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ABSTRACT. A constructive approach to the Kadison-Dubois Representation |
Theorem is given, with degree bounds and an algorithm for finding a repre- i
sentation. This is applied to give a constructive approach to M. Marshall’s |
representation theorem for certain non-compact semialgebraic sets. Our ap- /
d

proach is based on work of M. Schweighofer.
RSl

1. Introduction

Given {f1,..., fr}, a finite set of polynomials in R[X] := Rlxy,...,2y], let S
be the basic closed semialgebraic set {a € R™ | fi(a) > 0,..., fe(a) > 0}. Suppose
that a polynomial p can be written as a finite sum of products of the f;’s and sums of
squares in R[X], then clearly p is non-negative on S. A “representation theorem” is
a converse to this fact, namely, a theorem that says that if a polynomial p is positive
on S, then there is a representation of p in terms of the fi’s and (possibly) sums
of squares. Such a representation can be thought of as a “certificate of positivity”
from which the positivity condition is immediately apparent.

In [13], K. Schmiidgen proved a remarkable and far-reaching representation
theorem, namely, he showed that if S as above is compact and p > 0 on S, then
p is in the preorder generated by the f;’s, i.e., the set of finite sums of elements
of the form s f* - - - fi*, where s, is in > R[X]? and € = (e1,...,¢;) € {0,1}*.
The proof, which uses functional analysis techniques, is not constructive. Thus
no information is obtained on the degree of the sums of squares involved, nor on
how to find a representation for a specific p. T. Wormann [15] gave an algebraic
proof of this result but this proof is also non-constructive. The main tool used in
Wormann’s proof is the Kadison-Dubois representation theorem for archimedean
partially ordered rings. Recently, M. Schweighofer [14] found a constructive ap-
proach to Schmiidgen’s Theorem, using instead of Kadison-Dubois a representa-
tion theorem of Pélya for polynomials positive on the standard simplex. Unlike
the Kadison-Dubois Theorem, degree bounds for the “output data” are known for
Pélya’s Theorem [12].

In this paper we use the ideas of Schweighofer to give a constructive approach
to the Kadison-Dubois Theorem, with degree bounds and an algorithm for finding
a representation. We then apply this to give a constructive approach to a result
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of M. Marshall [9] which gives a representation theorem for certain non-compact
semialgebraic sets. As in Schweighofer’s work, our algorithm depends on having
representations of polynomials of the form N+ux; for all 4, and thus is not completely
constructive. We discuss onc possible approach to finding such representations in
specific cases.

Schiidgen’s theorem was proven for a real polynomial ring, however Wérmann'’s
proof and Schweighofer’s algorithm both generalize easily to the finitely generated
real algebra case. Our results will also hold in this more general case. The full
generality will be needed for the proof of Marshall's theorem.

Some of the results in this paper are part of the first author’s Ph.D thesis at
Emory University, written under the direction of the second author.

2. Preliminaries on Archimedean Preprimes and Preorders

We work in the coordinate ring R = R[V] of an algebraic set V in R™. Then
IR is an R-algebra generated by the coordinate functions z; : V -— R. Given
fivoooofe € R let S(f1,. .., fr) be the basic closed semialgebraic set generated
by the fi’s, ie, S(f1,.. ., fu):={a eV | fila) 2 0for 1 <i <k}

A subsct P of R is a preprime if

P+PCP P.-PCP RtCP -1¢P

Let > denote the set of sums of squares in R. A preprime P is a preorder if
> C P. Given f1,...,fx € R, PP(f1,..., fi) denotes the preprime generated by
€1

the f;’s, i.e., the set of finite sums of elements in R of the form a fi* ... ;’“, where
€= (e1,...,€x) € NFand q. € RT.

DEeFINITION 2.1. Given a finitely-generated preprime P := PP(f1,..., fx) and
suppose g € P. A P-representation of g is a an equation of the form

_E € €
g_ a€1 DI k)

eeNF
where a. € R* for all e. The degree of the representation is the maximum of {|e|}.

REMARK 2.2. Another way to view elements of PP(f1,..., fx) is as the set of all
elements of R which can be written F(f1,..., fx), where F is a polynomial in k vari-
ables with non-negative coefficients. If we have a representation ¢ = F'(f1...., fi)
of g € PP(fy,..., fr), then the degree of the representation is the degree of F" as a

polynomial.

The preorder generated by the f;’s, denoted PO(fi,..., fi), is the set of all
elements of the form

where s, € > for all €.

REMARK 2.3. Preorders_and preprimes are the fundamental algebraic objeﬁt)s
associated to semialgebraic sets. In some sense, preorders play a role in semialge-
braic geometry that is comparable to the role played by ideals in algebraic geometry.
Computationally, a finitely generated preprime is much simpler to work with than
a finitely generated preorder, since sums of squares are not involved. However, for
the most general cases, the preprime is not sufficient, as we shall see.
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We say that a subset P of R is Archimedean if for each g € R there exists a
non-negative integer m such that m — g € P. Suppose P := PP(f1,..., fx) and
S:=S8(f1,..., frx) and P is archimedean. Then it is easy to see that S is compact:
There must be some N € N such that N & z; € P for all ¢, from which it follows
that S is contained in the compact set {a € V | N £ 2;(«) > 0 for all i} and hence
is also compact. For preorders, the converse also holds:

THEOREM 2.4. Let S be as above and P := PO(f1,...,fx). Then S is compact
if and only if P is archimedean.

PrROOF. The proof that P archimedean implies S compact was given above.
The converse follows from [15]. 0

REMARK 2.5. In general, the theorem is not true if we replace the preorder P
by the preprime generated by the f;’s. This can be shown by the following example,
which is due to D. Handelman [5]: In Rz, y], consider PP(x,y,1 — 2% — y?) then
the corresponding semialgebraic set is the semi-circle {x > 0,y > 0,22 + 3% < 1},
which is obviously compact. On the other hand, an elementary argument shows
that for any positive integer NV, it is not possible to write N — z in the form
F(z,y,1 — 2% — y?), where F is a polynomial in three variables with non-negative
coefficients. Thus the preprime is not archimedean.

It turns out that in the linear case, the preprime is enough:

PROPOSITION 2.6. Given linear functionsly, ...l € R, suppose S = S(l1,.... 1)
is compact. Then PP(ly,...,l) is archimedean.
ProoF. This follows from [5, 1.3], see also [12]. 0

Now suppose that P is an archimedean preprime. Then there is some non-
negative integer /N such that for N £ 2, € P for i = 1,...,n. We say that a
minimal such N is the archimedean bound of P. We fix representations of
N &+ z; in P.

REMARK 2.7. For a preorder, we can construct from representations of N 4 z;,
a representation of nN? — > 112, and, conversely, we can construct representations
of % +z; in P, using a representation of N —3" 22, This follows from the identity

N+1 1
(2.1) Ti:m*§<(xii1)2+(N—ZIf)+Z;c?>
7 VD)
Thus a preorder P is archimedean iff M — 3" 22 € P for some M € N. However, if
P is a preprime it is not true that M — 3" 2% in P for some M implies that P is
archimedean. This follows from the example PP(zx,y,1 — 2% — y2) above.
THEOREM 2.8. Suppose P is an archimedean preprime, with archimedean bound
N and we have fized representations of {N x x;} in P. Let D be the mazimum
degree of the fixed representations.
(1) For any g € R, M —g € P for some M € N and a P-representation of
M — g in P can be constructed explicitly, in terms of the representations
(2) Suppose we have g = F(zx1,...,x,), where F is a real polynomial with
deg F' = d and L is the sum of the absolute values of the coefficients of F.
Then we can take M = LN? and the degree of the P-representation will
be at most dD.
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Proor. We prove this for a real polynomial ring and then, using an epimor-
phism R[X1,..., X,| — R, obtain the general result. So suppose g is a real poly-
nomial with degree d. We will proceed by induction on d. The proposition is
obviously true for d = 0. Since preprimes preserve addition, it is enough to prove
the theorem for ¢ a monomial. Suppose g = aX¢, where € = (€1,...,¢,) € N* and
assume w.l.o.g. that e; # 0. Then g = X; - aX?, where |3| = |¢| — 1. Then

(2.2) o[ NI —g = %((N + X)) (Ja| NP — aX?) + (N = X1)(|la| N1 + axﬁ)>,

Thus we are done by our induction hypothesis. Further, this gives us a recursive
algorithm for constructing a P-representation for a specific g. 0

COROLLARY 2.9. Suppose P is a preprime in R, then P is archimedean iff
there exists N € N such that N +x; € P for all 1.

Generally speaking, we will give algorithms for constructing a representation
of an element in an archimedean preprime P in terms of the polynomials {N +z;}.
For ease of exposition, we want to enlarge the generating set of the preprime by
adding these elements. Note that adding to the generators of P a polynomial p
which is in P does not change P or S. Also, by Theorem 2.8, if {fi,..., fx} is
the set of generators of P, then we have M — Y f; € P for some M. Replacing
each f; by f;/M and adding 1 — " f;/M, we have a set of generators for which
> f; = 1. For our constructions, it will be necessary to add to our set of generators
elements of the form N/M — a;/M, where N,M € N and to have > f; = 1. It
will be convenient to replace the generators of P with this (possibly) enlarged set.
As a final step in any construction, we can get a representation in terms of the
original generators by using our fixed representations of the set {N + a5} and the
representation of 1 — >~ f; /M from Theorem 2.8.

DEFINITION 2.10. Suppose P = PP(f1,..., fx) is an archimedean preprime.
We say that the set of generators {f1,..., fr} is full if

(1) The first n generators { f1...., f,} arc {N/M — =z, /M, .. N/M — =z, /M}
for some N, M € N.
(2) X fi=1

3. Poélya’s Theorem and the Kadison-Dubois Theorem

Pélya’s Theorem is a representation theorem for homogeneous polynomials pos-
itive on the standard n-simplex. In this section, we show how other representation
theorems can be reduced to Pélya’s Theorem, in particular, the Kadison-Dubois
Theorem. Since explicit bounds for the degree of a representation have been given
for Pélya’s Theorem, this yields degree bounds for the theorems reduced to Pdlya.
This technique was first used by M. Schweighofer [14] to study Schmudgen’s The-
orem. In [12], it was used to study representations of polynomials positive on
compact polyhedra.

We write A,, for the n-simplex {(x1,...,z,) | 2; > 0,Y,2; = 1}. Pdlya’s
Theorem ([11}, [6, pp.57-59]) says that if f € R[X] is homogeneous and positive on
A, then for sufficiently large N all the coefficients of (@1 4 -+ x,)N f(z1,...,2,)
are positive. In [12]. an explicit bound for N is given:
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THEOREM 3.1. Given homogeneous f € R[X] of degree d, say

FX) =3 aaX= 3" c(a)ba X",

loe|=d |a]=d
where c(a) = (Tl,—d%:, Let L =L(f):= 'm&)ybal and A\ = X(f) = greuil FXx). If
d(d—1)L
N> —"——d,
2 A
then (x1 + -+ x,)Y f(z1,. .., 2,) has positive coefficients.

We now fix the following set-up: Given an archimedean preprime P in R
with P := PP(f1,...,fr) and assume that the set of generators is full. Let
S = S(f1,..-, fx)- Let R[Y] denote the polynomial ring R[y1,....yx] in k vari-
ables and define ¢ : R[Y] — R by ¢(y;) = fi. Since the generators contain
{N/M — x;/M}, the map ¢ is onto. Let {ri,...,r:} be a basis for ker¢. To
construct such a basis, we can compute a Grobner Basis B for the ideal generated
by {y1 — fi.....yxr — fx} in the polynomial ring R[xy,...,Tn,y1,. ..,y using lex
order with @y > -+ > 2, > y1 > -+ > yp. Then BN R[y1,...,yx] is the desired
basis.

Given g € R, we can construct explicitly § € R[Y] such that ¢(g) = ¢
and degg = degg. For example, if the first n generators of P are {N/M —
x1/M,....N/M —z,/M}, then we can set § = g(N — Myy,..., N — My,).

The following lemma is the key to reducing to Pdlya’s Theorem. It was first
proven in [14] for preorders in polynomial rings and in [12] it was proven for
preprimes associated to polyhedra. The argument generalizes immediately to our
setting.

LEMMA 3.2. Suppose S, P, and ¢ are above. Given g € R such thatg > 0 on S.
Then there exists a homogeneous G € R[Y] such that G > 0 on Ay and ¢(G) = g.
Furthermore, there is an algorithm for constructing G and there is a constant D
which depends only on the generators of P such that deg G < max{degg, D}.

PROOF. Let g be as above, then ¢(§) = g. Also, let {ry,...,r;} be a basis for
ker ¢, which can be constructed as above. Set r := 5" r? and let D = degr. The
argument of [14, 3.1] shows that » > 0 on the compact set U := A, N{g§ < 0}. Now
choose a real number ¢ > max{0, :;’;1 }, where m; is the minimum of § on Ay and
my is the minimum of » on U. Then §+ ¢r > 0 on Ay. Note that deg(g + cr) =
max{deg g, D}. Finally, we let G be the homogeneous polynomial obtained from

g -+ er by multiplying monomials by appropriate powers of (y; + -+ - + yx). ]

The above theorem shows that instead of working in the archimedcan preprime
in R, we can use the map ¢ to transform to a polynomial ring and then apply Pélya’s
Theorem. In particular, we want to apply this to the Kadison-Dubois Theorem.

The Kadison-Dubois Theorem [7], [4] is a representation theorem for archimedean
preprimes in commutative rings; it can be viewed as a far-reaching genecralization of
the fact that a field with an archimedean order has an order-preserving embedding
into R. For the most general statement of the theorem, see {1].

In our setting, the theorem is as follows:

THEOREM 3.3 (Kadison-Dubois). Given fi,..., fr € R and suppose that P =
PP(f1,..., fx) is archimedean. Then for any h € R, the following are equivalent:



18 DIONNE BAILEY AND VICTORIA POWERS

(1) h(a) >0 for each v € S := S(fy,..., fr)
(2) h++~ € P for all positive v € R.

PRrROOF. It is clear that (ii) implies (i); we prove (i} implies (ii). Given h > 0
on S and real v > 0, let g = h + . We can assume that the given set of generators
for P is full, by the discussion in the previous section. Let R[Y] and ¢ be as above.
Given g > 0 on S, by Lemma 3.2, there is homogeneous 7 in R[Y] such that G > 0
on Ay and ¢(G) = g. By Pdlya, there is some non-negative integer M such that
(3" yi)* G has only positive coefficients in R[Y] and hence, with m = M + deg G,

we have
O wMe= Y aqf oy
eENFK |e|=m
where a, € RT. Applying ¢ to both sides, we obtain a representation of ¢ in P, of
degree m. O

EXAMPLE 3.4. Let S = {1 —2? > 0} = [~1,1], and

-2 1—22 1+x+.1;2)
3 7 3 7 3 '
Note 2+x = (1—z?)+ (1 + 7+ 2?) € P and so P is archimedean. The given
set of generators {f1? fas f3} = {55=. %, 1—'”;’—“32} is full.
Let f = Tz* + 723 + 72246, then by Kadison-Dubois, f € P. We want to find a

representation of f in P. Set g(y1,y2.y3) = 27(yf +v3 +y3) — 9(y1y2 + y1y3 +42u3),
then g(f1, f2, fz) = f and g > 0 on As.

It turns out that ¢ has Pdlya exponent 2:

P = PP(

(1 +y2 +y3)’g =
27y + 45yYy2 + 36y73 + 45y13 + 27ys + 451 ys + iuays + Mnvdys+
45y3ys + 36Y7 3 + 9y1yey3 + 364303 + 45y193 + 45y + 27y,
This yields the following representation of f in P:
Tat + Tt 4 767+ 6 =

, R -z, 1— 22 1—xz.  1—22

4 = 3 2 2 - 3
4 36

a5~ +36(—) A (5 )P+ 45 () ()

1— 22

142+ 22 1731:21-1'2 142+ a2
9

. . ()
1—2.,1— 22 1+x+ 22 1—22 , 1+x4 22 1—=x
45 3 2
=) )+ 45( ) () 36(— )%
-z 1—2® 14+z+a?, _ 1-22, 1+x+22

T 2+ 36(— ) (—

1—22 14+ 1+ x4 22
+ 45( 3 ) 3 )3+27(T)4,

1—=x

2
7(3

+27(

142422
3
1—z 14 2+a2

3 ) 3

+9( )

)3

-+ 9( )%+ 45(

as is easily checked!
REMARKS 3.5. (1) Note that the preprime PP(1—x?) is not archimedean.
We could start with the preorder PO(1 — ?), so that Schmiidgen’s Theo-
rem applies. This must be archimedean, in fact 1—z = 1[(1-2?)+(1—z)?]
and 1+ 2 = 3[(1—2?)+ (1 +2)?]. Let P = PP(1—x2,(1—2)2,(1+2)2).
Then P contains 1+ and thus is archimedean by Corollary 2.9. We now
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proceed as above. This shows that we do not need the “full” preorder to
obtain the conclusion of Schmiidgen’s Theorem.

In general, if we start with compact S = S(f1,..., fx) and the pre-
order P = PO(f1,..., fx), we know that P is archimedean. Suppose we
have representations of N -+ «; in P, and say that {s1,...,s,,} arc all
the sums of squares that occur in the representations. Then the preprime
PP(fi,.... fr,81,...5m) is archimedean and hence Kadison-Dubois ap-
plies.

(2) The proof of the Kadison-Dubois Theorem, along with Lemma 3.2, yields
an algorithm for constructing a representation of h++ in P, assuming the
sct of generators for P is full. Thus we have an algorithm for the Kadison-
Dubois Theorem modulo representations of {N + z;} in P. However, it
should be noted that to calculate the constant ¢ needed in Lemma 3.2
Is in general computationally difficult, probably as difficult as finding a
P-representation. In [14], an alternate method is suggested: Instead of
trying to calculate ¢, make it a parameter. For some c¢ and some NN,
(3" y:)N(g + cr) has only positive coefficients, and the coefficients of this
are linear in c. We can then write this as a linear programming problem
for a fixed N and increase N until a solution exists. We hope to explore
this idea in further work.

(3) We do not know an algorithm for finding the archimedean bound N and
representations of N £ z; in archimedean P. There is a procedure that
could be used in specific cases, which comes from the fact that the problemn
of finding a P-representation of fixed degree for an element of P can be
rewritten as a semidefinite programming (SDP) problem, which can then
be solved using SDP software. Such problems can involve parameters,
thus the archimedean bound N could be taken as a parameter. Then we
could look for the existence of P-representations of N +x; of fixed degree
for non-negative N. If no such P-representations exist, then one could
raise the degree bound and try again. This would yield a sequence of
SDP problems which must eventually have a solution. For details on the
relationship between representations in preorders and preprimes and semi-

definite programming, the reader should consult the work of J. B. Lasserre
(8] and P. Parillo [10].

4. A Representation Theorem in the Non-compact Case

Recently, M. Marshall proved a generalization of Schmiidgen’s Theorem to the
non-compact case. The proof uses a generalization of Wérmann’s proof, i.e., an
algebraic argument is used to reduce to the archimedean case so that the Kadison-
Dubois Theorem applies. In this section, we apply our proof of Kadison-Dubois to
give a constructive version of this result.

Given fi,....fx € R, set S = S(f1,...,fx) and P := PO(f1,..., fi). We
do not assume that S is compact, hence P need not be archimedean. We need
an element p in 1 4 P such that there exists non-negative integers M and ! with
Mp'+zy,...,Mp' + z; € P. Note that such a p always exists, e.g., we can always
let p=1+3Y 22 and M =1 =1. Also note that if S is compact, then we can take
p=1.

The main theorem of this section is:
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THEOREM 4.1 (Marshall). Given P, S, p, M, and l as above. Then, for any
f € R of degree D, the following are equivalent.
(1) f(a) =0 for each a € S(p1,...,pk)
(2) For each ¢ > O there is some sufficiently large integer t > 0 such that
PHf+eptP) eP

ProOOF. The proof of [9] shows that we can reduce to the archimedean casc by
localizing. We include the proof here for completeness.
Consider the following R-algebra

T Ty 1
CZR[?’F’E]
Let d; = degp;. Then we can decompose each p; as 2?;0 pi,(z1,...,Tn) where
cach p;. is a homogeneous polynomial of degree j. It follows that
Di & 1 1 Tn
(4.1) i > pu_—-l(dﬁﬂpij(ﬁ, e F) ecC

j=0

Define the following preprime in C:

- 21 pr 1 Mpl £, Mpt £z, ptl
(4.2) Pi=PP(5, .., a0 ; ey . y——)
P p p p P p
By Corollary 2.9, P is archimedean in C since we have M + %li = ﬂ%?i ep

(lgign)andlzl:%zﬂfle’.
Decompose f given in our hypothesis as f = Zf:o fi(z1,...,z,) where each
f; is homogeneous of degree j. Then
D

F f _ 1 I Tn
(4.3) f._ﬁ_;gmfj(g,...,?)ea

Define the semialgebraic set associated to P as follows:

1 pr 1 Mpl+ux Mpt+ax, pt1l

.....

S = S(

n
,pldk'sp's pl IR pl 3 p )QR
then we will show that f > 0 on S. Let o € S then pz();()['lf)li > 0 for each i, and
z%(v) > 0 and p{a) # 0 since p is positive definite. Hence, p;(a) > 0 for every @
which yields that a € 5. Thus by our hypothesis f(a) > 0. From equation (4.3).
we obtain f(a) > 0. We then complete the proof by applying Kadison-Dubois to

f+ € with P and S. 0
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