewise, assigns to each set \mathcal{S} of convex point sets the set of all k-flats meeting all the members of \mathcal{S} (the so-called "common transversals" of \mathcal{S}). The convex hull conv \mathcal{F} of a set \mathcal{F} of k-flats will then be defined to be the double dual \mathcal{F}^{**} of \mathcal{F} . With this definition, which agrees trivially with the usual definition in the case where k=0, it turns out that conv satisfies all the conditions (A_0) through (A_4) , and in fact—as we will see—extends many of the other properties of the standard convexity operator on \mathbb{R}^d to $\mathfrak{G}'_{k,d}$. The convex hull operator obtained in this way also turns out to have a quite different-looking geometric description, which captures the idea that the convex hull of a set should consist of all the objects that the set "surrounds" in a suitable sense. Let us say that a point $x \in \mathbb{R}^d$ is surrounded by a set S of points if there is some flat G of dimension k $(0 \le k < d)$ containing x within which the following holds: If $H \subset G$ is any flat of dimension k-1 containing x, then H lies strictly between two parallel (k-1)-flats, H_1 and H_2 , also contained in G, each of which contains members of S. (For k=0, we interpret this to mean that x itself belongs to S.) Thus in the plane, for example, S surrounds x if either - (i) no line H containing x can be translated continuously to infinity without passing through some point of S, or - (ii) there is a line G containing x within which x cannot escape to infinity without passing through some point of S, or - (iii) x itself belongs to S. One sees easily that a point x lies in the convex hull of a set S if and only if S surrounds x in this sense. This concept of a point being "surrounded" by a set of points generalizes in a straightforward way to the idea of a k-flat being "surrounded" by a set of k-flats, and turns out to be equivalent to the "double-dual" definition of the convex hull operator on $\mathfrak{G}'_{k,d}$. This equivalence is proved in Theorem 1.1, where we also characterize the convex hull operator in terms of k-semispaces (maximal convex point sets disjoint from some k-flat) and in terms of the values of linear functionals on k-flats (appropriately defined). In particular, given a k-flat F' and a set F of k-flats, we define the "face $F^{F'}$ of F on the
side of F'" and show that $F' \in \operatorname{conv} \mathcal{F}$ if and only if $F' \in \operatorname{conv} \mathcal{F}^{F'}$. Theorem 1.1 leads immediately to the definition of a convex set in $\mathfrak{G}'_{k,d}$ as a set F for which $\operatorname{conv} \mathcal{F} = \mathcal{F}$. The double-dual characterization of the convex hull operator is interesting also from the point of view of its connection to geometric transversal theory. Recall [8] that what we are calling the k-dual of a family of convex point sets is also known as its set of k-transversals. A good deal is known about these transversals for k = 0 and d - 1, but relatively little for intermediate values of k; we have in mind here combinatorial results, results on the geometric complexity of the space of transversals, and results of a topological nature on this same space [4]. The convexity structure defined in the present paper provides an answer to the question "What conditions does a family of k-flats have to satisfy in order to be the set of all common transversals to some family of convex point sets", and hopefully will make it possible to help solve some of the other open problems in this area. In §2 we present ten examples of convex sets, ranging from rulings on a hyperboloid to affine Schubert varieties in $\mathfrak{G}'_{k,d}$, each exhibiting some features of interest. (Example 2.1, for instance, shows explicitly the connection between convex sets of k-flats and geometric transversal theory.) Perhaps the most surprising of these is Example 2.8, a finite set of mutually non-parallel lines in \mathbb{R}^3 , which turns out always to be convex(!). How can a finite, disconnected set turn out to be convex? The answer lies in the fact that the lines in question are mutually non-parallel; for points in \mathbb{R}^d , this phenomenon cannot arise, since any two points are automatically parallel, in the sense that there is a translation of \mathbb{R}^d taking one into the other! Another reason why this anomaly is inevitable is given by PROPOSITION 0.1. There is no nonsingular-affine-invariant convexity structure on k-flats in \mathbb{R}^d that satisfies the anti-exchange axiom (A_3) and in which every convex set is connected. PROOF: It is enough to prove this for k = 1 and d = 2. Consider two intersecting lines l_1, l_2 in the plane. If the convex hull of the set $\{l_1, l_2\}$ is connected, it must include either a third line through $l_1 \cap l_2$ or else a third line cutting l_1 and l_2 at distinct points. In the former case, it would follow from the non-singular-affine-invariance that given any three concurrent lines the convex hull of of any two of them would contain the third, thereby violating the anti-exchange axiom; in the latter case, the same would follow for any three lines in general position. (Notice that just as any simple 3-line arrangement in the plane can be mapped to any other by a nonsingular affine transformation, the same holds for any pair of non-simple 3-line arrangements.) Although Example 2.8 shows that a convex set of k-flats with k > 0 may not be connected, if the k-flats are parallel their convex hull is always connected, and is in fact exactly the set we would expect it to be—see Example 2.4. §3 continues the development of the basic properties of general convex sets in $\mathfrak{G}'_{k,d}$: their closure under intersection, nonsingular affine transformations, restriction to subspaces, and restriction to direction, and develops the relations between convex sets in $\mathfrak{G}'_{k,d}$ and $\mathfrak{G}'_{l,d}$ for $l \neq k$. We also extend to convex sets of k-flats the property of convex sets of points that the complement of such a set is connected if and only if the set contains no hyperplane (Theorem 3.2). In §4 we restrict our attention to compact convex subsets of $\mathfrak{G}'_{k,d}$, and prove that any such set has the Krein-Milman property of being the convex hull of its set of extreme points (Theorem 4.1). Along the way we define the concept of a supporting hyperplane to a compact convex set \mathcal{F} of k-flats, which plays a role in the proof. While the portion of Theorem 1.1 that characterizes sets of k-transversals in terms of the intrinsic "surrounding" criterion can be viewed as an existence theorem for solutions to the "inverse problem of geometric transversal theory" (When is a set of k-flats the complete set of k-transversals to some family of convex point sets?), §5 contains what can be thought of as a "uniqueness" result about the same inverse problem: Can we find a "canonical" family of convex point sets whose dual is a given set of k-flats? Here, "canonical" is taken to mean both "maximal" and "irredundant": maximal in the sense that no convex point set in the family can be shrunk without costing us transversals, and irredundant in the sense that no convex point set can be discarded without our gaining transversals. It is easy to see (Proposition 5.1) that for \mathcal{F} the dual of a finite set of compact convex point sets, we can find such a minimal, irredundant presentation of \mathcal{F} , and in particular, in the special case where \mathcal{F} is a finite set of hyperplanes in general position, such a finite, minimal, irredundant presentation can be explicitly constructed (Theorem 5.1). Sets of k-flats closed under parallels are considered in §6, where we describe a simple geometric condition that is necessary and sufficient (Proposition 6.1) for such a set to be convex. This, in turn, yields a "non-decomposition theorem" (Corollary 6.1) about the impossibility of partitioning $\mathcal{O}'_{k,d}$ into fewer than d-k+1 parallel-closed convex sets. In Proposition 6.3 we extend this to arbitrary convex sets in $\mathcal{O}'_{1,3}$, leaving open the question of its extendibility to arbitrary k and d. Finally, in §7, we discuss several problems that still remain to be resolved. One important property of convex sets in \mathbb{R}^d that does not extend to convex sets in $\mathfrak{G}'_{k,d}$ for k>0 is Helly's theorem. For $\mathfrak{G}'_{1,2}$, for example, the existence of a Helly number would imply, when restricted to "principal" convex sets of lines (the duals of single convex point sets) the existence of a number h such that if every h members of a family of compact convex point sets have a common transversal line then there is a line meeting the entire family. But this is known to be false, in general [10, 16], and even Hadwiger's extension of Helly's theorem to lines in the plane, which requires the additional hypothesis that the lines meet the convex sets in a consistent order, is false beyond dimension 2 [8]. The reason for the failure of Helly's theorem on $\mathfrak{G}'_{k,d}$ for k>0, and—for that matter—of Carathéodory's theorem and Radon's theorem, can be traced to the fact that our convex hull operator is not "domain finite" in the sense of Hammer [12], in general, i.e., $\operatorname{conv} \mathcal{F}$ is not simply the union of the convex hulls of the finite subsets of \mathcal{F} . If a point $x\in\mathbb{R}^d$ is surrounded by points of a set \mathcal{S} in a flat G of dimension l, then x is already surrounded by points of \mathcal{S} in a "simplex set of directions" around x; i.e., a point of \mathcal{S} that prevents an (l-1)-flat through x from escaping to infinity will prevent nearby flats through x as well. But the corresponding fact does not hold for k-flats with k>0: we may need infinitely many to surround a single one. Of course if we retain the hypothesis—automatic for points—that our k-flats are parallel, then all of these combinatorial theorems are trivially true, since they hold for the projections of our k-flats to \mathbb{R}^{d-k} and there we have only to deal with *points*. Let us mention, finally, that there have been several previous attempts to define a convexity structure on higher-dimensional Grassmann manifolds, the most notable being that of Busemann, Ewald, and Shephard. In a substantial series of papers written in the 1960's [3], they explored several notions of convexity for real-valued functions defined on Grassmann cones of a-vectors in a real projective space. But the goals they were after were different from ours, and their results—while quite extensive—do not include the kind of affinely invariant convexity structure developed here. We would like to express our gratitude to Anders Björner, whose invitation to the Mittag-Leffler Institute made it possible for us to work out our early ideas uninterruptedly and in pleasant surroundings, to János Pach and Günter Ziegler, for several stimulating conversations, and to Herman Gluck, for explaining the structure of geodesics in $\mathfrak{G}_{2,4}$. # 1. Basic definitions and properties. We work in \mathbb{R}^d for some d>0, and fix a value of k with $0\leq k < d$. Let $\mathfrak{G}_{k,d}'$ denote the affine Grassmannian consisting of all k-flats in \mathbb{R}^d , with its natural topology: a neighborhood of a k-flat F is obtained by choosing k+1 points of F in general position and taking all the k-flats passing through neighborhoods of these points. We will define several conditions relating a k-flat F' and a set F of k-flats, and prove them equivalent in Theorem 1.1; this equivalence will then be used to define our convex hull operator on $\mathfrak{G}_{k,d}'$. We begin by defining a duality operator, **, or simply * if k is understood, between subsets of $\mathfrak{G}'_{k,d}$ and families of convex point sets in \mathbb{R}^d , as follows: DEFINITION 1.1. Let \mathcal{F} be a set of k-flats and \mathcal{S} a family of convex point sets in \mathbb{R}^d . Then (i) $$\mathcal{F}^* = \{S \mid S \text{ is convex and } S \cap F \neq \emptyset \forall F \in \mathcal{F}\}, \text{ and }$$ $$\text{(ii) } \mathcal{S}^{*} = \mathcal{S}^{*_{k}} = \{F \in \mathfrak{G}_{k,d}^{'} \, | \, F \cap S \neq \emptyset \, \forall S \in \mathcal{S}\}.$$
This duality between sets of k-flats and sets of points satisfies the following conditions: Proposition 1.1. (i) $\mathcal{F}_1 \subset \mathcal{F}_2 \implies \mathcal{F}_1^* \supset \mathcal{F}_2^*$; $\mathcal{S}_1 \subset \mathcal{S}_2 \implies \mathcal{S}_1^* \supset \mathcal{S}_2^*$ (ii) $$\mathcal{F} \subset \mathcal{F}^{**}$$; $\mathcal{S} \subset \mathcal{S}^{**}$ (iii) $$\mathcal{F}^{***} = \mathcal{F}^*$$; $\mathcal{S}^{***} = \mathcal{S}^*$ (iv) $$\mathcal{F} = \mathcal{S}^*$$ for some $\mathcal{S} \iff \mathcal{F}^{**} = \mathcal{F}$; $\mathcal{S} = \mathcal{F}^*$ for some $\mathcal{F} \iff \mathcal{S}^{**} = \mathcal{S}$. PROOF: (i) is immediate from the definitions; (ii) follows from (i); (iii) follows by applying (ii) to \mathcal{F}^* (resp. \mathcal{S}^*) and (i) to the inclusion in (ii); and the direct implications in (iv) follow by taking the double dual of both sides and applying (iii). The concept of "surrounding", which is central, is perhaps most easily visualized in the context of $\mathfrak{G}'_{1,3}$, lines in \mathbb{R}^3 . For a line L' to be "surrounded" by a family \mathcal{L} of lines means that either (i) every plane through L' strictly separates two members of \mathcal{L} (this is the "generic" way in which \mathcal{L} can surround L'), or (ii) L' itself strictly separates two members of \mathcal{L} parallel to it in a plane containing all three, or (iii) L' actually belongs to \mathcal{L} . In general, we have: DEFINITION 1.2. Given $\mathcal{F} \subset \mathfrak{G}'_{k,d}$ and a particular k-flat $F' \in \mathfrak{G}'_{k,d}$ contained in some l-flat G, we say that F' is surrounded by \mathcal{F} in G if every (l-1)-flat containing F' and lying in G strictly separates two members of \mathcal{F} also lying in G. (In the degenerate case in which G = F' we interpret this to mean that F' itself is a member of \mathcal{F} .) Next, we generalize the notion of a "semispace", as defined in [11] or [14], where this term is used to mean a convex point set maximal among those not containing a given point. DEFINITION 1.3. A convex point set in \mathbb{R}^d that is maximal among those not meeting a given k-flat F is called a k-semispace at F. The set of all k-flats meeting a k-semispace at F is called a co-flat of F. PROPOSITION 1.3. If $F \in \mathfrak{G}'_{k,d}$ and S is any convex point set not meeting F, there exists a maximal convex set \overline{S} containing S and not meeting F. Moreover, any such \overline{S} must have the following form: Choose a (partial) flag $$F = F_k \subset F_{k+1} \subset \cdots \subset F_d = \mathbb{R}^d$$ of flats with dim $F_i = i$ and, for each $i, k \leq i < d$, choose one of the two open half-spaces in F_{i+1} determined by F_i ; call it F_i^+ . Then $$S = \bigcup_{i=k}^{d-1} F_i^+$$ is a k-semispace maximally disjoint from F. PROOF: The first part is an easy consequence of Zorn's lemma. The second follows by projecting along F and applying the characterization of (0-)semispaces in [14]. As in Definition 1.1, we can dualize sets of k-flats with respect to k-semispaces, rather than arbitrary convex point sets: DEFINITION 1.4. Let $\mathcal{F} \subset \mathfrak{G}'_{k,d}$. The restricted dual \mathcal{F}^{\dagger} of \mathcal{F} is the set of all k-semispaces meeting all the members of \mathcal{F} . As in Proposition 1.1, we have $\mathcal{F}_1 \subset \mathcal{F}_2 \implies \mathcal{F}_1^{\dagger} \subset \mathcal{F}_2^{\dagger}$. It is also clear from the definition that $\mathcal{F}^{\dagger} \subset \mathcal{F}^*$. We can relate these ideas to \mathcal{L}^d , the space of linear functionals of \mathbb{R}^d , as follows. DEFINITION 1.5. If $g \in \mathcal{L}^d$ and $F \in \mathfrak{G}_{k,d}^{'}$, we define g(F) by $$g(F) = \begin{cases} g(x) \text{ for } x \in F, \text{ if } g \text{ is constant in } F \\ -\infty \text{ otherwise.} \end{cases}$$ Given a k-flat F' and a set F of k-flats, the set $$\mathcal{L}_{F',\mathcal{F}} = \{g \in \mathcal{L}^d \mid g \text{ is constant on } F' \text{ and } g(F') \geq g(F) \text{ for all } F \in \mathcal{F}\}$$ is called the set of F'-maximizing functionals with respect to \mathcal{F} . The set $$\mathcal{F}^{F'} = \{F \in \mathcal{F} \mid g(F) = g(F') \text{ for all } g \in \mathcal{L}_{F',\mathcal{F}}\}$$ is called the face of \mathcal{F} on the side of F'. (Intuitively, $\mathcal{F}^{F'}$ consists of the flats of \mathcal{F} that "keep up with" F' in every direction in which F' "leads" all of \mathcal{F} .) We then have THEOREM 1.1. If F' is a k-flat, and \mathcal{F} a set of k-flats, in \mathbb{R}^d , the following are equivalent: - (i) $F' \in \mathcal{F}^{**}$ - (ii) $F' \in \mathcal{F}^{\dagger *}$ - (iii) there exists an l-flat G, for some $k \leq l \leq d$, such that F' is surrounded by F in G - (iv) there exists an l-flat G, for some $k \leq l \leq d$, such that F' is surrounded by $\mathcal{F}^{F'}$ in G. - In (iii) and (iv), moreover, G can be taken to be the same l-flat. PROOF: We prove (i) \implies (ii) \implies (i) and (iii) \iff (iv). (i) \implies (ii) by Proposition 1.1 (i), since $\mathcal{F}^{\dagger} \subset \mathcal{F}^*$. (ii) \implies (iii): Suppose F' is not surrounded by \mathcal{F} in any l-flat G. We proceed, as follows, to construct a k-semispace S meeting all the k-flats in \mathcal{F} but missing F'. Since F' is not surrounded by \mathcal{F} in \mathbb{R}^d , we can find a (d-1)-flat G_{d-1} containing F' that has no member of \mathcal{F} entirely on one side; i.e., the other side, call it G_{d-1}^+ , together with G_{d-1} itself, meets (or contains fully) every member of \mathcal{F} . Since F' is not surrounded by \mathcal{F} in G_{d-1} , we can find a (d-2)-flat $G_{d-2} \subset G_{d-1}$ containing F' that has no member of \mathcal{F} entirely on one side, i.e., the other side, call it G_{d-2}^+ , together with G_{d-2} itself, meets (or contains fully) every member of \mathcal{F} . Continuing in this way, we construct a flag $$R^d = G_d \supset G_{d-1} \supset \cdots \supset G_k = F'$$ such that the associated k-semispace $$S = \bigcup_{i=k}^{d-1} G_i^+$$ meets every member of \mathcal{F} . But since, by construction, S does not meet F' itself, we have a contradiction. (iii) \Longrightarrow (i): Suppose first that $G = \mathbb{R}^d$. If S is a convex point set meeting all the members of \mathcal{F} , we must show that S meets F' as well. If not, then extending S to a maximal k-semispace \overline{S} disjoint from F', as in Proposition 1.2, we get a flag $$F'=G_k\subset\cdots\subset G_d=\mathsf{R}^d,$$ as in that proposition, with $\overline{S} = \bigcup G_i^+$ meeting all the members of \mathcal{F} . Then, in particular, $F' \subset G_{d-1}$, yet no member of \mathcal{F} lies entirely in G_{d-1}^- , which contradicts the assumption that F' is surrounded by \mathcal{F} in G. If G is an l-flat with l < d, replace \mathbb{R}^d by G, S by $S \cap G$, and \mathcal{F} by the subset consisting of all k-flats of \mathcal{F} lying in G. The conclusion then follows as above. (iii) \Longrightarrow (iv): Since F' is surrounded by $\mathcal F$ in G, for any functional $g\in\mathcal L_{F',\mathcal F}$ we must have g(x)=g(F') for all $x\in G$: otherwise G would be transversal to the hyperplane g(x)=0, and then F' would not "lead $\mathcal F$ in the direction g", because of the surrounding. Thus G is contained in the intersection of the hyperplanes through F' corresponding to the functionals in $\mathcal L_{F',\mathcal F}$, so that any flat of $\mathcal F$ lying in G also lies in $\mathcal F^{F'}$. Hence, since F' is surrounded by $\mathcal F$ in G, it is also surrounded by $\mathcal F^{F'}$ in G. (iv) $$\Longrightarrow$$ (iii): Since $\mathcal{F}^{F'} \subset \mathcal{F}$, this is trivial. We can now define our convex hull operator on $\mathfrak{G}'_{k,d}$. DEFINITION 1.6. If \mathcal{F} is a set of k-flats in \mathbb{R}^d , the convex hull conv \mathcal{F} of \mathcal{F} is the set of all k-flats F' satisfying the equivalent conditions of Theorem 1.1. COROLLARY 1.1. If $\mathcal{F} \subset \mathfrak{G}_{k,d}^{'}$, the following are equivalent: - (i) conv $\mathcal{F} = \mathcal{F}$ - (ii) $\mathcal{F} = \mathcal{S}^*$ for some family \mathcal{S} of convex point sets - (iii) \mathcal{F} is an intersection of co-flats of dimension k. PROOF: This follows immediately from Propositions 1.1 and 1.2 and Theorem 1.1. DEFINITION 1.7. A set $\mathcal{F} \subset \mathfrak{G}_{k,d}'$ is convex if it satisfies the equivalent conditions of Corollary 1.1. This concept of convexity clearly extends the usual one for point sets, since criterion (i) of Theorem 1.1, applied to a point x and a point set S, says simply that every convex point set containing S also contains x, i.e., that x lies in the (usual) convex hull of S. It is easy to see, as well, that the monotonicity, idempotence, and anti-exchange properties that hold for the convex hull operator on point sets continue to hold in this more general setting: PROPOSITION 1.3. (i) If $\mathcal{F}_1, \mathcal{F}_2 \subset \mathfrak{G}_{k,d}'$, then $\mathcal{F}_1 \subset \mathcal{F}_2 \implies \operatorname{conv} \mathcal{F}_1 \subset \operatorname{conv} \mathcal{F}_2$ - (ii) if $\mathcal{F} \subset \mathfrak{G}_{k,d}'$, then $\mathcal{F} \subset \operatorname{conv} \mathcal{F}$ and $\operatorname{conv}(\operatorname{conv} \mathcal{F}) = \operatorname{conv} \mathcal{F}$ - (iii) if $\mathcal{F} \subset \mathfrak{G}_{k,d}'$ and F_1, F_2 are k-flats such that $F_1, F_2 \notin \operatorname{conv} \mathcal{F}, \ F_2 \in \operatorname{conv}(\mathcal{F} \cup \{F_1\}),$ and $F_1 \in \operatorname{conv}(\mathcal{F} \cup \{F_2\}),$ then $F_2 = F_1$. PROOF: (i) and (ii) follow immediately from Proposition 1.1, (ii) and (iii) respectively. (iii) is seen as follows: Suppose first that F_2 is generically surrounded by
$\mathcal{F} \cup \{F_1\}$. Since F_2 is not surrounded by \mathcal{F} alone, some hyperplane $H \supset F_2$ "escapes" \mathcal{F} in some direction but is "trapped" by $\mathcal{F} \cup \{F_1\}$, hence by F_1 , in that direction. It follows that the translate of H passing through F_1 escapes not only \mathcal{F} , but F_2 as well, giving a contradiction. Now suppose F_2 is surrounded by $\mathcal{F} \cup \{F_1\}$ within some flat G; in particular, $F_2 \subset G$. Letting \mathcal{F}' be the set of all flats of \mathcal{F} lying in G, and observing that F_2 is still not surrounded by \mathcal{F}' in G, hence that $F_1 \subset G$ as well, we see that we can apply the previous argument to \mathcal{F}' , F_1 , and F_2 to obtain the desired conclusion. If a convex set \mathcal{F} of k-flats is given as the dual \mathcal{S}^* of a family \mathcal{S} of convex point sets, we will see in §2 (Example 2.4) that there need not be a finite family \mathcal{S} of this kind. If there is, we call \mathcal{F} "finitely presented": DEFINITION 1.8. If $\mathcal{F} = \mathcal{S}^*$ with \mathcal{S} finite, \mathcal{F} is said to be a finitely presented convex set. In particular, if $\mathcal{F} = \mathcal{S}^*$ with $|\mathcal{S}| = 1$, \mathcal{F} is said to be a principal convex set. # 2. Examples. We present next a number of examples that we have found useful in guiding our intuition when thinking about convex sets of *points* proved inadequate. Many of the examples involve lines in R³, since that setting is already rich enough to illustrate a number of the phenomena arising in our generalization. We omit the verification of the properties of the example, which is usually straightforward. EXAMPLE 2.1. Let $S = \{S\}$, with S a convex body in \mathbb{R}^3 , and let $\mathcal{F} = S^{*_1}$. Then \mathcal{F} , consisting of all the lines meeting S, is a principal convex set. If $S = \{S_1, \ldots, S_n\}$, each S_i convex, and $\mathcal{F} = S^{*_1} = \bigcap_{i=1}^n \{S_i\}^{*_1}$, so that \mathcal{F} is the set of convex (line) transversals of the S_i , then \mathcal{F} is finitely presented. Similarly, $S^{*_2} = \bigcap_{i=1}^n \{S_i\}^{*_2}$ is the set of hyperplane transversals of the S_i , and is a finitely presented convex family of planes in \mathbb{R}^3 . EXAMPLE 2.2. Let Q be the one-sheeted hyperboloid obtained by rotating the line F: x = 1, z = y in \mathbb{R}^3 about the z-axis. Q has equation $x^2 + y^2 = z^2 + 1$, and contains, in addition to the family \mathcal{F} of disjoint rulings consisting of the rotates of F, also the family \mathcal{G} consisting of the line x = 1, z = -y and all its rotates; notice that each line in \mathcal{F} meets each line in \mathcal{G} except the unique line parallel to it. Then, by the surrounding criterion, it is easily seen that a line $F' \in \operatorname{conv} \mathcal{F}$ if and only if either $F' \in \mathcal{F}$ or F' is disjoint from Q. Thus $\operatorname{conv} \mathcal{F}$ consists of \mathcal{F} together with all the lines strictly "inside" the hyperboloid Q, i.e., those cutting the open disk $x^2 + y^2 < 1$, z = 0 and having slope > 1. EXAMPLE 2.3. If we remove one or more rulings from the family \mathcal{F} in Example 2.2, the new family \mathcal{F}_0 obtained is convex: We can find a plane through any line previously in the convex hull (but not in \mathcal{F}) that can now "escape" through a missing line. (Notice that if we remove three rulings from \mathcal{F} , the resulting family \mathcal{F}_1 , which is again convex, now has a particularly simple (finite) presentation: it is the dual of the three rulings in \mathcal{G} parallel to those removed!) In particular, if we let \mathcal{F}_t ($0 \le t < 2\pi$) be the family of rulings cutting the circle $x = \cos \theta$, $y = \sin \theta$, z = 0 at the points parametrized by all values of θ with $0 \le \theta \le t$, we see that \mathcal{F}_t is an increasing chain of convex sets of k-flats whose union is nevertheless not convex; this is an important difference from the situation for points. EXAMPLE 2.4. In \mathbb{R}^d , consider any family \mathcal{F} of mutually parallel k-flats, and let σ : $\mathbb{R}^d \to \mathbb{R}^{d-k}$ be projection in the corresponding direction. Then it follows immediately from the "convex dual" criterion that $\operatorname{conv} \mathcal{F} = \{F' \in \mathfrak{G}'_{k,d} | \sigma(F') \in \operatorname{conv} \sigma(\mathcal{F})\}$, so that in particular \mathcal{F} is a convex set of k-flats if and only if $\sigma(\mathcal{F})$ is a convex point set. Hence, for example, the set of all lines in \mathbb{R}^3 parallel to the z-axis and cutting the disk $x^2 + y^2 < 1$, z = 0 is convex, as is the set consisting of two parallel lines and all the parallels lying between them. It is easy to see that this last example, for instance, is not finitely presented: Any finite set of convex point sets meeting all the lines in the family would have to meet additional lines that "spread out" far away. EXAMPLE 2.5. Let \mathcal{F} be a planar pencil of lines, considered as a subset of $\mathfrak{G}'_{1,3}$. Then \mathcal{F} is convex, since the lines of \mathcal{F} surround no line not in \mathcal{F} . (It is also easy to see that \mathcal{F} is finitely presented, in fact by two convex point sets.) The same holds, more generally, for any so-called "spread" of lines [9], or continuous planar family, one in each direction. EXAMPLE 2.6. If C is a convex body in a plane Π , however, and \mathcal{F} is the set of all lines in Π that support C, again considered as a subset of $\mathfrak{G}'_{1,3}$, then conv \mathcal{F} includes not only the members of \mathcal{F} but also all the lines passing through interior points of C, whether these lines lie in Π or not. (If such a line lies in Π it is surrounded by \mathcal{F} in Π , and if it is transversal to Π it is surrounded by \mathcal{F} in the full space \mathbb{R}^3 .) EXAMPLE 2.7. As a consequence, if \mathcal{F} is the set of all lines lying in a plane Π , considered as a subset of $\mathfrak{G}'_{1,3}$, then conv \mathcal{F} consists of all the lines that cut (or are contained in) Π . More generally, if \mathcal{F} consists of all the lines lying in a "slab" between two parallel planes, conv \mathcal{F} consists of \mathcal{F} plus all the lines transversal to that slab. This extends immediately to all the k-flats in \mathbb{R}^d lying on or between two parallel hyperplanes, or in a single hyperplane, plus all the k-flats crossing those hyperplanes. Such a convex set will, by extension, also be referred to as a *closed slab*. An *open slab*, similarly, consists of all the k-flats lying strictly between two parallel hyperplanes, plus all the k-flats crossing them. EXAMPLE 2.8. If a family \mathcal{F} of mutually non-parallel lines in \mathbb{R}^3 surround a line $F' \notin \mathcal{F}$, there must be at least a semi-circle of directions around F' in each of which a plane through F' can be translated to contain a line of \mathcal{F} ; if no member of \mathcal{F} is parallel to F', there is in fact an entire circle of such directions. In particular, it follows that no finite (or even countable) set \mathcal{F} of mutually non-parallel lines in \mathbb{R}^3 can surround another line, hence that every such set \mathcal{F} is convex. (Notice that this phenomenon does not occur in the usual convexity structure for points, since any two points are parallel!) EXAMPLE 2.9. Let \mathcal{F} be a (necessarily discontinuous) section of the tangent bundle to a 2-sphere in \mathbb{R}^3 , i.e., choose a line tangent to \mathbb{S}^2 at each point. Then conv \mathcal{F} consists of the original family \mathcal{F} together with all the lines meeting the interior of the sphere. (Here it does not matter whether \mathcal{F} includes any parallels.) EXAMPLE 2.10. Let $\Phi: F_0 \subset F_1 \subset \cdots \subset F_k$, where the inclusions are strict, be a (partial) flag of flats in \mathbb{R}^d . The affine Schubert variety $\Omega(F_0, \ldots, F_k)$ determined by Φ (see [13, 15] for the corresponding definition in the projective case), which consists of all the k-flats $F' \in \mathfrak{G}'_{k,d}$ with $\dim(F' \cap F_i) \geq i$ for all $i = 0, \ldots, k$, and the algebraic set $\Omega^0(F_0, \ldots, F_k)$ determined by the strict Schubert conditions coming from Φ , which consists of all the k-flats $F' \in \mathfrak{G}'_{k,d}$ with $\dim(F' \cap F_i) = i$ for all $i = 0, \ldots, k$, are both convex. Notice that these are affine, not projective, Schubert conditions: If F' and F_i are parallel for some i, then F' cannot belong to $\Omega(F_0, \ldots, F_k)$ or to $\Omega^0(F_0, \ldots, F_k)$. In \mathbb{R}^3 , for example, if F_0 is a point and F_1 a plane, $\Omega(F_0, F_1)$ and $\Omega^0(F_0, F_1)$ each consist of the planar pencil in F_1 through F_0 ; if F_0 is a line and F_1 a plane, $\Omega(F_0, F_1)$ consists of all the lines in F_1 meeting F_0 and $\Omega^0(F_0, F_1)$ of the same lines with the exception of F_0 itself. ## 3. Further properties. We collect here some additional properties of convex sets of k-flats, dealing principally with topological questions, with the relationships among convex sets of various dimensional flats, and with the preservation of convexity by various operations. We begin with a transitivity property that holds for the "surrounding" relation. PROPOSITION 3.1. Suppose $F' \subset G \subset H$ with F', G, H flats of dimensions k, l, m respectively, and suppose $\mathcal{F} \subset \mathfrak{G}'_{k,d}$. Let $\sigma_G : \mathbb{R}^d \to \mathbb{R}^{d-l}$ be projection along G. If (i) F' is surrounded by \mathcal{F} in G, and (ii) $\sigma_G(G)$ is surrounded by $\sigma_G(\mathcal{F}|
_G)$ in $\sigma_G(H)$, where $\mathcal{F}||_G$ consists of all the flats of \mathcal{F} parallel to G, then F' is surrounded by \mathcal{F} in H. PROOF: Let $H_0 \subset H$ be any (m-1)-flat containing F'. If $H_0 \supset G$ then apply σ_G ; the result then follows from (ii). If $H_0 \not\supset G$ then $H_0 \cap G$ must have dimension l-1, and the result follows from (i). Just as for point sets, convex subsets of $\mathfrak{G}'_{k,d}$ are closed under intersection. (Example 2.3 shows, however, that—unlike the situation for point sets—the union of an increasing chain of convex sets of k-flats may not be convex.) PROPOSITION 3.2. If $\mathcal{F}_{i} \subset \mathfrak{G}_{k,d}^{'}$ is convex for each $i \in I$ then $\bigcap_{i \in I} \mathcal{F}_{i}$ is convex. PROOF: Since $\mathcal{F}_i = \mathcal{F}_i^{**}$, we have $\bigcap \mathcal{F}_i = (\bigcup \mathcal{F}_i^*)^*$; the result then follows from Theorem 1.1. Moreover, convex sets are preserved under nonsingular affine transformation, under restriction to subspaces, and under restriction to direction: Proposition 3.3. Let $\mathcal{F} \subset \mathfrak{G}_{k,d}^{'}$ be convex. - (i) If $\sigma_k: \mathfrak{G}_{k,d}^{'} \to \mathfrak{G}_{k,d}^{'}$ is induced by $\sigma \in \mathbf{A}(d,\mathbb{R})$, then $\sigma_k(\mathcal{F})$ is convex. - (ii) If G is an l-flat in \mathbb{R}^d , the restriction $\mathcal{F}|_G$ of \mathcal{F} to G, consisting of all the members of \mathcal{F} that lie in G, is a convex subset of $\mathfrak{G}'_{k,l}$. (iii) If G is an l-flat in \mathbb{R}^d with $l \leq k$, then the set $\mathcal{F}|_G$ of all flats in \mathcal{F} parallel to G is convex. PROOF: (i) follows, for example, from Corollary 1.1 ((i) \iff (ii)) and the fact that the affine image of a convex point set is convex. - (ii) is immediate, by the surrounding criterion. - (iii) follows from the fact that any k-flat surrounded by $\mathcal{F}||_G$ must also be parallel to G. Notice that in Proposition 3.3 (ii) it is not true, in general, that $\mathcal{F}|_G$ is a convex subset of $\mathfrak{G}'_{k,d}$; see Example 2.7 above. The same example also shows that (iii) does not hold, in general, for l > k. DEFINITION 3.1. If S_1, S_2 are sets of convex point sets, we say that S_1 and S_2 are k-equivalent, $S_1 \sim_k S_2$, if $S_1^{**} = S_2^{**}$. The corresponding equivalence class of a set S is denoted by $[S]_k$. Thus a convex set $\mathcal{F} \subset \mathfrak{G}_{k,d}'$ is principal (resp. finitely presented) if $\mathcal{F}^* \sim_k \{S\}$ for some convex point set S (resp. $\mathcal{F}^* \sim_k \{S_1, \ldots, S_n\}$ for some S_1, \ldots, S_n). DEFINITION 3.2. If S_1, S_2 are sets of convex point sets, we say that $S_1 \prec_k S_2$ if $S_2^{*k} \subset S_1^{*k}$. Thus this weak partial order becomes a strong partial order, which we denote as well by \prec_k , on k-equivalence classes of sets of convex sets, by letting $[S_1]_k \prec [S_2]_k$ if $S_1 \prec S_2$. It is easy to see that, in general, there is no implication between k-equivalence and l-equivalence for sets of convex point sets; for example a convex point set may miss a point, yet meet every line through that point! But for closed convex point sets we have PROPOSITION 3.4. If S_1 and S_2 are sets of closed point sets, then $S_1 \sim_k S_2 \implies S_1 \sim_l S_2$ for l < k. PROOF: If S_1 has some l-flat F (l < k) as a transversal, then any k-flat G containing F is also a transversal to S_1 . But if S_2 did not have F as a transversal, then there would be a k-flat (in fact even a hyperplane!) G through F that missed S_2 (since S_2 is closed), contradiction. Thus for sets of closed sets, at least, the equivalence relation \sim_k gets finer as k goes up. Related to this is the notion of the core of a convex set. DEFINITION 3.3. If \mathcal{F} is a convex set in $\mathfrak{G}_{k,d}^{'}$ and l < k, the *l-core* \mathcal{F}_{l} of \mathcal{F} is the set of all flats of dimension l whose entire pencils of k-flats are contained in \mathcal{F} . We then have THEOREM 3.1. (i) If $\mathcal{F} \subset \mathfrak{G}'_{k,d}$ is convex and l < k then $\mathcal{F}_l \subset \mathfrak{G}'_{l,d}$ is convex; - (ii) (Transitivity:) If $\mathcal{F} \subset \mathfrak{G}_{k,d}'$ is convex and m < l < k then $(\mathcal{F}_l)_m = \mathcal{F}_m$; - (iii) If S consists of closed convex point sets and l < k then $(S^{*k})_l = S^{*l}$. PROOF: (i) Suppose L is an l-flat surrounded by \mathcal{F}_l within some flat $G \supset L$; we must show that $L \in \mathcal{F}_l$, i.e., that every k-flat F containing L lies in \mathcal{F} . If F lies in G, first, we claim that F is surrounded within G by members of \mathcal{F} . Take any codimension 1 subspace H of G containing F. Since L itself is surrounded by \mathcal{F}_l within G, there are codimension 1 subspaces H' and H'' of G parallel to and on both sides of H that contain l-flats L', L'' (resp.) in \mathcal{F}_l . But then, by the definition of \mathcal{F}_l , they also contain k-flats F', $F'' \in \mathcal{F}$, which proves the assertion in this case. On the other hand, if F does not lie in G, we claim that F is generically surrounded by members of F. Take any hyperplane H in \mathbb{R}^d containing F. Since H does not contain G, $H_0 = H \cap G$ is a codimension 1 subspace of G. Hence, as above, it lies between parallel subspaces H'_0 and H''_0 in G, each containing an l-flat L', L'' (resp.) belonging to \mathcal{F}_l . But then, by parallel extension, there are hyperplanes H' and H'' on both sides of H as well, containing L' and L'' (resp.), so that (again, as above) the assertion follows by the definition of \mathcal{F}_l . (ii) follows from the definitions, and (iii) is immediate from Proposition 3.4. Notice that (iii) ⇒ (i) if F is the dual of a set of closed convex point sets, but—as we have shown—(i) holds in general. (It is easy to see that (iii) does not.) Finally, we have the following result, which extends a property of convex point sets; for the definition of a "slab" see Example 2.7 above. THEOREM 3.2. If an open convex set $\mathcal{F} \subset \mathfrak{G}'_{k,d}$, with $k \leq d-2$, is not a slab, then the complement of \mathcal{F} is connected, and conversely. PROOF: The converse is immediate, since a slab splits the set of k-flats parallel to it into two disconnected sets. For the direct implication, suppose $F_1, F_2 \notin \mathcal{F}$. Then there is a hyperplane H_i containing F_i that "escapes to infinity", i.e., such that one open halfspace, say H_i^+ , contains no flat of \mathcal{F} . If $H_1 \not\parallel H_2$ then letting H_i' be the hyperplane parallel to H_i and one unit away that is contained in H_i^+ , we see that each of F_1, F_2 can be moved continuously to $H_1' \cap H_2'$ by a path of k-flats in H_1^+ (resp. H_2^+), so that F_1 and F_2 can be connected to each other by a path that stays outside \mathcal{F} . Suppose, then, that $H_1 \parallel H_2$. If there is any k-flat $F \subset H_1^- \cap H_2^-$ with $F \notin \mathcal{F}$ such that some hyperplane H containing F "escaping to infinity" is not parallel to H_1 and H_2 , we can connect each of F_1, F_2 to F as above. Hence we may assume that every k-flat $F \subset H_1^- \cap H_2^-$ with $F \notin \mathcal{F}$ has an escaping hyperplane $H \supset F$ with H parallel to H_1 and H_2 (and lying between them). Replacing one of H_1, H_2 by H, and continuing (and passing to the linit) if necessary, we arrive at the following situation: $F_i \subset H_i, H_1^+ \cap H_2^+ = \emptyset$, and every k-flat $F \subset H_1^- \cap H_2^-$ belongs to \mathcal{F} . But then \mathcal{F} contains the open slab determined by H_1 and H_2 , and it follows that \mathcal{F} must, in fact, be this slab, since no member of H_i^+ belongs to \mathcal{F} . # 4. Compact convex subsets of $\mathfrak{G}'_{k,d}$. The fact that convexity in $\mathfrak{G}_{k,d}'$ is not "domain finite" [12] for k > 0, i.e., that the convex hull of a set \mathcal{F} of k-flats is not the union of the convex hulls of its finite subsets, means that several standard facts valid for convex point sets do not hold for convex sets of higher-dimensional flats. For example, the closure of a convex set need not be convex (consider the set \mathcal{F} in Example 2.3), and the convex hull of a compact set of k-flats need not be compact (Example 2.6). The dualizing operator on point sets, moreover, does not preserve closed sets in general. If $S = \{(x,y) \in \mathbb{R}^2 \mid xy \geq 1 \text{ and } x > 0\}$ and $S = \{S\}$, then S^{*_1} contains the lines y = c for c > 0, but not the line y = 0. It does, however, preserve compactness: If S is a set of compact convex point sets in \mathbb{R}^d , then S^{*_k} is a compact convex subset of $\mathfrak{G}_{k,d}^{'}$, since for any $S \in S$ the set of all k-flats meeting S is compact. In addition, the Krein-Milman property for convex sets of points, that a compact convex set is the convex hull of its extreme points, holds for convex sets in $\mathfrak{G}'_{k,d}$ as well. DEFINITION 4.1. A k-flat F' is an extreme flat of a convex set $\mathcal{F} \subset \mathfrak{G}_{k,d}^{'}$ if (i) $F' \in \mathcal{F}$ and (ii) $F' \notin \text{conv}(\mathcal{F} \setminus \{F'\})$. The set of all extreme flats of \mathcal{F} is denoted by ext \mathcal{F} . For convex sets of points, this definition is equivalent to the one more commonly seen, that a point x is an extreme point of a convex set S if x is not contained properly in the convex hull of any pair of points of S. For k-flats, however, the corresponding condition would not be equivalent to the one in the definition, again because of the absence of domain-finiteness. This can be seen by looking at a slight modification of Example 2.2. In that example, replace the single ruling F by the line x = 2, z = y
(keeping the rest of F), and call the new family F'. It is then easily seen that the resulting convex set conv F' contains the line x = 0, y = 0, but that this line does not lie between two parallels belonging to conv F'. DEFINITION 4.2. For a compact convex set \mathcal{F} of k-flats we define a supporting hyperplane H to be one that contains at least one member of \mathcal{F} and which is such that one of the halfspaces determined by H meets all the members of \mathcal{F} . LEMMA 4.1. If \mathcal{F} is a compact convex subset of $\mathfrak{G}_{k,d}$ and H is a supporting hyperplane to \mathcal{F} , then ext $\mathcal{F}|_{H} \subset \operatorname{ext} \mathcal{F}$. PROOF: Recall (Proposition 3.3 (ii)) that $\mathcal{F}|_H$ is a convex set in the ambient space H. Suppose $F' \in \text{ext } \mathcal{F}|_H$. Then $F' \in \mathcal{F}|_H$, and $F' \notin \text{conv}_H(\mathcal{F}|_H \setminus \{F'\})$, where conv_H means the relative convex hull in H. In particular, $F' \in \mathcal{F}$, and we must show that $F' \notin \text{conv}(\mathcal{F} \setminus \{F'\})$. To begin with, F' cannot be generically surrounded by $\mathcal{F} \setminus \{F'\}$, since $F' \in H$ and H supports \mathcal{F} . For the same reason, F' cannot be surrounded by $\mathcal{F} \setminus \{F'\}$ within any flat G transversal to H. But if F' were surrounded by $\mathcal{F} \setminus \{F'\}$ within a flat $G \subset H$, then the surrounding flats would lie in H as well, and we would have $F' \in \operatorname{conv}_H(\mathcal{F} \setminus \{F'\})$. Hence $F' \notin \operatorname{conv}(\mathcal{F} \setminus \{F'\})$. LEMMA 4.2. Every non-empty compact convex set \mathcal{F} of k-flats contains at least one extreme flat. PROOF: This follows from Lemma 4.1 and Proposition 3.3 (ii) by induction on the dimension d of the ambient space. If d = k + 1, any k-flat $F \in \mathcal{F}$ can be translated as far as possible (in either direction) to an extreme k-flat. For d > k + 1, choose a k-flat $F \in \mathcal{F}$ and a hyperplane H containing F, and translate H as far as possible to a supporting hyperplane H'. Proposition 3.3 (ii) (applied to the set $\mathcal{F}|_{H'}$), the induction hypothesis (applied to H', which is of dimension d-1), and Lemma 4.1 (applied to the resulting extreme flat) then give the result. THEOREM 4.1. If \mathcal{F} is a compact convex subset of $\mathfrak{G}'_{k,d}$ then $\mathcal{F} = \operatorname{conv}(\operatorname{ext} \mathcal{F})$. PROOF: Since ext $\mathcal{F} \subset \mathcal{F}$ and \mathcal{F} is convex, it is immediate that $\mathcal{F} \supset \text{conv}(\text{ext } \mathcal{F})$. For the opposite inclusion, we must show that each $F' \in \mathcal{F}$ is surrounded by extreme flats of \mathcal{F} in some flat G. If F' is extreme, we are done. If not, then by definition $F' \in \operatorname{conv}(\mathcal{F} \setminus \{F'\})$. Suppose first that F' is generically surrounded by $\mathcal{F} \setminus \{F'\}$, i.e., in \mathbb{R}^d . Then any hyperplane H through F' can be moved a positive distance in either direction so as to contain some member of $\mathcal{F} \setminus \{F'\}$. Choose either direction; then—by the compactness of \mathcal{F} and the fact that H is moving away from F'—we can move H to a farthest hyperplane H' in the same direction that contains members of $\mathcal{F} \setminus \{F'\}$. H' will thus be a supporting hyperplane of \mathcal{F} , hence by Lemmas 4.1 and 4.2 and Proposition 3.3 (ii) will contain at least one extreme flat of \mathcal{F} . Since this holds for every hyperplane H through F', we have shown in this case that F' is surrounded by ext \mathcal{F} . Now suppose F' is surrounded by $\mathcal{F} \setminus \{F'\}$ in some flat G of dimension A, but not in \mathbb{R}^d . Then, in particular, some hyperplane A through A must support A. Now A must be contained in A, since otherwise A would extend on both sides of A, and the fact that A is surrounded by A in A would contradict the fact that A is a supporting hyperplane. Let A be the set of all members of A lying in A; in particular, A is a convex set of A flats in the ambient space A. Notice that A is still surrounded by A in A in A in A in the dimension of the ambient space, it therefore follows that A in the therefore have A in A in A in the theorem is proved. ## 5. Minimal and irredundant presentations. DEFINITION 5.1. If \mathcal{F} is a convex set of k-flats in \mathbb{R}^d and \mathcal{S} a family of convex point sets, we say that the presentation $\mathcal{F} = \mathcal{S}^*$ is *irredundant* if $\mathcal{F} \subsetneq \mathcal{S}_0^*$ for every proper subset \mathcal{S}_0 of \mathcal{S} . On the other hand, if \mathcal{S}^* becomes strictly smaller whenever any $\mathcal{S} \in \mathcal{S}$ is replaced by a proper subset, we say that the presentation $\mathcal{F} = \mathcal{S}^*$ is minimal. It is easy to see that not every convex set $\mathcal{F} \subset \mathfrak{G}'_{k,d}$ has a presentation that is both minimal and irredundant: In \mathbb{R}^2 , for example, let \mathcal{F} consist of two parallel lines, l_1 and l_2 , together with all the lines lying between them; then one sees easily that any set of segments joining points of l_1 and l_2 and going to infinity in either direction gives a minimal presentation of \mathcal{F} , but that such a presentation can never be irredundant since we can always remove a finite subset of it without enlarging the dual beyond \mathcal{F} . If \mathcal{F} is finitely presented by compact convex point sets, however, we can prove PROPOSITION 5.1. If $\mathcal{F} \subset \mathfrak{G}'_{k,d}$ is the dual of a finite set \mathcal{S} of compact convex point sets, then \mathcal{S} can be refined to a family \mathcal{S}_1 of compact convex point sets giving a minimal, irredundant presentation of \mathcal{F} . PROOF: The fact that each $S \in \mathcal{S}$ can be reduced to a minimal set follows easily from Zorn's lemma if we observe that the intersection of any descending chain of compact convex point sets each transversal to \mathcal{F} is also transversal to \mathcal{F} , by the compactness of the intersection of each set with each member of \mathcal{F} . Notice that if we replace each member of S by such a minimal compact convex set, and call the resulting collection S_0 , then we still have $S_0^* = \mathcal{F}$; this is clear since $S_0^* \subset \mathcal{F}$ on general principles, yet each member of S_0 is transversal to all of \mathcal{F} . Finally, removing redundant members of S_0 one at a time, we reach an irredundant set $S_1 \subset S_0$, each of whose members is still a minimal compact convex point set meeting all the flats in \mathcal{F} . In the special case where \mathcal{F} is a finite subset of $\mathfrak{G}_{d-1,d}^{'}$ consisting of hyperplanes in general position (such a set is convex by the surrounding criterion), we have THEOREM 5.1. If \mathcal{F} is a finite subset of $\mathfrak{G}'_{d-1,d}$ consisting of hyperplanes in general position, then \mathcal{F} has a finite, minimal, irredundant presentation by compact convex point sets. PROOF: By Proposition 5.1, it is enough to show that \mathcal{F} is finitely presented by compact convex point sets. We will actually describe such a presentation that is minimal. Let F_1, \ldots, F_n be the members of \mathcal{F} , and let us assume to begin with that each $F_i \in \mathcal{F}$ passes through the origin O. In that case let $l_i, i = 1, \ldots, n$ be the line through O orthogonal to F_i , and let $\{x_i, x_{n+i}\}$ be the intersection of l_i with the unit sphere S^{d-1} centered at O. By straightforward techniques, we can find a centrally-symmetric triangulation of S^{d-1} having the points x_1, \ldots, x_{2n} as its complete vertex set. For each facet Δ_j of this triangulation $(j = 1, \ldots, 2N, \text{ with antipodal facets numbered } \Delta_j, \Delta_{N+j})$, choose a point $y_j \in \text{int } \Delta_j$ (taking care to choose the antipodal point \overline{y}_{N+j} for the facet antipodal to Δ_j) and let G_j be the hyperplane through O orthogonal to the line $y_j y_{N+j}$. The resulting hyperplanes G_1, \ldots, G_N have the following properties: (i) $G_j \notin \mathcal{F}$ for $j = 1, \ldots, N$; (ii) every hyperplane G in general position with respect to \mathcal{F} is equivalent to a unique G_j in the sense that the line I through O orthogonal to G cuts S^{d-1} in a pair of points belonging to the same antipodal pair of facets (Δ_j, Δ_{N+j}) as the intersection with S^{d-1} of the line through O orthogonal to G_j . For each $j=1,\ldots,2N$, let H_j be the hyperplane tangent to \mathbf{S}^{d-1} at y_j (so that H_j and H_{N+j} are each parallel to G_j and on opposite sides of it), and let Σ_j, Σ_{N+j} be the simplices formed by intersecting these two hyperplanes with the hyperplanes F_i whose normals l_i pass through the vertices of Δ_j ; each Σ_j ($j=1,\ldots,2N$) is the projection from O into H_j of the simplex on \mathbf{S}^{d-1} polar to Δ_j . For each $j=1,\ldots,2N$, choose a point on every (relatively open) facet of Σ_j , and choose these points so that each lies sufficiently close to a distinct vertex of Σ_j . Then the convex hull S_j of these points is itself a simplex inscribed in Σ_j , and approximates Σ_j . Let $S = \{S_1, \ldots, S_{2N}\}$. We claim that $\mathcal{F} = S^*$ and that the sets in S are minimal with this property. It is clear from the construction that each S_j , $j=1,\ldots,2N$, meets every member of \mathcal{F} : S_j has for its vertices points chosen from the flats F_i that provide the boundary of Σ_j , and meets the remaining flats F_i , all of which cut Σ_j , since S_j approximates Σ_j .
It is also clear that if we shrank any S_j to a smaller set S'_j , S'_j would miss some $F_i \in \mathcal{F}$ that provides one of the bounding facets of Σ_j . To finish the proof (in the case where each $F_i \in \mathcal{F}$ passes through O) we must therefore show that any hyperplane $G \notin \mathcal{F}$ misses some S_j . Suppose first that G passes through O and is in general position with respect to \mathcal{F} . Then, as observed above, G is equivalent to one of the hyperplanes G_j , $j=1,\ldots,N$. Since the line l through O orthogonal to G can be moved continuously to the line l_i without leaving the simplex pair Δ_j, Δ_{N+j} , it follows that G can be moved continuously to G_j without passing through the simplex-pair Σ_j, Σ_{N+j} . Since S_j, S_{N+j} are inscribed in Σ_j, Σ_{N+j} respectively and G_j separates them, it follows that G misses both S_j and S_{N+j} and separates them as well. If G passes through O but is not in general position with respect to \mathcal{F} , the same result follows from the observation that while G may now "touch" Σ_j and Σ_{N+j} , it still misses S_j and S_{N+j} , and in fact still separates them, since S_j , S_{N+j} are "strictly inscribed" in Σ_j , Σ_{N+j} respectively: Since each vertex of S_j is a point in the relative interior of Σ_j , the only way a hyperplane through O missing int Σ_j can pass through that vertex is to contain a full facet of Σ_j , i.e., to belong to \mathcal{F} . Finally, if G does not pass through O, it is parallel to a hyperplane G' that does, hence—assuming that G' lies between S_j and S_{N+j} and misses both—G will have to miss either S_j or S_{N+j} . (If G is parallel to $F \in \mathcal{F}$ then we need only observe that if any S_j touches F on one side then S_{N+j} touches it on the other, hence G misses either S_j or S_{N+j} .) We have now proved the theorem in the special case where all the $F_i \in \mathcal{F}$ pass through O. If they do not, by rescaling we may assume that all the $F_i \in \mathcal{F}$ pass within some $\epsilon \ll 1$ of O and, rescaling further, that the intersections of any subset also pass within ϵ of O. We now proceed as before, choosing our triangulation of \mathbf{S}^{d-1} based on the directions of the planes in \mathcal{F} , but choosing each representative hyperplane G_j $(j=1,\ldots,N)$ so as to pass through the intersection v_j of the hyperplanes whose normals pass through the vertices of Δ_j . Any plane in general position is then parallel to a plane equivalent to one of the G_j 's. We again choose H_j and H_{N+j} at unit distance from G_j , and Σ_j and S_j $(j=1,\ldots,2N)$ as before. The argument is then the same as before, except that O is replaced by v_j . \square REMARK 5.1. One sees easily that if \mathcal{F} consists of n hyperplanes then the construction in the proof of Theorem 5.1 yields a presentation of \mathcal{F} by precisely $2(d-1)(n-d)+2^d$ convex point sets. In general, as we have seen (Example 2.7), a set \mathcal{F} of k-flats lying in an l-flat G in \mathbb{R}^d may "surround" flats not contained in G. But if \mathcal{F} is finite we have COROLLARY 5.1. If \mathcal{F} is a finite set of k-flats in (relatively) general position in a (k+1)-flat G, then \mathcal{F} has a finite, minimal, irredundant presentation by compact convex sets, and these can be chosen to lie in G as well. PROOF: This follows immediately from Theorem 5.1, with d = k+1, as soon as we observe that if a k-flat not contained in G met all of the convex point sets constructed in the proof of that theorem then its intersection H with G, which has dimension $\leq k-1$, would also meet them, and the same would then hold for the entire infinite pencil of k-flats in G through H, contradicting the finiteness of \mathcal{F} . In the special case of lines in the plane we have the following particularly "pretty" presentation: COROLLARY 5.2. If \mathcal{F} is a set of n lines in the plane, no two parallel, then \mathcal{F} has a minimal, irredundant presentation by 2n line segments forming a 2n-pointed star if n is even and two n-pointed stars if n is odd. PROOF: We carry out the construction of Theorem 5.1 in a special way. Number the lines from 1 to n in order of their slopes, and let the two half-lines on l_i based at (say) the closest point of l_i to O be r_i, r_{n+i} , with the numbering from 1 to 2n being in order of direction. Let Γ be a large circle centered at O, and for each i, $1 \le i \le 2n$, let $p_i = r_i \cap \Gamma$. For each j, $1 \le j \le 2n$, let S_j be the line segment joining p_j and p_{n+j} . As in Theorem 5.1, the set S consisting of these segments S_j provides a minimal presentation of F by compact convex point sets, which is in fact already irredundant in this case, since removing S_j from S would allow the line extending S_{n+j} to meet all the remaining sets in S. If one draws the figure, one sees immediately that if n is even the segments S_1, \ldots, S_{2n} form a 2n-pointed star inscribed in Γ , while if n is odd they form two "opposite" n-pointed stars inscribed in Γ . We do not know if the result corresponding to Theorem 5.1 holds more generally in $\mathfrak{G}_{k,d}^{'}$, for k < d-1. ### 6. Parallel-closed sets and convex partitions. One phenomenon that distinguishes convexity for higher-dimensional sets of flats from convexity for point sets is the existence of non-trivial parallel-closed convex sets. In the case of point sets, since all points are parallel, there are no parallel-closed sets beyond the empty set and the entire ambient space; in $\mathfrak{G}'_{k,d}$ there are many between these two extremes. Proposition 6.1 provides a characterization of those that are convex. DEFINITION 6.1. A set \mathcal{F} of k-flats in \mathbb{R}^d is called parallel-closed if $F,G\in \mathfrak{G}_{k,d}^{'}, F\in \mathcal{F},$ $G\parallel F\implies G\in \mathcal{F}.$ The direction set $\delta(\mathcal{F})$ of \mathcal{F} is the set of all (k-1)-flats in \mathbb{P}^{d-1} obtained by applying to the flats in \mathcal{F} passing through O the canonical mapping $\delta:\mathbb{R}^d\setminus\{O\}\to\mathbb{P}^{d-1}.$ PROPOSITION 6.1. A parallel-closed set $\mathcal{F} \subset \mathfrak{G}'_{k,d}$ is convex if and only if every (k-1)-flat not in $\delta(\mathcal{F})$ is contained in a hyperplane in \mathbf{P}^{d-1} that contains no members of $\delta(\mathcal{F})$. (In particular, a parallel-closed set $\mathcal{F} \subset \mathfrak{G}'_{1,3}$ is convex if and only if $\delta(\mathcal{F})$ is the complement of a union of lines.) PROOF: By Corollary 1.1, if \mathcal{F} is convex then for any $F \notin \mathcal{F}$ there is a co-flat of F that contains \mathcal{F} , hence a hyperplane H containing F that has no members of \mathcal{F} strictly on one side of it. Since \mathcal{F} is parallel-closed, it follows that no member of \mathcal{F} can be parallel to H, so that the hyperplane in \mathbf{P}^{d-1} corresponding to H contains no members of $\delta(\mathcal{F})$. Conversely, given any $F \notin \mathcal{F}$ it follows from the given condition that there is a hyperplane H in \mathbb{R}^d parallel to F and containing no members of \mathcal{F} , and—since \mathcal{F} is parallel-closed—H can be taken to pass through F itself. Again, since \mathcal{F} is parallel-closed, any co-flat of F with hyperplane H will also contain no member of \mathcal{F} , and the convexity of \mathcal{F} again follows from Corollary 1.1. We get, as an immediate corollary, that it is impossible to partition $\mathfrak{G}'_{k,d}$ into fewer than d-k+1 parallel-closed convex sets. COROLLARY 6.1. If $\mathfrak{G}'_{k,d} = \bigcup_{i=1}^n \mathcal{F}_i$ is a partition of $\mathfrak{G}'_{k,d}$ into parallel-closed convex sets, then either n = 1 or $n \geq d - k + 1$. PROOF: If n > 1 then since each \mathcal{F}_i provides at least one hyperplane in \mathbf{P}^{d-1} containing no member of $\delta(\mathcal{F}_i)$, $n \leq d-k$ would imply that the intersection of these hyperplanes, which has dimension at least $(d-1)-n \geq k-1$, would be large enough to contain at least one (k-1)-flat, so that the sets \mathcal{F}_i could not cover $\mathfrak{G}'_{k,d}$. On the other hand, it is not difficult to see that $\mathfrak{G}'_{k,d}$ can be partitioned into $\binom{d-1}{k}+1$ parallel-closed convex sets. The following decomposition of \mathbf{P}^{d-1} into Schubert cells provides such a partition. PROPOSITION 6.2. Let $G_0 \subset G_1 \subset \cdots \subset G_{d-1}$ be a flag of subspaces of \mathbf{P}^{d-1} , with $\dim G_i = i$, and set $G_{-1} = \emptyset$. Let S be the set of all subsets $\{i_0, \ldots, i_{k-1}\}$ with $i_0 < \cdots < i_{k-1}$ of the integers $0, \ldots, d-1$, and let S_{d-1} consist of all k-sets $i_0 < \cdots < i_{k-1}$ in S with $i_{k-1} = d-1$. For each element $\sigma = \{i_0, \ldots, i_{k-1}\}$ of S, put $i_{-1} = 1$ and $i_k = d$ and let Φ_{σ} be the Schubert cell defined by $$\Phi_{\sigma} = \{ \phi \in \mathfrak{G}_{k-1,d-1} \mid \dim \phi \cap G_i = j \text{ for } i_j \leq i < i_{j+1}, \ -1 \leq j \leq k-1 \}.$$ Let $\mathcal{F}_{\sigma} = \delta^{-1}(\Phi_{\sigma})$. Then each \mathcal{F}_{σ} is a parallel-closed convex set of k-flats, as is the union $$\mathcal{F}_{d-1} = \bigcup \mathcal{F}_{i_0,\ldots,i_{k-2},d-1},$$ and $$\mathfrak{G}_{k,d}^{'} = (\bigcup_{\sigma \in S \setminus S_{d-1}} \mathcal{F}_{\sigma}) \cup \mathcal{F}_{d-1}$$ is a partition of $\mathfrak{G}'_{k,d}$ into $\binom{d-1}{k} + 1$ parallel-closed convex sets. PROOF: This follows from Proposition 6.1; we omit the details, which are straightforward. REMARK 6.1. The partition of $\mathfrak{G}_{k,d}'$ provided by Proposition
6.2 is not full-dimensional, i.e., the sets \mathcal{F}_{σ} , for $\sigma \in S \setminus S_{d-1}$, all have lower dimension than \mathcal{F}_{d-1} ; in particular this holds even for $\mathfrak{G}'_{1,3}$, where Proposition 6.2 yields a partition into three parallel-closed convex sets (the minimum attainable, according to Corollary 6.1). It is possible also to describe a partition of $\mathfrak{G}'_{1,3}$ into three full-dimensional parallel-closed convex sets. This can be achieved by appropriately 3-coloring the faces, edges, and vertices of an octahedron centered at the origin in \mathbb{R}^3 , and taking for $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2$ the sets of lines joining the origin to the points in each color class, so as to satisfy the condition at the end of Proposition 6.1. The conditions needed on the coloring turn out to be that (i) the color of each vertex agrees with that of some incident edge; (ii) the color of each edge agrees with that of some incident face; and (iii) whenever a vertex and an incident face have the same color then every edge incident to both has the same color as well. We do not know whether this construction can be generalized. In the case of $\mathfrak{G}'_{1,3}$, Corollary 6.1 can be strengthened to show that there is no partition into two convex subsets, parallel-closed or not. PROPOSITION 6.3. The lines in R³ cannot be partitioned into two non-empty convex sets. PROOF: Suppose $\mathfrak{G}_{1,3}' = \mathcal{F}_1 \cup \mathcal{F}_2$ is such a partition, and suppose $F_1 \in \mathcal{F}_1$ and $F_2 \in \mathcal{F}_2$ are such that $F_1 \parallel F_2$. By Proposition 3.3 (iii), the members of each set \mathcal{F}_i parallel to F_1 themselves form a convex set of lines; call these sets $\mathcal{F}_1', \mathcal{F}_2'$ (resp.). Since the two convex point sets obtained by projecting $\mathcal{F}_1', \mathcal{F}_2'$ into a plane orthogonal to F_1 are disjoint, they can be (weakly) separated by a line in that plane. Hence $\mathcal{F}_1', \mathcal{F}_2'$ themselves can be (weakly) separated by a plane H in \mathbb{R}^3 ; i.e., the lines of \mathcal{F}_1 lie in one closed halfspace of H, say H^+ , and those of \mathcal{F}_2 in the other, H^- . It follows that if F_1' (resp. F_2') is any member of \mathcal{F}_1 (resp. \mathcal{F}_2) parallel to H then $F_1' \subset H^+$ (resp. $F_2' \subset H^-$), for otherwise, if (say) $F_1' \subset \operatorname{int} H^-$, any member of \mathcal{F}_2 sufficiently close to H would be surrounded by the lines in $\mathcal{F}_1 \cup \{F_1'\}$, hence would have to belong to \mathcal{F}_1 . Thus H (weakly) separates all the lines parallel to it: those of \mathcal{F}_1 lie in H^+ , and those of \mathcal{F}_2 in H^- . But then any line that crosses H is surrounded by both \mathcal{F}_1 and \mathcal{F}_2 , which is impossible. Hence each direction contains only lines from one of the sets $\mathcal{F}_1, \mathcal{F}_2$, so we are done by Corollary 6.1. In addition to narrowing the gap between the results of Corollary 6.1 and Proposition 6.2, it would also be interesting to know whether Proposition 6.3 can be extended to the corresponding statement for $\mathfrak{G}'_{k,d}$. We venture Conjecture 6.1. $\mathfrak{G}_{k,d}'$ cannot be partitioned into fewer than d-k+1 non-empty convex sets. ### 7. Open questions. In addition to several questions and conjectures posed earlier, we list here six problems whose solution will be important for the further development of the ideas presented here. PROBLEM 7.1. Probably the most important problem to resolve concerns the separation theorem for convex sets, which—for point sets—asserts (in one version) that any two disjoint convex sets can be separated by a hyperplane; if one adds the assumption that the sets are compact, the conclusion can be strengthened to "strictly separated". Is there a corresponding "separation theorem" for convex sets in $\mathfrak{G}'_{k,d}$? The point-set version of the theorem can be stated: If S_1, S_2 are disjoint convex sets, each S_i can be enlarged to a convex set \overline{S}_i so that $\overline{S}_1, \overline{S}_2$ partition \mathbb{R}^d . But as Proposition 6.3 shows, already in the case of $\mathfrak{G}'_{1,3}$, no such partition of $\mathfrak{G}'_{k,d}$ into two convex sets may be possible for k > 0. Perhaps the fact that a partition into $\binom{d-1}{k} + 1$ convex sets can always be found (see Proposition 6.2 and Remark 6.1) can be used to find the "correct" generalization of the separation theorem to k-flats. PROBLEM 7.2. A second open problem relates to connectedness. We have observed above (Example 2.8) that convex sets on $\mathfrak{G}'_{k,d}$ need not, in general, be connected. But what if we take the convex hull of a connected set of k-flats—must such a set be connected? It is not hard to see that this question is equivalent to asking whether a connected component of a convex set must necessarily be convex. PROBLEM 7.3. As pointed out in §4, the closure of a convex set in $\mathfrak{G}'_{k,d}$ need not be convex, and the convex hull of a closed (even a compact) set need not be closed. To define the "closed convex hull" of a set \mathcal{F} of k-flats, we must therefore take the limit of the sequence $$\dots (\operatorname{cl} (\operatorname{conv} (\operatorname{cl} (\operatorname{conv} \mathcal{F}))))\dots$$ Does this sequence of iterations stop after a finite number of steps, the number depending only on k and d? PROBLEM 7.4. A question about the relation between compact point sets and their k-duals that we have been unable to answer is: If a finitely presented convex set of k-flats is compact, must it have a finite presentation by compact sets of points? (It is easy to see that the converse is true.) PROBLEM 7.5. Corollary 5.2 shows that a finite set of lines in the plane without parallels is finitely presented. Does the converse hold, in the sense that a finitely presented set of lines in the plane without parallels must be finite? More generally, if a set of hyperplanes in \mathbb{R}^d in general position is finitely presented, must it be finite? (This would be a converse to Theorem 5.1.) Finally, here is a problem of a combinatorial nature about lines in "convex position": PROBLEM 7.6. A result of Erdős and Szekeres [5] says that from any set of $\binom{2n-4}{n-2}$ points in general position in the plane one can always select n points in convex position, i.e., extreme points of some convex body (e.g., their convex hull). Does a similar result hold for lines in \mathbb{R}^2 (or, more generally, for k-flats in \mathbb{R}^d ?): is there a number f(k,d,n) such that from any set of f(k,d,n) k-flats in general position in \mathbb{R}^d we can always select n which are in "convex position", i.e., which support some convex body? ### REFERENCES - 1. N. Alon and G. Kalai, in preparation. - 2. N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger Debrunner (p,q)-problem, Advances in Math. 96 (1992), 103-112. - H. Busemann, G. Ewald, and G. C. Shephard, Convex bodies and convexity on Grass-mann cones, I-XI, Abh. Math. Sem. Univ. Hamburg, Ann. Mat. Pura Appl., Arch. Math., Enseignement Math., J. London Math. Soc., Math. Ann., Math. Scand. (1962, 1963, 1964, 1965, 1969). - 4. S. Cappell, J. E. Goodman, J. Pach, R. Pollack, M. Sharir, and R. Wenger, Common tangents and common transversals, to appear, Advances in Math.. - 5. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470. - 6. H. Gluck and F. W. Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983), 107-132. - J. E. Goodman and R. Pollack, Hadwiger's transversal theorem in higher dimensions, J. Amer. Math. Soc. 1 (1988), 301-309. - J. E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in "New Trends in Discrete and Computational Geometry," J. Pach, Ed., Springer-Verlag, Berlin, 1993, pp. 163-198. - 9. B. Grünbaum, "Arrangements and Spreads," Amer. Math. Soc., Providence, 1972. - H. Hadwiger, H. Debrunner, and V. L. Klee, "Combinatorial geometry in the plane," Holt, Rinehart and Winston, New York, 1964. - 11. P. C. Hammer, Maximal convex sets, Duke Math. J. 22 (1955), 103-106. - 12. P. C. Hammer, Semispaces and the topology of convexity, in "Convexity, Proc. Symp. Pure Math.," Amer. Math. Soc., Providence, 1963, pp. 305-316. - 13. W. V. D. Hodge and D. Pedoe, "Methods of Algebraic Geometry," Cambridge Univ. Press, Cambridge, 1952. - 14. V. L. Klee, The structure of semispaces, Math. Scand. 4 (1956), 54-64. - 15. S. L. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082. - L. Santaló, Un teorema sóbre conjuntos de paralelepipedos de aristas paralelas, Publ. Inst. Mat. Univ. Nac. Litoral 2 (1040), 49-60. City College, City University of New York, New York, NY 10031 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012