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INTRODUCTION

Problems in computational real algebraic geometry tend to be very difficult to
solve unless they can be reduced to (complex) zero-dimensional problems. In the
special case of deciding if a polynomial f over a real closed field has a real zero,
one way to do this is to use the method of Lagrange multipliers, i.e., look for
critical points of a “distance function” ¢ subject to the constraint f = 0. This set
will be zero-dimensional almost always. This idea is not new, see e.g. [GV]. In
this paper, we look at two new applications of this method, namely deciding if a
polynomial is positive semi-definite and deciding if a basic closed semi-algebraic
set is empty.

THE IDEAL OF LAGRANGE MULTIPLIERS

Let R be areal closed field, set R[X] := R[z1,...,z,], and let C be the algebraic
closure of R. For an ideal I C R[X], V(I) := {x € C™|g(z) = 0 for all g € I}.
Then I is zero-dimensional if V(I) is a finite set. For fi,..., fr € R[X], we
write V(f1,..., fr) to denote V(I), where I is the ideal generated by the f;’s. The
set of real points of V(I), denoted Vg(I), is V(I)N R.

Definition. Given f,¢ € R[X] and A a new indeterminate. The ideal of La-
grange multipliers of f with respect to ¢, denoted L(f, ¢), is
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the ideal in R[X, A] generated by f and the partial derivatives of A\f — ¢.
Proposition 1. Given f,¢ € R[X]. 4 mus+ be Smes tA
(i) Ve(f) # 0 iff VR(L(f,¢)) # 0.

(ii) L(f, ¢) is not zero-dimensional iff an irreducible component of V(f) which
s not zero-dimensional is contained in V(¢ — ¢) for some c € C.

Proof. Set L := L(f, ).

(i): From elementary analysis we know that the real points of L consist of the
extremal points of ¢ under the constraint f = 0. Suppose Vg(f) is not empty,
then since Vg(f) is a closed set, ¢ must attain a minimum on Vgr(f). Hence Vg (L)
is not empty. Since Vi(L) C Vi(f), the opposite implication is trivial.
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(ii): For any g € R[X], let £(g) := {x € C" | %%(a:) = 0 for all x;}. Let
g = Af — ¢, then ©(g) = L(f,¢). It follows from Sard’s theorem that g(U) is
constant for any irreducible component U of ¥(g). (For a proof of this, see e.g.
[W,6.2].) Thus any irreducible component of L(f, ¢) must be contained in V(p—c)
for some ¢ € C and the result follows. [

Since V(f) has only finitely many irreducible components, it follows from the
proposition that for a randomly chosen ¢, the probability is 1 that L(f, ¢) will be
zero-dimensional. In the case where V(I) is zero-dimensional, there are practical
and efficient algorithms for deciding if Vz(I) is empty or not, c.f. [BW],[PRS].
For our examples we used the RealSolving software, developed by M.-F. Roy and
F. Rouillier. For details on RealSolving, see [R].

To determine if a smooth polynomial f has a real root or not, we proceed as
follows: Choose a “distance function” ¢. If L(f,#) is zero-dimensional, then we
can test whether Vr(L(¢, f) is empty. If L(f, ¢) is not zero-dimensional we can
change the distance function ¢ with the aim of making L(f, ¢) zero-dimensional.
In practice, we use ¢ = x2 -+ ...x2, the square of the Euclidean distance function.

TESTING POSITIVITY OF A POLYNOMIAL

A polynomial f € R[X]is positive semi-definite (psd) iff f(z) > O forallz € R™.
In this section, using the results above, we give an algorithm for determining
whether f is psd.

Given f € R[X], let t be a new indeterminant and define F := ft* +1 €
R[z1,...,%n,t]. Then clearly f is psd iff Vg(F) = 0. Thus we choose ¢ € R[X, 1]
and by Prop. 1, f is psd iff V(L(F, ¢)) has a real point. If we take ¢ to be the
square of the Euclidean distance function, we can simplify L(F, ¢) somewhat:

Proposition 2. Given f € R[X], let F = t2f + 1 € Rlzy,...,2n 1], fi = g—%,

and ¢ = x3+---+ 22 +12. Then f is psd iff VR(F, t4f1 4221, ..., 4 fo+22,) = 0.

Proof. Set V := VR(F,t*f1 + 2x1,...,t* fn + 22,) and L := L(F, ¢) = (F, X’ f1 —
21, ... A2 fn — 22, 2tf — 2At). By Prop. 1 and the above, we have f is psd iff
Vg(L) = 0. Suppose z € R"™, Ag,to € R such that a = (x, Ao, t9) € Vr(L), then
since F(a) = 0 we must have f(z) # 0 and to # 0. Thus F(a) = 0 implies t§ =
—1/f(z) and 2tof(x)—2Xoto = 0 implies 1/f = Ao. Hence \g = —t§ andso V' # 0.
Conversely, given (z,ty) € V, setting Ao = —t3 yields (z, Ao, t0) € V(L(F,9)). O
Ezample. Let f = 228 + y® — 32292 + 22y?2 — 6y + 5 and F = t*f + 1. As above,
we have f is psd iff V := V(F,t4(122% — 122%y? + 2xy?) + 2z, t4(6y° — 62y +
22y — 6) + 2y) has no real point. V is zero-dimensional, as is easily checked. The
RealSolving software calculates that V' has 4 real points, hence f is not psd.

The polynomial f is a special case of the following: For each a € Rt set

fo =225+ 4% - 3zty? — 6y + 5 + ax’y®

We have just shown that f; is not psd, and in a similar manner we can show that
fo is psd. Thus there exists b, 1 < b < 2, such that f, not psd for @ < b and psd
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for a > b. We would like to find b. We cannot follow the exact procedure used
for f1, f2 since the RealSolving software cannot handle parameters. However we
can get rid of the parameter using the following “trick”, due to Reznick: First
note that fu(x,y) > 0 trivially when zy = 0, and also fa(z,y) > fa(z, lyl),
hence it suffices to assume = > 0 and y > 0. Then we have fo(x,y) > 0 iff
(228 + % — 3z%y® — 6y + 5)/2%y? + a > 0. Hence b is the minimum of the
rational function G(z,y) := 22%y=2 — 322 — 627 %y~2 + 50" 2y~2. Set t := 22,
take derivatives and clear denominators to get that the critical points of G are
V(g1,g2), where g, = y® — 3t%y? + +6y + 4t> — 5 and go = 4y + 6y — 4¢3 —10. A
Groebner Basis of (g1, g2) in lex order contains a polynomial in ¢ only of degree
13 which has a root at 0 and 3 other real roots. Solving numerically, we find that
G has one real critical value between 1 and 2, and that b is approximately 1.2099.

Basic CLOSED SEMI-ALGEBRAIC SETS

A basic closed semi-algebraic set in R™ is a set of the form K(f1,..., fx) :=
{a € R" | fi(a) > 0 for all 4,1 < i < k}, where f1,..., f € R[X]. In this section
we use the idea of Lagrange multipliers to give an algorithm for a test of emptyness
for a basic closed semi-algebraic set, i.e., given a basic closed semi-algebraic set
S, the algorithm decides whether S is empty or not.

Proposition 3. Given S = K(f1,..., fr), defined as above and ¢ € R[X]. As-
sume Vg(f;) # O for all i. For each subset A C {f1,..., fx) set fa = ZfiEA f2
and let Ly = {a € VR(L(fa,9)) | fi(a) > 0 for all f; ¢ A}. Then S = 0 iff
La=0 for alli.

Proof. Suppose S is not empty, then ¢ attains a minimum on S since S is closed.
Clearly, ¢ attains a minimum on some Vg(f;). Suppose a minimum occurs at «,
then let A = U{f; | fi(a) = 0}. Then « is a minimum of ¢ on Vgr(A) = Vgr(fa),
and since o € S, we have o« € L4. Since Ly C S for all A, the the opposite
implication is immediate. O

If V(f4) is zero-dimensional, then there are practical algorithms for deciding if
L 4 is empty or not. In fact, the RealSolving software mentioned in the previous
section can do this. Thus we proceed as follows: Choose a suitable ¢, then for
each non-empty A C {f1,..., fr}, check whether L 4 is empty or not. (In practice,
one should start with the smallest A’s.)

Ezample. In [PW], an algorithm is given for determining whether or not a polyno-
mial is a sum of squares (of polynomials). The algorithm works as follows: Given
a polynomial f, associated to f is a matrix, the Gram matrix of f, which is of
the form B = By + t;B1 + -+ - + t,n By, where each B; is a square matrix (all
of the same size) and the ¢;’s are new variables. Then f is a sum of squares iff
there exist values for the ¢;’s for which the matrix B is a positive semi-definite
(psd) matrix. Now B is psd iff all eigenvalues of B are non-negative. Hence, using
Descarte’s rule of signs, we have that f is a sum of squares iff the basic closed
semi-algebraic set {(—=1)*t*b; > 0} is non-empty, where by, ...,bx € R[t1,...,tm]
are the coefficients of the characteristic polynomial of B.
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Let f = 22% + 223y% + y% + 1. We would like to determine whether f is a sum
of squares in R[z,y] or not. Using the algorithm in [PW], we find that the Gram
matrix of f is

2 0 1 0 0
0 1 0 r s
1 0 —-2r —s5
0O r —-s =2t O
0 s t 0 1 )

The corresponding semi-algebraic set is
S = {4r3 + 72 4+ 25* — 25% + 413 + 2t + 8rt — 252t — 4rs’t + 2r%t* > 0,
6r3 + 1242 — r2 — 2rs2t + drs? + 200t — dr + s* + 452 — 452+ 612 - 2t2 -1 >0,
23 — 3r2 — 107 + 2rs? + 167t + 2s% — 65 4 2¢> — 3t > 0,
—r? 4 4rt —8r —252 —t2 —8t+4>0,—2r — 2t +4 > 0}.

Using RealSolving, we find that in this case L4 # 0, where A = {f3} and thus
f is a sum of squares.
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