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INTRODUCTION

We present an algorithm to determine if a real polynomial is a sum of squares
(of polynomials), and to find an explicit representation if it is a sum of squares.
This algorithm uses the fact that a sum of squares representation of a real polyno-
mial corresponds to a real, symmetric, positive semi-definite matrix whose entries
satisfy certain linear equations.

SUMS OF SQUARES AND (GRAM MATRICES

We fix n and use the following notation in R := Rz;,...,z,]: For a =
(a1,...,00) € Ny, let z® denote z{* - ...  2%*. For m € Ny, set A, :=
{loy.....0y) € Ng | 0y + -+ 4+, < m}. Then f € R of degree m can be

written f = ZaeAm a.x®. We say f is sos if f is a sum of squares of elements in
R.

Suppose f is sos, say f is a sum of ¢ squares in R, then f must have even
degree, say 2m. Thus f = Z:zl h?, where each h; has degree < m. Suppose
|Asn| = k, then we order the elements of A, in some way: A,, = {B1,...,8}. Set
T = (2%,...,27%) and let A be the k x t matrix with ith column the coefficients
of h;. Then the equation f =Y h? can be written

f=x-(AAT) 2T, i s

The symmetric £ x k matrix B := AAT is sometimes called a Gram matrix of
[ (associated to the h;’s). Note that B is psd (= “positive semi-definite”), i.e.,
g-B-yg¥ >0forall j= (y1,...,yx) € RE,

The following theorem, in a different form, can be found in [CLR]. However we
include the theorem and its proof for the convenience of the reader.

Theorem 1. Suppose f € R is of degree 2m and T is as above. Then f is a sum
of squares in R iff there exists a real, symmetric, psd matrix B such that Qe
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Given such a matrix B of rank t, then we can can construct polynomials h1, ..., h;
such that f = " h? and B is a Gram matrix of f associated to the h;’s.

Proof. If f = 5 h? is sos, then as above we take B = A - AT, where A is the
matrix whose columns are the coefficients of the h;’s.
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Suppose there exists a real, symmetric, psd matrix B such that f =z - B - z7
and rank B = t. Since B is real symmetric of rank ¢, there exists a real matrix V'
and a real diagonal matrix D = diag(ds,...,d,0,...,0) such that B=V-D- vT
and d; # 0 for all 7. Since B is psd we have d; > 0 for all <. Then

(x) f=z-v.D-vT.zT.

Suppose V = (v;;), then for i = 1,...,t, set h; := \/d—izgc:l v; ;2P € R Tt
follows from (%) that f = h3 +---+hZ. O Yoy,

Thus to find a representation of f as a sum of squares, we need only find a
matrix B which satisfies the theorem. Further, if we can show that no such B
exists, then we know that f is not a sum of squares in R. Note that if f =Y aq2®
and B = (b; ;) is a k x k symmetric matrix then by “term inspection”, f = z-B-zT
iff for all & € Ao,

(**) Z bi,j = Qy- (\\\\\\\

Bi+B=a L\
\\ \\\\i\
, NN
THE ALGORITHM ‘ K \\3
Given f € R of degree 2m.
U 1. Let B = (b; ;) be a symmetric matrix with variable entries. Solve the linear
\ system that arises from f = - B - ZT, i.e., solve the linear system defined by
J;G equations of the form (xx) above, with one equation for each o € A,,. Note

that each variable b; ; appears in only one equation, hence the solution is found
by setting all but one variable in each row equal to a parameter and solving for
the remaining variable. Then the solution is given by B = Bo+A;B1+- -+ A By,
where each B; is a real symmetric k£ x k£ matrix and Aq, ..., A; are the parameters.

In this case I = k(k +1)/2 — |Aom|- 4 P! i:;;_/%} A ;

Remark. In general, the size of the matrix B grows rapidly as the number of
variables and the degree of the polynomial increases, since k = |A,,| = ("j;m).

However for a particular polynomial we can sometimes decrease the size of the
Gram matrix by eliminating unnecessary elements of A,,. For example, suppose

a € Aoy, a = 273, and a cannot be written in any other way as a sum of elements BWL ”LL\M(" o

in A,,. Then if the coefficient of o in f is 0, we know z” cannot occur in any h;,
[CL §2] and [CLR, 3.7]. T

2. We want to find values for the \,’s that make B = Bo + A\1B1 + -+ + A By
psd. As is well known, B is psd iff all eigenvalues are non-negative. Let F'(y) = N
y* + be_1y* 1 + .- - 4+ by be the characteristic polynomial of B. Note that each
SJ\ M;’ P b; € R[A1,...,A\]. By Descarte’s rule of signs, which is exact for a polynomial
o (- Jra enwith only real roots, F(y) has only non-negative roots iff (—1)(+*)p; > 0 for
alli=0,...,k— 1. Hence we consider the semi-algebraic set I _ J. )7 ;
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Si={(A1,..., ) R | (=) FFPp, (A, ..., N) > 0}
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Then f is sos iff S is nonempty, and a point in S corresponds to a matrix
satisfying the conditions of Theorem 1.

Remark. There are several different algorithms for determining whether or not
a semi-algebraic set is empty, for example using quantifier elimination. Unfortu-
nately, none of these algorithms are practical apart from “small” examples. For
- more on this topic, see e.g. [BCR], [C], [GV], [R].

3. Given a matrix B = (b; ;) which satisfies the conditions of Theorem 1, then we
use the procedure in the proof of the theorem to find a representation of f as
a sum of squares.

Example 1. Let f = 22y? + 2% + y? + 1, then f is visibly a sum of squares. We
want to find all possible representations of f as a sum of squares. Note that by
the remark above, if f = 3 h? then the only monomials that can occur in the h;’s
are xy,x,y,1. Soset 31 = (1,1), B = (1,0), B3 = (0,1), and 34 = (0,0). Then
the linear system in step 1 of the algorithm is

br1=1,2b19=0,2b15=0,2b4+2by3=0
byo=1,2by4 =0

b3 =1, 2b34 =0

by =1

Thus the general form of a Gram matrix for f is

t,, b
1 0 0 A
0 1 -2 0

B = 0o —-Xx 1 0
A0 0 1
b.i. L?f{ &

The characteristic polynomial of B is [ ncbiois pa Yt i ﬁf““/‘d‘”“gf

SAMM%H\.L
L

gt — 4y 4+ (6 - 202)y? + (4N — )y + (M =202 + 1),

thus B is psd iff —1 < A < 1. Note that rank B = 2 if A = +1, otherwise rank
B = 4. Hence f can be written as a sum of 2 or 4 squares.

We have B = V - D - VT where D = diag(1,1,1 — X\2,1 — A\?) and V =

1 0 0 0

0 1 0 0 ..

0 —-x 1 ol This yields
A 0 01

f=@y+ A7+ (z—2)%+ (V1= 22%)% + (V1 - A2)%

Note that A = 0 yields the original representation of f as a sum of 4 squares.
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Example 2. Let f(z,y, z) = 2* + 22%y? + 232z + z*. A Gram matrix for f would
be of the form

O o O
—_0 O >

2
0
—2A
0

S DO O =
jaw]

In this case, S C {—8 —4A + 43 > 0,—8 —4X > 0} = 0. Hence f is not sos.

Example 3. Let f(z,y,2) = 2% 4+ 423y%2z + y% + 2y*2? + y?2* + 42%. In this
case the only exponents that can occur in the h;’s are {(3,0,0), (0, 3,0), (0,2,1),
(0,1,2), (0,0,3)}. We get

1 0 2 0 0
0 1 0 T S
B=|(2 0 2-2r —S t
0 r -8 1-2¢t 0 .
0 s 0 4 &

as the general form of a Gram matrix.

The corresponding semi- algebralc set is S = {—2r—2t+9 > 0, —r2+4rt—14r —
252 —t2—16t+25 > 0, 2r3—7r24-2rs?+24rt—30r+-25%t—10s +2t3 3t2-34t+19 >
0,107 +72t2 — 1072 — 2752t + 4152+ 367t — 267+ 5* +65°t — 105% +4t> —3t* — 4t —6 >
0, 873+ 7224872 + —2rs2t 4+ 2rs? + 160t —8r+s* — 452t — 252 +2¢3 12+ 16t —8 > 0}.
If we set s =t = 0, we see (—1,0,0) € S, and setting s = 0 and r = —2 we see
(—2,0,-3/2) € S. In particular, S is nonempty and so f is a sum of squares.

Using (-1,0,0), o crinet oolgapmrad
1 0 2 0 07 , _
(-1, 0.0 001 0 -1 of Frar-l VT 2
o T"éf;_" B=|2 0 4 0 0 ‘
R 3 \ 0O -1 0 1 0
2 ! &-2)Lo 0 0 0 4
oy, 072)

Note that rank B =3, so thls gives f as a sum of 3 squares. In this case we get
f=(®+20%2)% + (v® — y2H)? + (22°)%
Using (-2,0,-3/2),

1 0 2 0 0
o1 0 -2 0

B=|2 0 6 0 =32
0 -2 0 4 0
0 0 =3/2 0 4

Note rank B = 4. Proceeding as before we get

f=E+2%)7 + () - 292°)” + (Vs — 3v2/42°) + (V/23/82%)°.

Remark. Let (K, <) be any ordered field with real closure R, and suppose f €
K[zy,...,2,]. Then we can easily extend the algorithm to decide whether or not
f is a sum of squares in R[xy,...,z,].
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