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Abstract : We give new bounds and algorithms for minimal solutions of linear
diophantine systems. These bounds are simply exponential, while previous known
bounds were, at least until recently, doubly exponential.

1 Introduction

A linear diophantine system Az < b is a set of inequations with integer coefficients (A
is a matrix of integers with m rows and n columns, b a vector of Z™and = a vector of n
indeterminates), whose we search integer solutions.

Recall that to decide if such a system has at least one integer solution is NP-complete (it
is the NP-completeness of integer linear programming).

We are interested here in describing and computing the set of solutions. Remark that
these systems arise in pattern matching compilation theory.

We will reduce our problem to the study of an equivalent problem, which is solving in
non-negative integers the systems Az = 0 (Frobenius problem). These systems arise in
several sub-fields of equational rewriting theory, for instance in associative-commutative
unification, or in Makanin algorithm. Remark that solving systems Az = b,z > 0,
occurring in AC-unification, reduces also to Frobenius problem by adding a new variable
to .

The non-negative integer solutions of Az = 0 form a sub-monoid M of N, generated by its
non zero minimal elements for the partial order (z1,...,2,) < (Y1,...,Un) <= Vi, 1 <
¢ <n,z; <y;. They form a finite set. We will call this set “the Hilbert basis of M” (after
[F.Giles and W.R.Pulleyblank 79]), and denote it by H(M).

In the two next sections we will bound and compute the elements of H(M). The last
section applies the previous results to the initial problem, i.e. the resolution of systems
Az <b.



simply exponential in the size ot A (tor example n.m.((0g|| Al + 2)).
But we are interested here to uniformly bound the norms.of the elements of H(M).

Let
1M lloe = sup, gy a ol

and
1M = sup, g a2l

(with [[zfly = 32 | 24 ).

[I.Borosh and L.B.Treybig 76] have upper bounded ||M||o with an expression which is
doubly exponential in the size of A.

As far as we know, two simply exponential bounds exist to bound || M| or || M]};.

We have given the first one in [L.Pottier 90].

The second one can be deduced from an rather unknown result of [J.L.Lambert 87|, and
has been found independently by [E.Domenjoud 90] in a better form.

These two bounds are essentially different, because of their expressions and their proofs.
We give here two new finest bounds, the first one inspired from [L.Pottier 90], the second
one from [J.L.Lambert 87] and [A.Koscielski and L.Pacholski 90],.

Recall that in the case of one equation (m = 1), [G.Huet 78] and [J.L.Lambert 87] have
given bounds only depending of ||A||e. In the case of two equations, [J.F.Romeuf 89)
gave a bound which is quadratic in the size of A.

2.1 First bound

This bound is inspirated by [L.Pottier 90].
Let ||All1,00 = supi{>; | as; |}, and let r be the rank of A.

Theorem 1
|M][1 £ (14 [|All1,00)" = Bo

Proof :

We can without restriction choose r independent equations of Az = 0. Let

= (Z1,...,Z,) be a non zero element of M, p = ||z||;, and {e1,...,e,} be
the canonical basis of R". For every y in R", we note C), the cube of volume
1 defined by

AL Cy@z:y%—Z/\iei, Vi € [1,”], A € [0,1]
=1

We will recursively define a sequence 4/°, ..., y? of N* and a sequence 2°,. .., 2?
of R™ verifying :



Y~ = 27 = U are clearly convenient .

Suppose we have built y*, and 0 < k < p—1. [0,] ﬂ'C’yk is the set of all z
which writes A, z;e; with 0 < A <1 and

Vielln], vf <oy <yF+1

It is by hypothesis non empty, it is a segment. Take 2T = N\ 3D, ze; it
bound where )\, is maximum. z is non zero, then there exists a j such that

Y+ 1

X

k

}

] = anz{z‘ﬁéO{
J

Now, let y¥T! = y* + ej. We have now
Vi e [1,n], ¥t < w < yfth 41

and 28! belongs then to the cube Cyi+:.

The points 25! and y**! are then correctly built. Finally, if k& = p — 1, then
yP = x, because y? < z and ||y*|l1 = p = ||z||1, and we take ¥ = z.

Now, let y'* = zF — y*. We have now :
Vi,0 <y <1
then, if (Ay*); is the #** coordinate of Ay :
| (Ay®)s | = | (A2%)s — (Ay™)i | =1 (Ay™): |

As 0 < y/* <1, there is then at most 3, | a;; | + 1 possible values for (4y*);
and then at most By distinct vectors Ay*. -

Now, suppose p > By . By the pigeon holes principle, it exists then 7 and j,
i > j >0 with Ay* = Ayl. Let 2 = y* — y?. We have now Az = 0. More we
have 0 < 2 <z, and z € M. Then = ¢ H(M).

O

2.2 Second bound

Let a;; be the term of row i and of column j of the matrix A, and [|A|ly = ¥, ;| as |-
Let D be the largest absolute value of the minors of A. [J.L.Lambert 87] gives the following
result :

Theorem 2 (Lambert)

|M|loc < nD



[Mlloo < (n—7)Dy = By

and then ALY
Ml < =) (1)~ 5
Remark : the first bound is the same as the bound of [E.Domenjoud 90}, found indepen-
dently.
Proof :

Let C be the cone of R" of non-negative real solutions of Az = 0. Let C; be
its intersection with the hyperplane of equation z; = 0. It is clear that C is
the convex hull of the union of the cones C;. We can recursively apply this
decomposition of C to the C;, while the dimension of built cones is largest than
1. C is then the convex hull of the union of these cones of dimension 1, called
“edges” of C.

Every of these edges is then the set of non-negative solutions of a system of
equations obtained by choosing r independent equations of Az = 0, and by
adding to them n —r — 1 equations of type z; = 0 in order to keep the system
of maximum rank, i.e. n — 1.

We can then obtain director vectors (with non-negative integer coeflicients)
of edges by computing the n minors of order n — 1 for every the preceding
systems, that reduces to compute minors of order r of A.

Let g1, ..., g be these vectors, which have then their coordinates upper bounded
in absolute value by D,.

M 1is then included in the non-negative cone that they generate (the linear
combinations with non-negative real coefficients), which is exactly C, with
dimension at most n — r. We have then, with the theorem of Carathéodory :

Az =0,2>0 = 3Jj1,...,Jnr,J0q,...,0p_r > 0,2 = Zaigji
=1

If now x is minimal, it is clear that the «; are strictely smaller than 1. We
obtain then the first part of the theorem.

The second part is a simple upper bound of the determinant of a square sub-
matrix A’ of order r of A :

Ldet(4) | < [T aly | < (M) < <||A|!1>
7 1

T r



Lhe pound S can be optimal , as we will see on examples, but 1t 1S not reasonably
computable in practice: is it better to compute all the principal minors of A than to
directly compute H (M), for example with the algorithm of [E.Contejean and H.Devie 89]
which does not use a bound of H(M)? '

2.3 Comparison of By, B; and By

It is clear that these three bounds are simply exponential in the size of A. The following
examples show that we can not compare in general the first and the last, the second being
sometimes optimal, but being not computable in practice.

We have the following inequalities :

lzlls < By

2]l < nBy

[zllo < Bo

|zlloe < Bo
So we will study the behaviours of the ratios % (bounds of ||z||eo) and "Tf(f (bounds of
|z||1), when n or ||Al|« increases to infinity.
2.3.1 Example 1

Let a be an integer greater or equal to 3 and A the matrix

a 1—a

a 1—a

where the non written coefficients are zero.
We have 7 = m = n—1 and #(M) has only one element : ((a—1)""*,a(a—1)""2,...,a"" ).
Then :

HMHOO = Bl = a"_l, HMHl =q" — (CL - 1)”, Bg = (2a — 1)n_1,BO = (2a)”_1
B is then optimal, By and By being very close.
Asymptoticaly, we have finally :

. 2 .. nBy . By .. nBy
dim g = 0 lim = =0, lim =1 g Rt =



1 1 -1
A=1 1 —1
1 1 |

where the non written coefficients are zero.
We have r = 2k — 1. The Hilbert basis of M is the set of matrices of permutations of
order k (cf [R.P.Stanley 83]). Then :

IM|lso =1, \M||y = k+1,B; > k* — 2k +2

2%k—1
By = (k* — 2k + 2) <3]€2—(k1%11—)> , By = (k +2)*7!
and :
lim =2 = oo, lim ﬁB—ono
n—oo By ’ n—yco By

which gives the inverse behaviour of the preceding example.

3 Algorithms

The subject of this section is the computation of all the elements of H(M).

The first algorithms are based on the bounds of [G.Huet 78] and [J.L.Lambert 87] relative
to one equation, extended to a system of equations, but giving then doubly exponential
bounds. They are the followings :

Property 1 Let o = (z1,...,%p,Y1,..-,Yq) be an element of the Hilbert basis of the
equation
a1x1+...+apxp+b1y1+...+bqu:O.

where the a; are non-negative and the b; are negative. Then :

Vi, | z; | < sup;| b; |
(Huet)

> xi < supj| by |
2

(Lambert).
(the part concerning the y; is symmetric).



automaton enumerating (/M ), and a quadratlic bound In tnis case.

3.1 Algorithm of Contejean-Devie

[E.Contejean and H.Devie 89] have found a elegant algorithm which does not need any
bound of H(M). The principle is the following. Let us order N™ by the order < defined
before, and obtain a DAG (directed acyclic graph) of root 0. The algorithm enumerates
a part of this DAG with the following principle :

begin with 0, and if the current vertex is a non zero vector z such that for no one among
its ancestors y we have A(x — y) = 0, visite its sons & + e; verifying Az.Ae; < 0 (the .
denoting the scalar product of R").

This algorithm suprizingly terminates and is complete. If we do not visite twice a vertex
of the DAG, and keep only minimal solutions for <, we then obtain H(M).

Different refined versions of this algorithm exist, which eliminate early in the process some
unusefull parts of the DAG.

The only result of complexity about this algorithm is, to our knowledge, a consequence of
[L.Baratchart and L.Pottier 89], which gives a doubly exponential bound on the number
of visited vertices.

This algorithm has good behaviour in practice, but is expensive if the elements of H(M)
have large norms.

3.2 Algorithm of Domenjoud

In [E.Domenjoud 90] is described an algorithm which only builds solutions of Az = 0 to
compute minimal solutions (as the second algorithm that we present does). This recent
algorithm would be interesting in pratice.

3.3 An algorithm inspirated by theorem 3

The analysis of the proof of the theorem 1 allows to modify the method of the algorithm
of [E.Contejean and H.Devie 89] in only increment x by the e; such that for every 7, the
i-th coordinate of A(z + e;) is between — 3", af; and 3°; a;;.

The generators are then all obtained as points of the sequences strictly increasing built
similarly to the preceding algorithm.

3.4 Use of standard basis

We give here a new algorithm using the preceding bounds on ||M||« and ||M]|;, based on
the theory of standard basis (or Grébner basis).

Let us recall basic notions of standard basis.

For a polynomial P of the ring K[X1,...,X,], we note in(f) the maximum monomial
of f w.r.t a choosen admissible ordering on monomials (i.e. a total ordering stable by



|A.Galgo 39)).

In our problem, the idea is to see the columns of A as the exponents of monomials in
m variables, and the solutions of Az = 0 in Z"as sysygies relative to these monomials.
This idea has been introduced by [F.Ollivier 90] for computation of standard basis of
sub-algebras. Then a computation of an appropriate standard basis gives a canonical
rewriting system whose the inverse enumerates M by increasing norm. Finaly it suffices
to only keep the minimal solutions for < and of norm smaller than inf{nB,, By}.

Let T, X1, ..., Xm, Y1,..., Y, be n+m+ 1 variables, and k£ be an arbitrary field.

We note a; for the 7' column of A.

For all « € Z™ and 8 € Z" , we note X® and Y” the monomials X7 ... X2 and
NI 0 |

a* is the maximum of o and zero (for the partial order <), and &~ is the maximum of
~a and zero. Then a = a™ —a™.

For every j € [1,n], we define a polynomial P; in the ring R = k[T, X1, ..., Xpp, Y1,..., Yo :

Pj=X% —Y;X%

Let Z be the ideal of R generated by the P; and the polynomial Py = TY;...Y, — 1, and
J its trace (i.e. its intersection) on the ring R’ = k[Y1,..., Y]

Now, let B7 be the reduced standard basis of Z for the following ordering on the mono-
mials of R :

we compare first lexicographically the X;, and in case of equality we use the degree order,
and finally the lexicographic order.

Let Bj be the set of polynomials of By where the X;’s and T do not appear.

B 7 is then a standard basis of the ideal J for the degree order (from a remark of D.Bayer
and M.Stillman). More, its elements are differences of monomials (because those of
Bt are). ,

Then let Y — Y?* be the elements of Bz, k€ll,p] and Y* being the leading mono-
mials. :

Now, note — the rewriting relation corresponding to the division of polynomials by the
standard basis B T and — its transitive reflexive closure.

We write m1 | m2 when two monomials m1 and m2 rewrite in the same monomial, or
equivalently when ml — m2 — 0.

Then :

Property 2
VeeZr, Ax=0 < Y* —YV* €I «— Y* |Y*

Proof :



ing system equivalent to the relation P = REeP-QeJg . O
As a consequence :
Property 3

*

VieN' , 2e€M < Y* —1
This last property allows to test if M is non reduced to {0} :

Theorem 4 The system Az = 0 has a positive solution if and only if it exists in By a
polynomial of the form Y — 1.

More, we have an effective representation of M with of rewriting rules :
Let SR, the system of rewriting rules on monomials obtained in reversing the polynomials
of Bj :

SRy = {YP—ye,  YP—yer}

Note —; its rewriting relation (it is the symmetric of —», and it is not noetherian).
Then

TEM — 1-5,Y"

We can then generate all the elements of M by exploration of the tree of rewritings of 1
by —;, and obtain H (M) in only keeping the minimal elements of degree smaller than
the bounds nBy and By (This method is complete because —»; increases the degrees of
monomials, and then the norms ||.||; of the solutions).

More precisely :

Theorem 5 The following algorithm stops and returns H(M) :
1. E:={1}
2. While dz € E,y € E,with x —; y, and deg(y) < inf{nBa, By}

Do F:=EU{y}

3. Return H(M) := minimal elements for < of vectors of exponents of monomaials of

E-{1}.



Corollary 1 [t exists two finite parts C; and Cy of Z™ such that :

reECESr=x1+2T0+ ...+ op, withzy €Cq, and xo, ...,z € Cy
and
Vo € CrUCy, ||lzfli < (2+ [|A]l1,00 + [1B]loc)™

Proof :

We will reduce the problem to solve in N a system of homogeneous equations.

Let ¢ be an endomorphism of R™ which only change the signs of some coordi-
nates of its argument, and 1(A4) the obtained matrix when changing the signs
of the corresponding columns of A.

Let y = (y1,--.,ym) be a vector of m new variables, z a last variable, ¢ the
vector obtained in catenating z, y,and z, and let ¢ be the projection mapping
tin z.

Let A’ be the matrix obtained in catenating ¢(A), the identity of order m and
the opposite of b.

We have now clearly the equivalence :

Az <bp(z) € N* = Fte N At=0,2=1,z = ¥(¢(t))

More rank(A’) =m, and [|A]|1.00 < [|4]l1,00 + 1 + ||b]]c0-

Let H the Hilbert basis of At = 0, and C¥ (resp. CY) the image by ¢ of the
elements of H such that z = 1 (resp. z = 0).

We take then C; (resp. Cs) equal to the union of the C¥ (resp. CY) for the 27
possible choices of .

As |[¥(2)]l1 = llz|lx and [|¢(t)]}1 < ||t|l;, we obtain the second part of the
result. O
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