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Abstract

Let R be a real closed field and V a variety of real dimension &’
which is the zero set of a polynomial Q € R[Xy,..., X)] of degree
at most d. Given a family of s polynomials P = {Py,..., P} C
R[X3,...,X};] where each polynomial in P has degree at most d, we
prove that the number of cells defined by P over Vis (;)(O(d))*. Note
that the combinatorial part of the bound depends on the dimension
of the variety rather than on the dimension of the ambient space.

1 Introduction:

1.1 Notation

A sign condition for a set of s polynomials P = {P,,...,P,} is a vector
o € {—1,0,+1}° and the sign condition ¢ is called strict if ¢ € {—1,+1}".
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We call the sign condition o non-empty over a variety V with respect
to P if there is a point * € V which realizes the sign condition, i.e.,
(sign(Py(z), ... ,sign(P,(z))) = 0.

The set, opy = {z|z € V,(sign(Pi(z)),...,sign(Ps(x))) = o} is the
realization space of o over V with respect to P and its non-empty semi-
algebraically connected components are the cells of the sign condition o for
P over V. The number of these cells is denoted by |op v| and thus

C(P,V)= 3 lopyl
ap v#d

is the number of cells defined by P over V.

We write f(d,k,k’,s) for the maximum of C(P,V) over all varieties,
VY C RF of dimension k', defined by polynomial equations of degree at most
d and over all P consisting of s polynomials in k variables, each of degree
at most d.

Remark 1: It is no restriction to consider only varieties defined by a
single polynomial. If the variety is the zero set of a finite family of poly-
nomial Q we can just as well consider the zero set of the single polynomial

Q = EqEQ q2.

1.2 Background

Previous work considered only the case k¥ = k’. In particular, the problem
of determining the complexity of an arrangement of s hyperplanes in RF,
which is the same as determining f(1,%,k, s), is well known to be ©( (Z))
(see [8] for example). This bound has played an important role in discrete
and computational geometry for many years.

For f(d,k,k,s), the best bound had been (sd)°¥) | which was based on
a result of Heintz [10]. Since the set of cells of sd hyperplanes is the same
as the set of cells of s polynomials, each the product of d of the given
linear polynomials, a lower bound of Q( (’:)) follows. This lower bound was
recently shown to be an upper bound as well [14].

For the case f(1,k,k’,s), the variety is a k’-flat and we can linearly
eliminate k — &’ variables. This reduces the problem to that of bounding
FOLK, K, 5) =0((3)-

Our result is



Theorem 1 f(d,k,k',s) = (})(O(d))*.

The main contribution of this paper is that the bound ( ]:,) on the com-
binatorial part of f(d,k,k’,s) depends only on k' and not at all on k. We
have seen that this bound is sharp for the case d = 1. The bound of (O(d))*
on the algebraic part of f(d,k,k’,s) is also sharp in the case ¥’ = 0 and
matches the known upper bounds for arbitrary k' that follow from the well
known results of Milnor-Oleinik-Petrovsky-Thom [11,12,13,16].

The ideas that make possible the separation of this bound into a com-
binatorial part and an algebraic part have also played a key role in recent
improvements for related algorithmic problems [1,2,3,5,6,7].

Our bound has proved useful in a recent result in geometric transversal
theory [9]. There, the relevant variety V is the Grassmannian G4 of k
subspaces of R¢.

1.3 Outline of the Argument

In our argument, we perturb the polynomials using various infinitesimals.
We then use basic properties of the field of Puiseux series in these infinites-
imals. We write R({e) for the real closed field of Puiseux series in € with
coefficients in R [4]. This field is uniquely orderable in the following way:
the sign of an element in this field agrees with the sign of the coefficient of
its lowest degree term in €. This order makes € positive and smaller than
any positive element of R. We also iterate this notation in the usual way
so that R{e;, e2) = R(e1)(e2) and, thus, 1 > € > € i.e., € is smaller than
any positive element of R and e, is positive and smaller than any positive
element in R(e;). The valuation ring, V, consists of those Puiseux series
that are bounded over R i.e., the Puiseux series with no negative powers of
e. The map eval, : V — R maps an element of V to its constant term.

If R’ is a real closed field extending R, and S is a semi-algebraic set
defined over R, then we denote by Sgrs the solution set in R’ of the same
polynomial equalities and inequalities that define S. Both S and Sg/, the
extension of S to R', have the same number of semi-algebraically connected
components [4].

Throughout the paper, a cell of a semi-algebraic S set will be a non-
empty semi-algebraic connected component of S (see [4]).



The idea of the proof of our theorem is to first observe (in Proposition
1) that the extension of every cell of a sign condition for P over V to R(e)
contains a cell of an algebraic set defined by a set of equalities chosen from
the extended family of polynomials P’ = Upep{P — ¢, P, P + €}. Thus, the
cells defined by P on V are all accounted for by counting the number of
cells in each algebraic set determined by @ and some subset of P’. Recall
that, by the Milnor-Oleinik-Petrovsky-Thom bounds [11,12,13,16], any of
these algebraic sets has at most O(d)* cells. We make the observation that
if the family P’ is in general position with respect to V, i.e., no more than
k' polynomials of P’ have a common zero on V, then the number of cells
defined by P on V is at most (2?) O(d)* and our claimed bound would follow.

With this in mind, we perturb the set of polynomials P with infinites-
imals 6; > ... > 6, > § to obtain the family of polynomials P* =
Ui<ic<s{Pi — 6;, P, + 6;, P — 86;, P; + 66;} and show, in Proposition 2, that
P* is in general position with respect to V so that we obtain the claimed
bound for the family P*. We then show (Proposition 4) that the exten-
sion of every cell defined by P over V to R(6;...6,) contains the image
under the evals map of a cell of this perturbed family. Since we also know
(Proposition 3) that the eval map takes semi-algebraically connected sets
to semi-algebraically connected sets, it follows that the number of cells of
this perturbed family P* bounds the number of cells of the original family
P.

We wish to acknowledge many useful conversations with Michel Coste.

2 Propositions and Proofs

Proposition 1 Let C be a cell of a semi-algebraic set of the form P, =
e..=P,=0,Pyy >0,...,P, >0, then we can find an algebraic set V in
R(e)* defined by equations P, =...=P, =P, —e=...P,, —e=0, such
that a cell of V', say C’, is contained in Cry.

Proof: If C is closed, it is a cell of the algebraic set defined by P, = ... =
P, = 0. If not, consider I', the set of all semi-algebraic paths v in R* going
from some point () in C to a y(y) in C'\ C such that v\ {y(7)} is entirely
contained in C. For each v € T, there is an ¢ > £ such that P; vanishes at
y(7). Then on 7g(y there is a point z(7,€) and an ¢ > £ such that P, — €
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vanishes at z(7, €) and that on the portion of the path between z and z(7, €)
no such P; — € with ¢ > ¢ vanishes. Let I, = {i|i > ¢, Pi(z(v,¢)) — € = 0}.

Now choose a path v € T so that the set I, = {1,...,n} is maximal under
set inclusion and let V be defined by P, = ... = P, =F, —e = ... =
P, —e=0.

It is clear that at z(7,€), defined above, we have Ppyq > 0,...,P; > 0
and P; — e > 0 for every j ¢ I, which is > £. Let C’ be the cell of V
containing z(-y, €). We shall prove that no polynomial P41, ..., Ps vanishes
on this cell , and thus that C’ is contained in Cg(y. Suppose not, then some
new P, (i > £,1 & L,) vanishes on C’, say at y.. We can suppose without loss
of generality that the coordinates of y, are algebraic over R[e]. Take a semi-
algebraic path 7. defined over R[e] connecting z(7,€) to y. with v C C".
Denote by z(v., €) the first point of v with Py = ... =P, =P, —e=... =
P, —e= P; — e =0 for some new j not in L,.

For ¢t in R small enough, the set v, (obtained by replacing € by t in
~.) defines a semi-algebraic path from 2z(7,t) to z(v.,t) contained in C.
Replacing € by t in the Puiseux series which give the coordinates of z(7e, €)
defines a path v’ containing z(7e, €) from z(7., ) to y = eval(z(7., €)) (which
is a point of C'\ C). Let us consider the new path ¥ consisting of the
beginning of v (up to the point 2, for which P;, = ..., P, =t), followed by
+; and then followed by 7’. Now the first point in v* such that there exists
a new j with P; — € = 0 is 2(7, €) and thus v* € ' with L. strictly larger
than I,. This is impossible by the maximality of L,. O

Remark 2: Somewhat more is true. It is easy to see that eval (C') # 0.
That is to say that C’ contains points bounded over K. In consequence,
if we know that P is in general position with respect to V we need only
consider the zero sets of at most k' polynomials chosen from P’. If more
than k' polynomials in P’ had a common zero bounded over R, then its eval
would be a point on V satisfying more than k' polynomials in P which is
impossible. This does not mean that if P is in general position with respect
to V then P’ is in general position with respect to V. It only means that
these additional zeros are not bounded over R

Proposition 2 Given a family {Py, ..., P,}, of polynomials in R[ X, ..., Xk]
and a variety V of real dimension k', let R’ be a real closed field containing



R, and let 61,...,8,, be elements of R' that are algebraically independent
over R. Then the perturbed family P* = Uicics{Pi — i}, is in general
position with respect to the variety Vp.

Proof: The result follows from the following simple observations

e If V has real dimension &’ then V is the union of a finite number of
semi-algebraically connected semi-algebraic sets of real dimension less
than or equal to k' whose Zariski closures are irreducible [4].

e If C is a semi-algebraically connected semi-algebraic set whose Zariski
closure is irreducible then any polynomial is either constant on C or
its zero set meets C in a semi-algebraic set of real dimension less
than the dimension of C. This is immediate from the definition of
irreducibility.

As a consequence, we see that the zero set of any of the perturbed poly-
nomials meets the variety V in a variety of lower real dimension. The
proposition is proved by repeating this argument at most &’ times. o

Corollary 1 Given a family {P,,..., P}, of polynomials in R[X1,...,X}]
and a variety V of real dimension k', let R’ be a real closed field containing
R, and let 6,6,,...,68,, be elements of R’ algebraically independent over R.
Then the perturbed family P* = Uici<s{P; — 6, P; + 6i, Pi — 66;, P; + 66;} 1s

in general position with respect to the variety Vpi.

Proposition 3 If S’ C R{e)* is a semi-algebraic set defined over Rle] and
S = eval(S’), then S is a semi-algebraic set. Moreover, if S' is semi-
algebraically connected then S is semi-algebraically connected.

Proof: Suppose that S’ C (R{e))* is described by a quantifier-free for-
mula ®(e)(Xy,...,X;). Introduce a new variable X;4; and denote by
®(X1,..., Xk, Xiy1) the result of substituting Xy for ein ®(e)(Xy,. .., Xk).
Embed R* in R**! by sending (Xj,...,X) to (X1,...,X,0). Thus, S is
a subset of Z(Xj41). We prove that S = T N Z(Xy41) where

T = {(x1,..., Tk, Txp1) € R¥TY®((21,. .., Tk, Te41) and zxpq > 0}

and T is the closure of T in the euclidean topology.
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If € S there is a z € S’ such that eval(z) = z. Let B;(r) denote the
open ball of radius r centered at x. Since (z, €) belongs to the extension of
B.(r)NT to R(e) it follows that B,(r) N T is non-empty, and hence that
zeT.

Conversely, let  be in TN Z(X41). The semi- algebraic curve selection
lemma [4], asserts the existence of a semi-algebraic function f from [0, 1] to
T with f(0) = z and f((0,1]) C T. This semi-algebraic function defines a
point z = f(€) whose coordinates lie in R(e) and belongs to S’ and moreover
eval.(z) = z.

If S’ is semi-algebraically connected then there exists a positive ¢ in R
such that TN (R* x [0,¢]) is semi-algebraically connected. It follows easily
that $ = T N Z(X}41) is semi-algebraically connected. O

Proposition 4 Let C be a non-empty cell in V = Z(Q), of the semu-
algebraic set defined by P, =...= P, =0,Pyy; > 0,...,P, >0, and let C’
be the extension of C to R(61,...,6:). Then C’' contains some evals(C"),
where C" is a cell of the semi-algebraic set defined by the sign conditions

Q=0,-66 < P, <668,...,—68 < Pp < 86, Pry1 > bg1,...,Ps > s

over R(61,...,65,6) .

Proof: If z € C, then x satisfies the following equalities and inequalities
Q=0,-686 <P, <é861,...,—86 < Py < 860, Pry1 > be31,..., P > 65,

in R(8y,...,8,,6). Let C" be the cell of the semi-algebraicset in (R(61, ... ,65,6))"

defined by the above equalities and inequalities, which contains x.

It is clear that evals(C") is contained in the semi-algebraic set defined
by the sign condition Q = P, = ... = P, = 0,Pyy; > 0,...,P, > 0, in
(R{6y,...,6,))* and that it also contains z € C’. Since, by Proposition 3,
evals(C") is also semi-algebraically connected the statement of the lemma
follows. o

2.1 Proof of the Theorem

The family of polynomials, P* = Ui<i<s{ P — 6i, Pi + 6;, P — 66;, P; + 66;} is
in general position with respect to V by Corollary 1. Hence, by Proposition



1, the extension of every cell of a strict sign condition for P* over V to
R{5,,...,8,,6,€) contains a cell of an algebraic variety defined by {Q}UP"
where 7 is a subset of Upep+{P—¢, P, P+¢}. As noted in Remark 2, we can
assume that the cardinality of 7~ is at most k’. There are <ok (133) =

(Ok(,’ )) of these varieties and each has at most O(d)¥ cells by the well-known

bounds of Milnor-Oleinik-Petrovsky-Thom [11,12,13,16]. Hence the number
of cells of strict sign conditions for P* over V is (:,) O(d)*. Finally, by
Proposition 4, the extension of each cell of a sign condition for P over V to
R(61,...,65) contains the evals of one of these (:,) O(d)* cells of strict sign
conditions for P* over V. Since these are semi-algebraically connected by
Proposition 3 it follows that there are no more than (,:,) O(d)* cells defined
by P over V. m]
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