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HILBERT’S 17TH PROBLEM AND THE CHAMPAGNE PROBLEM.

VICTORIA POWERS

Dedicated to Alez Rosenberg on the occasion of his T0* birthday

INTRODUCTION

In 1981, at a conference on Real Algebraic Geometry and Ordered Fields in Rennes,
France, E. Becker gave a talk in which he proved that

1+4¢2
24 t2

B(t) := € Q(t)

1s a sum of 2n-th powers of elements in Q(t) for all n. To prove this surprising fact,

Becker used his newly developed theory of higher level orderings on fields; the proof was

not constructive. He then proposed the following problem: Find an explicit formula giving

a representation of B(t) as a sum of 2n-th powers for all n. Becker promised a bottle of

champagne to the first person to solve this, as a result the problem became known as the

Champagne Problem. The problem still remains unsolved in the form stated by Becker,

however recent work of B. Reznick gives an explicit formula for B(t) as a sum of 2n-th

powers of elerr;g:ntsu;,]&(t) 2 T T A vomal

- The theory of higher level orderings on fields, and hence the Champagne Problem, has b _\fm _"
WO sveition

———

its genesis in Hilbert’s 17th Problem and E. Artin’s solution to it. In this paper we trace the
history of these roots of the Champagne Problem and briefly describe Reznick’s solution.

FroM HILBERT’'S 17TH PROBLEM TO ORDERED FIELDS

The Champagne Problem is part of a class of problems concerned with representations
of positive semi-definite rational functions as sums of squares of rational functions or, more
generally, sums of even powers. A rational function f € R(X):= R(zi,...,z) is positive
semi-definite (psd) if f > 0 at every point in R* for which it is defined. D. Hilbert, in a
paper published in 1888 [H1], showed that there exist psd polynomials that are not sums
of squares of polynomials. In 1900, at the International Congress of Mathematics in Paris,
ol Hilbert gave a lecture in which he proposed 23 open problems. Most of these have since 7
W o been solved, and the solutions have led to fundamental discoveries in mathematics. - PQA/NUQ )
\’\K\S\mﬁ‘ ~"Hitbert’s work on sums of squares of polynomials was the impetusTor the 17th problem:
/&,"o'}(\ 0‘ rational integral function or form in any number of variables with real coefficients
such that it becomes negative for no real values of these variables, is said to be definite.
But since, as I have shown, not every definite form can be compounded by addition from
O_\,\.\u squares of forms, the question arises — which I have answered affirmatively for ternary
\\
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2 VICTORIA POWERS

forms ([H2]) — whether every definite form may not be expressed as a quotient of sums of
squares of forms” [H3]. In other words, given a psd polynomial f € R[zy,...,zk], can f
be written as a sum of squares of elements in R(X)?

In 1927, Artin solved the 17th Problem in the affirmative [A], using the theory of
ordered fields. Artin realized that it is important to study sums of squares in arbitrary
fields. For a fleld F,let > F? = {y? +--- 4+ y2 | r € N,y; € F}. If F has characteristic
2, then )" F? = F? and if char F # 2 and —1 € Y} F?, it follows from the formula
z = (52)? — (21)? that 3° F? = F. This leaves the case —1 ¢ ¥ F'?; such fields are
called formally real. Notice that if F' is formally real, then F must have characteristic 0
since char F = n would imply —~1 = (n —1)-1 € Y F?. Artin, along with O. Schreier,
showed that formally real fields are precisely those that have an order.

The definition of an ordered field goes back to Hilbert, however he did not develop the
theory. It was Artin and Schreier who laid out_theafundamentals of the theory in two
papers published in 1927 [AO1,A02]. We brieﬁheir major results.

An order on a field F is given by a subset P C F, sometimes called the positive conc
of the order, which satisfies: P-PC P, P+ P C P, PN—P = {0}, and PU—-P = F.
We will write “P is an order” to mean P is the positive cone of an order. Given P an
order on F' we can define binary relations < and < on Fbyz <y iff y —z € P, and
r<yify—z € Pand y # z. One can check that < is then a total order on F and
the usual rules for inequalities hold for < and <. Note that we can recover P from < via
P={z€ F|0<z}.

The ecasiest examples of orders are the obvious orders on Q and R, and it is not too
hard to show that these are the only orders on these fields. Suppose F is a subfield of K,
and K has an order P, then it is easy to see that F N P is an order on F. However, not
all orders on F arise in this fashion. To see this, consider F' = Q[\/§], then in addition to
the order arising from the order on R, one can check that {a +5v/2 |0 < a—bv2in R} is
also an order.

For asubset S C F, we write S to denote S\{0}. It is easy to see that 5" F is a subgroup
of F using the fact that if y = Sy? e S F? then 1/y = S (yi/y)? E S>> F%. Given any
order P on F.and z € F, sincez € P or —z € P, it follows that z? = (:I:a:)(:i::z;) € F.
Hence, by additive closure, 5. F2 C P. Then P is a subgroup of F, since z € P implies
1/t =z-1/22 € P- P C P. Note that P is a subgroup of index 2 in F’ which is additively
closed. It is easy to see that conversely, for any subgroup Q of index 2 in F which is
additively closed, Q U {0} is an order on F.

For any order P, we have just seen that 5. F2 C P. Thus 1 € P and hence, if F has an
order, F' must be formally real. Artin and Schreier proved the converse of this:

Artin-Schreier Theorem. A field F admits an order iff F is formally real.

The key idea needed for the proof of this theorem is that of a real closed field: F is real
closed if F' is formally real and no proper algebraic extension of F is formally real. Note -
that by Zorn’s Lemma, any formally real field admits a maximal algebraic extension which
is formally real, hence every formally real field is contained in a real closed field. Artin
and Schreier proved the following characterization of real closed fields:
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Theorem. For a field F' the following are equivalent:

(i) F is real closed,
(i1) —1 € F? and F[\/——] is algebraically closed,
(iii) F is formally real, F? has index 2 in F and is additively closed, and any polynomial
of odd degree in F[x] has a root in F.

Using this theorem, the proof of the Artin-Schreier theorem is easy: Given a formally
real field F, then as stated above, F is contained in a real closed field R. From (iii) of the
theorem, the set R? is an order on R, hence R’ N F is an order on F.

‘\ ¢ The Fundamental Theorem of Algebra can also be recovered from the theorem: Since

QR satisfies (iil), we have that R is real closed and then, by (ii), C is algebraically closed.
-3¢ note in passing the amazing “meta-theorem” of A. Tarski, now known as Tarski’s

;‘\ Q@Mefore stating it, we define a formula of the language of ordered fields as any

!

formula expressible using field operations, inequalities, and the logical symbols V (disjunc-
tion), A (conjunction), negation, and quantifiers. Then Tarski’s Principal says that any
formula in the language of ordered fields which holds over R, holds over every real closed
field [T].

Artin proved the following theorem relating orders in F' to sums of squares:

Theorem. If F is formally real, then Y  F? = (| P, where the intersection is over all
orders P in F'. YR o h .
act s w
Let’s verify the theorem in the case Wher%e F = Q[v?2]. First we claim that the only
orders on F are the two mentioned above: P; := {a + bv/2 | a + bv/2% 0 in R} and _
P, := {a+bV/2 | a — bv/2 € P;}. Suppose | is an order, then Q+CvP and V2 € :’cP
If V2 € P, then P; C P, from which follo“s P1 since both have index 2 in & If
—V2 E P, then a similar argument shows P= P2 Now PLNP,={a+b/2]|a>0
and a? > 9b2} We can show directly that this is precisely > F?. For any ¢,d € Q, we
have (¢ + dv/2)? = (c? + 2d%) + 2cdv/2 € P, N Py, hence 3. F? C P, N P,. Now suppose
a+b/2 € PPNP,. Ifb=0,thena>0inQ hencea € Q> C SF2. Ifb< 0
and we can write a — by/2 as a sum of squares, then taking “conjugates” we can do it
for a + b2, so we may as well assume b > 0. Consider the square (z + (b/2z)Vv2)? =
2% + b2 /42? 4 bv/2. As a function of 22, z* + b?/4z? attains its minimum at z? = b//2
and has value by/2 < a. Hence we can find a rational ¢ so that ¢> 4+ b*/4¢*> < a. Then
a+bv2 = (q+(b/2¢9)vV2)? +(a—(¢® +b?/4¢?)) € T F?. Thus we have verified the theorem
for the case of Q[v/2].

It only remained for Artin to show that if f € R(X) is psd then f is in every order on
R(X), hence is a sum of squares in R(X). In fact, Artin proved more than this. He showed
that given any subfield F' C R which has only one order and any f € F(X) := F(zy,...,zk)
such that f >0 (in the unique ordering on F') at every point at which it is defined, then f
is in every order of F(X). To show this, Artin proved a series of “specialization lemmas”
by using Sturm’s Theorem, which is an algorithm for counting exactly the number of real
roots of a polynomial, see [St]. ‘
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4 VICTORIA POWERS

FroM ORDERS TO HIGHER LEVEL ORDERINGS

In the late 1970’s, Becker discovered a generalization of the notion of an order on a
field, which led to a natural, far-reaching extension of the Artin-Schreier theory. As stated
above, if P C F is an order, then P is a subgroup of F' of index 2 which is additively
closed. Furthermore, this characterization is equivalent to the previous definition of order.
An ordering of higher level on a field F is a subset P C F such that P is an additively
closed subgroup of F for which F'/P is finite cyclic. Since P is additively closed, —1 ¢ P
and hence P must have even index in F. The level of P is —[F P]. Note that ordinary
orders are simply orderings of level 1; in other words Becker replaced the requirement that
P have index 2 in F' by requiring it to have index 2n.

For an example of a field with orderings of all levels, consider R((z)), the field of formal
power series in z over R. Elements are formal series Y .o «;z*, where m € Z and «; € R.
Fix n € N and let z be a primitive 2n-th root of 1. Then P, = {3 a;zt | amz™ =
1} U {0} is an ordering of level n, as is easily checked.

Becker [B1] obtained generalizations of the Artin-Schreier and Artin theorems: /Rm/vy, j
Higher Level Artin-Schreier Theorem. A field F has an ordermg of some level n 1ﬂ"\7_ Fﬁ
—1 ¢ S F?" iff F is formally real. If F is formally real, then for all n, ) F?" = /

where the Intersection is over all orderings of level dividing n.

It should be noted that before Becker proved this theorem, J. Joly [J] proved that F is
formally real iff =1 ¢ 3° F?" for some n iff =1 ¢ 5 F?" for all n, without making use of
the notion of a higher level ordering. (In fact, Joly proved this for any commutative ring.)

When working with orders and orderings, it is impossible to avoid valuation theory, since
this is one of the main tools for studying formally real fields. The intimate connections
between valuation theory and the theory of orders were first seen in the work of R. Baer
[Bal], [Ba2] and W. Krull [K], soon after the theory of ordered fields was developed.

A subring V' C F is a valuation ring if V contains z or 7! for every nonzero z € F. In
this case, the set M = {z € V | 27! € V} forms the unique maximal ideal in V and the
field V// M is called the residue field of V. We say V is a real valuation ring if the residue
field is formally real. One can show that F has a real valuation ring iff F is itself formally
real.

Valuation theory arises naturally in ordered fields in the following way: Given an or-
dering P on F' (of some level), let A(P) = {z € F | ¢+ z € P for some ¢ € Q*}, and let
I(Py={z € F|q+z e Pforall g Qt}. Then we have

Theorem. A(P) is a valuation ring in F with maximal ideal I(P), and the set P :=
{z+I(P)|z € A(P)NP}isan order in the residue field A(P)/I(P).

//j VIS ? R
The proof of this theorem for‘/ rders is a straightforward calculation, however the proof

for higher level orderings is much harder. Becker makes use of the Kadison-Dubois rep-
resentation theorem from Functional Analysis. In the case where the ordering has level a
power of 2, there is a direct proof due to A. Wadsworth (unpublished). The theorem is

-/ the key result Becker needed for the proof of the Higher Level Artin-Schreier Theorem.

Given that result, the proof of the first part now proceeds as follows: If F' has an ordering
of some level, then F has a real valuation ring, hence, as noted above, F' is formally real.
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Later work by Becker, J. Harman, and A. Rosenberg [BHR] shows that the orderings of
F of all levels can be described using only the (level 1) orders in F' and the real valuation
rings in F.

Given F formally real, the real holomorphy ring of F, H := H(F), is the intersection
of all real valuation rings in F. Now let E := E(F') denote the units in H(F), and set
Et := EN Y F?2. Although these definitions at first seem to have little to do with the
higher level theory, in [B3] and [B4] Becker shows that there is an intimate connection
between the structure of E and } F2™.

Theorem. [[B4],1.2,1.6,1.9] Let F be formally real and H, E as above. Then
(1) E+:{rt+q |r,s,t € Qt,q €S F?}.
(i) EY CNpen 22 F2"
(iii) Foralln € N, Y, F*n = Et . (3 F?)"
It follows from (i) and (i1) that

1+ t2
2+ t2

B(t) = €Y Q) foralln

and hence we arrive at the Champagne Problem: Find an explicit formula expressing B(t)
as a sum of 2n-th powers for all n.

The theorem above allows one to_construct many examples of sums of 2n-th powers.,
Further, for certain fields including R(X), Becker shows that E¥ = Npen 3 F2".
Notice that it follows from (iii) of the theorem that for any n,

S Py P

a highly non-obvious fact! For example, over R we have:

(+) (r2+y2)3=§<z6+<x\%y>6+y6+<_%y>s>,

which can be checked by hand!
Using the higher level theory, Becker extends this to show that given n,m € N, there
exist identities

(**) (x’.lZn_*__{_Iin)m: 12nm+'“+f3nm,

where f; € Q(z1,...,zk). For details, see [B2]. It should be noted that Becker showed
only the existence of the identities; they are not given in any explicit way. Hilbert proved
the existence of identities (*x) in the case n = 1, see [H4]; in this case they are usually
called Hilbert Identities. We shall see that the Hilbert Identities, or, more precisely, an

explicit version of them over R, will play a key role in Reznick’s solution to the Champagne
Problem:.
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THE CHAMPAGNE PROBLEM SOLVED

Artin’s solution to Hilbert’s 17th problem is not constructive, nor are the proofs of
Becker’s theorems on sums of even powers in formally real fields. Thus a natural question
that arises from the 17th Problem is to what extent can we find an explicit representation
of a psd f as a sum of squares of rational functions or, more generally, as a sum of 2n-th
powers for any n. The Champagne Problem is thus a specific example of this type of
question. We discuss some computational aspects of the 17th Problem, and conclude with
a sketch of Reznick’s solution (over R) to the Champagne Problem.

A year after Artin’s solution to the 17th problem, G. Pélya [P] (see also [HLP,pp.57-
59]) found an explicit solution in a special case. He showed that if f € R(X) is positive
definite, i.e., f(a) > 0 for all @ € R¥, and even (as a function), then for large enough
r, £+ (3" z?)" is a sum of squares of monomials, in particular f is a sum of squares of
rational functions with common denominator (3 2?)7/2. Recent work of J. de Loera and
F. Santos [dLS] gives algorithms for finding a representation and bounds for r. In 1940, W.
Habicht [Ha), using Pélya’s result, showed directly that any positive definite polynomial
f can be written as a sum of squares of rational functions, and that if f has only rational
coeflicients then so do the monomials. Recently, Reznick [R2] has extended this to show
that any positive definite f can be written as a sum of squares of rational functions with
common denominator (3 z%)". In other words, Reznick has extended Pdlya’s result to the
more general setting of Habicht’s result. The computations used for this result enables
Reznick to obtain a representation for B(t) as a sum of 2n-th powers over R.

As mentioned in the previous section, a key idea needed is the Hilbert Identities: Given
n and s, let N = ("‘22_31_1) Then there exist 0 < A\; € Q and a;; € Q for 1 < ¢ < N such
that

N
(22 4+ +22) = Z Ailanzy + -+ aikzr)?C.
i=1

There are no known explicit formulas except in the cases s = 1,2,3 (see [R1,§8,89)).
However, if we allow formulas over R instead of Q, we can obtain

() (=2 +¢%)° = vii; vZ—l (COS (%) T+ sin (2{){) y)zs’

s/ 3=0

where s and v are positive integers and v > s+ 1. (For a proof of this, see [R2,9.5].) Notice
that the identity (x*) above is (1) with s = 3 and v = 4.
Consider the following obvious equality:

1+¢2  (1482)(2+ %) !

T ot (2 +¢2)2n

B(t)

Then if we can write (1+¢%)(2+t?)*~! and (2+4t%)™ as sums of 2n-th powers of polynomials,
their product is a sum of 2n-th powers, each of which can be divided by (2 +t?)?" to give
B(t) as a sum of 2n-th powers of rational functions. Taking s = n, v = n+2, z = /2, and
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y =t in (1), after several pages of calculations Reznick obtains the remarkable formula

. dn—2 n+1n+1 . ‘ 2n

Tl(n+2)2 2n2:0]0 2+t2

where A; = 3n — (n + 1)cos £& —1—1 and L;(z,y) = (cos —E-_*_Lz)a: + (sm )y. Thus we have
an explicit formula for wrxtlng B(t) as a sum of 2n-th powers in R(t), in other words, a
solution to the Champagne Problem over the reals!

Unfortunately, as noted above, there are no known explicit formulas for the Hilbert
Identities in general, hence this method cannot produce a solution over Q. However,
Reznick’s formula was close enough to a solution to the original problem that when he
gave a talk on this work at the AMS/MAA joint winter meeting in Cincinnati i in January,

1994 he was presented (by proxy) with a bottle of champagne from Becker.

ACKNOWLEDGEMENTS AND SUGGESTIONS FOR FURTHER READING

Thanks to Bruce Reznick for many helpful comments and suggestions. His recent paper
[R3] contains an exposition of Hilbert’s work on sums of squares of polynomials which led
to the 17th Problem, detailed information on sums of squares in general, and much more.
Our sketch of the derivation of the formula for B(t) is paraphrased from this paper. The
present paper has also been influenced by other papers in this area, particularly Lam'’s
excellent expository article on ordered fields [L2].

The text of Hilbert’s 1900 lecture at the ICM can be found in [Br], along with de-
scriptions of the mathematical developments arising from the 23 problems he proposed.
Much has been written on the 17th Problem and mathematical developments arising from
it. Here we mention a few articles that are well worth reading. A. Pfister [Pf] and P.
Ribenboim [Ri] wrote surveys of the 17th Problem in the 70’s. A more recent survey was
written by D. Gondard [G]. See also C. Scheiderer’s survey [S], where connections with
real algebra and applications to geometry are discussed. A recent article of C. Delzell [D]
describes the history of the 17th Problem and its relationship to questions in logic.

For more on the theory of ordered fields, see [L2] mentioned above. The generalization
of the notion of an order to commutative rings led to the development of real algebra and
real algebraic geometry, see [BCR/, [B5] and [L4]. Much of the Artin-Schreier theory has
been generalized to semi-local rings by M. Knebusch, Rosenberg, and R. Ware, see [KRW].
The notion of an order and some of the theory was extended to division rings by T. Szele
[Sz]. Much of the higher level theory for fields has also been extended, to commutative
rings [MW], [Po2], division rings [C], and even to general non-commutative rings [Pol].
The theory of ordered fields and the related valuation theory is intimately connected with
the algebraic theory of quadratic forms, see Lam’s books [L1] and [L3]. Work of Becker
and Rosenberg show that these connections also exist in the higher level theory, see, e.g.,

[BR).
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