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flz,y,z) = z* +22%y% + 2’2 + 2

A Gram matrix for f would be of the form

1 0 2 AT
0 2 0 0
2 0 —2Xx O

LA 0 O 1

In this case, S contains —8 — 4\ + 403 and —8 — 4,
which cannot both be > 0. Hence S is empty and f

1S not a sos.

flz,y, 2) = 2% +4x3y?2 + % + 2422 4+ 2zt + 42°

Note |Az| = 10, but in this case there are only 5

exponents that can occur in the h;’s. We get

1 0 2 0 07
0 1 0 T S
V=12 0 2-2r —8 t
0 —S8 1—-2t O
L0 s t 0 4 |

as the general form of a Gram matrix.



Then S =

—2r—2t+9 >0,

—7r? + 4rt — 14r — 252 — t2 — 16t + 25 > 0,
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1073 + 122 — 1072 — 2rs?t 4 4rs? + 367t — 267 + s* +
65t — 10s? + 4> — 3t> — 4t — 6 > 0,

873 + 1242 4 8r2 + —2rs2t + 218 + 167t — 8r + s* —
452t — 252 +2t3 —t> + 16t -8 >0

Using “ad hoc” methods, we see that S 1s nonempty,

in fact (—1,0,0),(-2,0,-3/2) € S.



Using (—1,0,0),
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0O 1 0 -1 0
V=12 0 4 0 O
0O -1 0 1 O
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Note that rank V = 3, so this gives f as a sum of 3
squares. We have Q(y) = y? + 4y1y3 + 5 — 2y2ys +
4y3 + i +4y5 = (Y1 + 203)° + (2 — va)” + (2u5)”.
This yields

‘1 0 2 0 0 7
1 0 -2 0
0 6 0 —3/2

2 0 4 0
0 -3/2 0 4 |

Note rank V = 4. Proceeding as before we get
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(V222 — 3v2/42%)% + (1/23/82°)2.
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