LAGRANGE MULTIPLIERS AND SOME PROBLEMS IN COMPUTATIONAL REAL ALGEBRAIC GEOMETRY

E. BECKER, V. POWERS, AND T. WÖRMANN

Introduction

Problems in computational real algebraic geometry tend to be very difficult to solve unless they can be reduced to (complex) zero-dimensional problems. In the special case of deciding if a polynomial f over a real closed field has a real zero, one way to do this is to use the method of Lagrange multipliers, i.e., look for critical points of a "distance function" ϕ subject to the constraint f=0. This set will be zero-dimensional almost always. This idea is not new, see e.g. [GV]. In this paper, we look at two new applications of this method, namely deciding if a polynomial is positive semi-definite and deciding if a basic closed semi-algebraic set is empty.

THE IDEAL OF LAGRANGE MULTIPLIERS

Let R be a real closed field, set $R[X] := R[x_1, \ldots, x_n]$, and let C be the algebraic closure of R. For an ideal $I \subset R[X]$, $V(I) := \{x \in C^n | g(x) = 0 \text{ for all } g \in I\}$. Then I is **zero-dimensional** if V(I) is a finite set. For $f_1, \ldots, f_k \in R[X]$, we write $V(f_1, \ldots, f_k)$ to denote V(I), where I is the ideal generated by the f_i 's. The set of **real points** of V(I), denoted $V_R(I)$, is $V(I) \cap R$.

Definition. Given $f, \phi \in R[X]$ and λ a new indeterminate. The **ideal of Lagrange multipliers of** f with respect to ϕ , denoted $L(f, \phi)$, is

$$(f, \lambda f_{x_1} - \phi_{x_1}, \dots, \lambda f_{x_n} - \phi_{x_n}),$$

the ideal in $R[X, \lambda]$ generated by f and the partial derivatives of $\lambda f - \phi$.

Proposition 1. Given $f, \phi \in R[X]$. f must be smooth

- (i) $V_R(f) \neq \emptyset$ iff $V_R(L(f, \phi)) \neq \emptyset$.
- (ii) $L(f, \phi)$ is not zero-dimensional iff an irreducible component of V(f) which is not zero-dimensional is contained in $V(\phi c)$ for some $c \in C$.

Proof. Set $L := L(f, \phi)$.

(i): From elementary analysis we know that the real points of L consist of the extremal points of ϕ under the constraint f=0. Suppose $V_R(f)$ is not empty, then since $V_R(f)$ is a closed set, ϕ must attain a minimum on $V_R(f)$. Hence $V_R(L)$ is not empty. Since $V_R(L) \subseteq V_R(f)$, the opposite implication is trivial.

(ii): For any $g \in R[X]$, let $\Sigma(g) := \{x \in C^n \mid \frac{\partial f}{\partial x_i}(x) = 0 \text{ for all } x_i\}$. Let $g = \lambda f - \phi$, then $\Sigma(g) = L(f, \phi)$. It follows from Sard's theorem that g(U) is constant for any irreducible component U of $\Sigma(g)$. (For a proof of this, see e.g. [W,6.2].) Thus any irreducible component of $L(f,\phi)$ must be contained in $V(\phi-c)$ for some $c \in C$ and the result follows. \square

Since V(f) has only finitely many irreducible components, it follows from the proposition that for a randomly chosen ϕ , the probability is 1 that $L(f,\phi)$ will be zero-dimensional. In the case where V(I) is zero-dimensional, there are practical and efficient algorithms for deciding if $V_R(I)$ is empty or not, c.f. [BW],[PRS]. For our examples we used the RealSolving software, developed by M.-F. Roy and F. Rouillier. For details on RealSolving, see [R].

To determine if a smooth polynomial f has a real root or not, we proceed as follows: Choose a "distance function" ϕ . If $L(f,\phi)$ is zero-dimensional, then we can test whether $V_R(L(\phi,f))$ is empty. If $L(f,\phi)$ is not zero-dimensional we can change the distance function ϕ with the aim of making $L(f,\phi)$ zero-dimensional. In practice, we use $\phi = x_1^2 + \dots x_n^2$, the square of the Euclidean distance function.

TESTING POSITIVITY OF A POLYNOMIAL

A polynomial $f \in R[X]$ is positive semi-definite (psd) iff $f(x) \ge 0$ for all $x \in R^n$. In this section, using the results above, we give an algorithm for determining whether f is psd.

Given $f \in R[X]$, let t be a new indeterminant and define $F := ft^2 + 1 \in R[x_1, \ldots, x_n, t]$. Then clearly f is psd iff $V_R(F) = \emptyset$. Thus we choose $\phi \in R[X, t]$ and by Prop. 1, f is psd iff $V(L(F, \phi))$ has a real point. If we take ϕ to be the square of the Euclidean distance function, we can simplify $L(F, \phi)$ somewhat:

Proposition 2. Given $f \in R[X]$, let $F = t^2 f + 1 \in R[x_1, ..., x_n, t]$, $f_i = \frac{\partial f}{\partial x_i}$, and $\phi = x_1^2 + \cdots + x_n^2 + t^2$. Then f is psd iff $V_R(F, t^4 f_1 + 2x_1, ..., t^4 f_n + 2x_n) = \emptyset$.

Proof. Set $V := V_R(F, t^4 f_1 + 2x_1, \dots, t^4 f_n + 2x_n)$ and $L := L(F, \phi) = (F, \lambda t^2 f_1 - 2x_1, \dots \lambda t^2 f_n - 2x_n, 2tf - 2\lambda t)$. By Prop. 1 and the above, we have f is psd iff $V_R(L) = \emptyset$. Suppose $x \in R^n$, $\lambda_0, t_0 \in R$ such that $\alpha = (x, \lambda_0, t_0) \in V_R(L)$, then since $F(\alpha) = 0$ we must have $f(x) \neq 0$ and $t_0 \neq 0$. Thus $F(\alpha) = 0$ implies $t_0^2 = -1/f(x)$ and $2t_0 f(x) - 2\lambda_0 t_0 = 0$ implies $1/f = \lambda_0$. Hence $\lambda_0 = -t_0^2$ and so $V \neq \emptyset$. Conversely, given $(x, t_0) \in V$, setting $\lambda_0 = -t_0^2$ yields $(x, \lambda_0, t_0) \in V(L(F, \phi))$. \square

Example. Let $f = 2x^6 + y^6 - 3x^4y^2 + x^2y^2 - 6y + 5$ and $F = t^2f + 1$. As above, we have f is psd iff $V := V(F, t^4(12x^5 - 12x^3y^2 + 2xy^2) + 2x, t^4(6y^5 - 6x^4y + x^2y - 6) + 2y)$ has no real point. V is zero-dimensional, as is easily checked. The RealSolving software calculates that V has 4 real points, hence f is not psd.

The polynomial f is a special case of the following: For each $a \in \mathbb{R}^+$, set

$$f_a := 2x^6 + y^6 - 3x^4y^2 - 6y + 5 + ax^2y^2.$$

We have just shown that f_1 is not psd, and in a similar manner we can show that f_2 is psd. Thus there exists b, $1 < b \le 2$, such that f_a not psd for $a \le b$ and psd

for a>b. We would like to find b. We cannot follow the exact procedure used for f_1 , f_2 since the RealSolving software cannot handle parameters. However we can get rid of the parameter using the following "trick", due to Reznick: First note that $f_a(x,y)\geq 0$ trivially when xy=0, and also $f_a(x,y)\geq f_a(x,|y|)$, hence it suffices to assume x>0 and y>0. Then we have $f_a(x,y)\geq 0$ iff $(2x^6+y^6-3x^4y^2-6y+5)/x^2y^2+a\geq 0$. Hence b is the minimum of the rational function $G(x,y):=2x^4y^{-2}-3x^2-6x^{-2}y^{-2}+5x^{-2}y^{-2}$. Set $t:=x^2$, take derivatives and clear denominators to get that the critical points of G are $V(g_1,g_2)$, where $g_1=y^6-3t^2y^2+6y+4t^3-5$ and $g_2=4y^6+6y-4t^3-10$. A Groebner Basis of (g_1,g_2) in lex order contains a polynomial in t only of degree 13 which has a root at 0 and 3 other real roots. Solving numerically, we find that G has one real critical value between 1 and 2, and that b is approximately 1.2099.

BASIC CLOSED SEMI-ALGEBRAIC SETS

A basic closed semi-algebraic set in R^n is a set of the form $K(f_1, \ldots, f_k) := \{\alpha \in R^n \mid f_i(\alpha) \geq 0 \text{ for all } i, 1 \leq i \leq k\}$, where $f_1, \ldots, f_k \in R[X]$. In this section we use the idea of Lagrange multipliers to give an algorithm for a test of emptyness for a basic closed semi-algebraic set, i.e., given a basic closed semi-algebraic set S, the algorithm decides whether S is empty or not.

Proposition 3. Given $S = K(f_1, ..., f_k)$, defined as above and $\phi \in R[X]$. Assume $V_R(f_i) \neq \emptyset$ for all i. For each subset $A \subseteq \{f_1, ..., f_k\}$ set $f_A = \sum_{f_i \in A} f_i^2$ and let $L_A = \{\alpha \in V_R(L(f_A, \phi)) \mid f_j(\alpha) \geq 0 \text{ for all } f_j \notin A\}$. Then $S = \emptyset$ iff $L_A = \emptyset$ for all i.

Proof. Suppose S is not empty, then ϕ attains a minimum on S since S is closed. Clearly, ϕ attains a minimum on some $V_R(f_i)$. Suppose a minimum occurs at α , then let $A = \bigcup \{f_i \mid f_i(\alpha) = 0\}$. Then α is a minimum of ϕ on $V_R(A) = V_R(f_A)$, and since $\alpha \in S$, we have $\alpha \in L_A$. Since $L_A \subseteq S$ for all A, the the opposite implication is immediate. \square

If $V(f_A)$ is zero-dimensional, then there are practical algorithms for deciding if L_A is empty or not. In fact, the RealSolving software mentioned in the previous section can do this. Thus we proceed as follows: Choose a suitable ϕ , then for each non-empty $A \subseteq \{f_1, \ldots, f_k\}$, check whether L_A is empty or not. (In practice, one should start with the smallest A's.)

Example. In [PW], an algorithm is given for determining whether or not a polynomial is a sum of squares (of polynomials). The algorithm works as follows: Given a polynomial f, associated to f is a matrix, the Gram matrix of f, which is of the form $B = B_0 + t_1B_1 + \cdots + t_mB_m$, where each B_i is a square matrix (all of the same size) and the t_i 's are new variables. Then f is a sum of squares iff there exist values for the t_i 's for which the matrix B is a positive semi-definite (psd) matrix. Now B is psd iff all eigenvalues of B are non-negative. Hence, using Descarte's rule of signs, we have that f is a sum of squares iff the basic closed semi-algebraic set $\{(-1)^{i+k}b_i \geq 0\}$ is non-empty, where $b_0, \ldots, b_k \in R[t_1, \ldots, t_m]$ are the coefficients of the characteristic polynomial of B.

Let $f = 2x^6 + 2x^3y^2 + y^6 + 1$. We would like to determine whether f is a sum of squares in $\mathbb{R}[x,y]$ or not. Using the algorithm in [PW], we find that the Gram matrix of f is

$$\begin{bmatrix} 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & r & s \\ 1 & 0 & -2r & -s & t \\ 0 & r & -s & -2t & 0 \\ 0 & s & t & 0 & 1 \end{bmatrix}$$

The corresponding semi-algebraic set is

The corresponding semi-algebraic set is
$$S = \left\{ 4r^3 + r^2 + 2s^4 - 2s^2 + 4t^3 + 2t + 8rt - 2s^2t - 4rs^2t + 2r^2t^2 \ge 0, \\ 6r^3 + r^2t^2 - r^2 - 2rs^2t + 4rs^2 + 20rt - 4r + s^4 + 4s^2 - 4s^2 + 6t^3 - 2t^2 - 1 \ge 0, \\ 2r^3 - 3r^2 - 10r + 2rs^2 + 16rt + 2s^2t - 6s^2 + 2t^3 - 3t^2 \ge 0, \\ -r^2 + 4rt - 8r - 2s^2 - t^2 - 8t + 4 \ge 0, -2r - 2t + 4 \ge 0 \right\}.$$

Using RealSolving, we find that in this case $L_A \neq \emptyset$, where $A = \{f_3\}$ and thus f is a sum of squares.

REFERENCES

- [BW] E. Becker and T. Wörmann, On the trace formula for quadratic forms, Cont. Math. 155 (1994), 271–291.
- [GV] D. Grigorév and N. Vorobjov, Solving systems of polynomial inequalities in subexponential time, J. Sym. Comp. 5 (1988), 37–64.
- [PRS] P. Pedersen, M.-F. Roy, and A. Szpirglas, Counting real zeros in the multivariate case, Computational Algebraic Geometry (Nice, 1992), Birkhauser, Boston, MA, 1993, pp. 203– 224.
- [PW] V. Powers and T. Wormann, An algorithm for sums of squares of real polynomials, to appear, J. Pure and Applied Algebra.
- [R] F. Rouillier, PoSSo RealSolving Zero-dimensional systems of polynomials, Proceedings of the PoSSo Workshop on Software, to appear.
- [W] N. Wallach, On a theorem of Milnor and Thom, to appear.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA, GA 30322, USA

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT DORTMUND, LEHRSTUHL VI, DORTMUND 44221, GERMANY