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THE COMPLEXITY OF COUNTING CUTS AND OF COMPUTING THE
PROBABILITY THAT A GRAPH IS CONNECTED*

J. SCOTT PROVAN* AND MICHAEL O. BALL:

Abstract. Several enumeration and reliability problems are shown to be w.noau_mma_ m&& hence, .wa
least as hard as NP-complete problems. Included are important problems in network mo_._uc_:&. m:w_ﬁ._m.
namely, computing the probability that a graph is connected and counting the number of minimum nw:.u::._m&\
(s, t)-cuts or directed network cuts. Also shown to be # P-complete are counting vertex covers ina bipartite
graph, counting antichains in a partial order, and approximating the probability that a graph is connected
and the probability that a pair of vertices is connected. i.oi Com one 03E Fhis \\

Key words. complexity, % P-complete, graphs, reliability, network reliability

1. Introduction. The inherent intractability of certain counting and 3:&@.5@
problems has been studied by Ball [1], Rosenthat [11], and Valiant [12]. Valiant
defines the notion .of the # P-complete class of counting problems, and shows that
problems in this class are at least as hard as NP-complete problems. He then goes on
to show that several important counting and reliability problems are .#w-nan_Qo,
among them, counting perfect matchings in bipartite graphs and evaluating n.rm proba-
bility that two given nodes in a probabilistic graph are connected. ‘.E:.mo important
problems are mentioned by Ball and Valiant, for which the complexity is not known,
namely:

(1) evaluating the probability that a probabilistic graph is connected,

(2) approximating the probability that a probabilistic graph is nommamnna,

(3) approximating the probability that two vertices of a probabilistic graph are
connected. ; . .

In view of results by the authors in [2], the probability measure mmmoﬁm”ma.i:r
problems (1) and (2) seems to have considerably more structure :&:. that associated
with (3). In [3] they also show the power of the structure in providing good upper
and lower bounds for this measure. We show in this paper, however, that all three
of these problems are NP-hard, in particular, % P-complete. In the process, we show
that several counting problems are also #P-complete, among Emau,aw:wajm;"ro
number of node covers in a bipartite graph, counting antichains in a partial order,
and counting minimum cardinality directed network cuts.

We now fix some terminology. Let G = (V, E) be a graph with vertex set V' and
edge set £ and let m =|V| and n =|E|. When specified, G directed implies that the
edges are taken to be ordered pairs, and G undirected implies the pairs are unordered.
When not specified, G is allowed to be either. We allow loops Amam.mm whose 23 end
points are the same) and multiple edges (edges with the same pair of end points),
although these are not strictly required for the results of this paper. Fa.. s mnm_ t be
two vertices in the graph G (directed or undirected). An (s,t)-path in G is any
sequence § =Uvo, €1, U1, "', Uk-1, €k Uk =1t Of vertices vo, S,”...msa edges ey,
3, withe; = (vj_1, ;) forj=1,-- -, k. An (s, t)-cut in G is any minimal mo.a ..um edges
that intersects every (s, t)-path. A network cut (with respect to s) is any B::E&.m,x
of edges that is an (s, £)-cut for some vertex ¢ in G. A spanning tree (rooted at s)isa

* Received by the editors January 23, 1981, and in final revised form O.roﬁ m,.o. 1982. )
* Curriculum in Operations Research and Systems Analysis, University of Jo:: Carolina, Oruua“
Hill, North Carolina, 27514. This work was performed while this author was an NRC/NAS postdoctora

associate at the National Bureau of Standards.
I I SN, t Tlaluarcite nf Marcland Callece Park. Marvland 20742.
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minimal set of edges that contains paths from s to ».: other vertices in G. Note zﬁw
if G is undirected, a network cut comprises any -.EEB»_ set of edges whose 359&:
disconnects G and a spanning tree is any minimal set of o.mmnw that connects a
vertices; in both cases the definition is m:nnvmza.gﬂ of the choice of u.A .

We now define our reliability measures. Given any real p, 0=ps1, we _ma.womn
the stochastic structure on G in which the wmmam of G are subject to Smsuom_: ai E..mnm
independently and each with equal probability p. mnwWw :_wm :w,\.m not faile mh« mnﬂ_
to be operative. We are concerned with two noBv.om:a reliability M.gmf.:mwr :A is
stochastic model, which we will denote as .?:n:onm of p. The first is the (s, r)
connectedness measure : given vertices s and ¢ in G,

f(G, 5,1, p) =Pr{there is a path of operative edgesfroms to¢}
= Pr{the failed edges of G do not containan (s, t)-cut},
The second is the connectedness measure : given vertex s in G,
g(G, s; p) =Pr {there is a path of operative edges from s to every other vertex in G}
=Pr ,Eﬁ failed edges of G do not contain a network cut}.

These measures are defined for both directed and ::&..mﬁ.nn_ graphs. If G is undirected,
then f(G, 5; p) is the probability that the operative namo.m in Q‘mo_.i a connected graph
on V, E“a is independent of the vertex s. The combinatorial significance of these
reliability measures can be seen by expanding f and g:

f(G,s,t;p)= M fip'L=p)~,

j=0
gGsip)= % gp'(1-p)"”),
=
where

f; = number of sets of edges of cardinality j whose complement admits a path
i
from s tot, o . .
= number of sets of edges of cardinality j that do not contain an ? :.nc.r:
g; = number of sets of edges of cardinality j whose complement admits a pat
! .
from s to every vertex in G, . ]
= number of sets of edges of cardinality j that do not contain a network cut
with respect to s.

The use of this form of the polynomial might moa.B.wzwr:M :::w:.:.w_ w_nwoanOaﬂM“won_Mnu
are defined in terms of complements. Io£n<o.b itis noam_m"nzn. with the in M_Mmﬁw_ o
system interpretation of the reliability analysis _u_.o_u_nB. used in other uwwnmmaa .i:_.
Thus, the evaluation of f and g depend on the counting m_,oc_o:“w as
(s, t)-cuts and network cuts in a way that will .co shown E..mﬂmo_w be _ocm_ I
We explore the computational complexity of counting and ﬂ_n _M ow mw»mmz_:v.
in the manner proposed by Valiant [12]. ..:.5.2:& of ﬁ.rn complexi wmoz robiems
and optimization problems has been pursued in the setting om _.mnom-w lemns necepted
{5]. An important class is NP, which consists of z—.oma .38®E:ﬂ: _”_.o S e
by a nondeterministic Turing machine of _uo_w:m::_w_ time compl Mw: <.a antikely that
problems in NP are called NP-complete; it is .wo:n_..m_:. no_“w__w_._._w” e %P0
polynomial algorithms exist for solving problems in this o_mmmm Mww:::w the number
be the set of integer-valued functions that can be computed by c
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time complexity. We extend Valiant's definition slightly
valued functions that can be evaluated using functions of the above type, We say
a function f is polynomially reducible to a function g(foc 8) is there exists an algori|
i » evaluates f(z) with a number of elementary operations
evaluations of g that is polynomial in the length of z. A function fiscalled # P-comp
if (a) fisin #P and (b) every function & in #P can be reduced to f by a polynon

time reduction. Th, classes.. mplete provig

the complax: ; e
¢ X gnition problem “is- 4t Teast “as hard as

recognition problem. In particular, the counting versions of NP-complete proble
are NP-hard, i.e. at least as hard as NP-complete problems. To illustrate this poi
note that a polynomial algorithm to determine the number of Hamiltonian circuits
a graph would immediately give a polynomial algorithm to d
contained at least one Hamiltonian circuit, In fact
NP-complete problems can be easily sho:
treatment of NP-completeness and its refationship to # P-completeness.

With these definitions in mind we state our main result:

THEOREM. The following functions are # P-complete:

1. BIPARTITE VERTEX COVER

Input: bipartite graph G = (V, E)
Ouput: |{S < V: foreach ¢ = (u, wieE ueSorw eS};

toinclude rationat and mult

2. BIPARTITE INDEPENDENT SET

Input: bipartite graph G =(V,E)

Output: {S < V' for all 1, w €S, e =(u, w) £E};
3. ANTICHAIN )

Input: partial order X =

Outpur: (S < X : there are no X,y €S with x sy);
4

- MINIMUM CARDINALITY BIPARTITE  VERTEX COVER

Input: same as 1 (2,3, resp.)
Output: the number of minimum cardinality (
elements of the output set;

5. BIPARTITE 2-SAT WITH NO NEGATIONS
Inpur: Boolean expression B in the variables x,,
B=(x,vy ) a--a (xi, vy
Quiput: |{x,, - - . s %o V1,0 0, ) that satisfy BY;

6. MINIMUM CARDINALITY (s, 1)-CUT
Input: graph G =(V,E),s,tev
Output: {C S E: Cis a minimum cardinality (s, t)-cut in GYj;

7. MINIMUM CARDINALITY DIRECTED NETWORK CUT
Input: directed graph G =(V,E),seV
Ouput: {C<E: Cis a minimum cardinality

8. CONNECTEDNESS RELIABILITY

" Input: graph G =(V,E),seV, rational p, 0sp =1
Qutput: g(G, siph

9. CONNECTEDNESS RELJABILITY £-APPROXIMATION
Input: graph G = V.E),seV,e=<0, rational p, 0=p < |
Output: rational r with r — ¢ <g(G,s;p)<r+e:

maximum cardinality, resp.)

"X Yis v, yi0f the form

network cut with respect to sH;
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10. (s,t) CONNECTEDNESS RELIABILITY &¢-APPROXIMATION
. N:.n:: graph G =(V,E), s,t€ V, ¢ >0, rational p, 0sp=1
n\na.eza:S_.SalmA\AQ.h.:val..mw )
wonomwzwﬂnw on to the proof of the theorem, we illustrate how our Rmc:w_mﬂ in
with previous results concerning reliability and miuo_.nw:w_ related co_”:.:zwommmimﬁw
i i d g are considered the two most im| ;
Computation of the functions f an e coportant and
i iabili lems. The theorem settles the plexity
well-studied network reliability prob ns. T f
blem for f and g. In terms o
i exactly and the ¢-approximation prot erT
MM”W”M“M om_. svv—.ommiwmnw f, two important quantities are zww EMBUW. oM %5..—.-”:5
inali f minimum cardinality (s, 1)-paths. These
dinality (s, f)-cuts and the number m A
MMM_.M%O:VM respectively, to the first f; <(}) and a.ﬁ _w& fi>0. The two anﬂmno:ahu:w
uantities n..u_‘ g are the number of minimum nwa_nm._:w network cuts and the num Mq
Mn minimum cardinality connected sets, i.e. spanning trees, and "rmwn no:.n_mnvo: A
respectively, to the first g; <(7) and the last g:>0. Table 1 describes the nown

TABLE 1|
Min. card. Min. card.
pathset cutset Rel. poly.  Rel. approx.
12 'TH
undirected and directed two-terminal (f) ..*_wa.r P.WM ; WIM .
undirected network (g) . Toﬁ o i o
directed network (g)

Either the appropriate reference is given or TH which indicates the result is contained in the theorems
ither X
impli i P-complete.
i i ; * implies polynomial; ! implies # ) ) ) i
e M .M:wnﬂwwnﬁmi _,m%:omm the problem to computing the determinant of a matrix. It is inow) well known
+ Refe mpu
di lynomial time.
that d can be comp in po i
" MM..M.»mn results have recently been proven independently by .—n:‘::_mﬁuﬁ.
9 This result has recently been proven independently by Hagstrom [6].

omplexity results for all of these problems. It uses the generic term vwﬁrwmnﬁ_m .o~ HMH
Mo c%% spanning trees and (s, ¢)-paths and cutsets refer to both (s, 3-n~w:m EM :mmma_::
lems of determining the number of mi my
. Columns 1 and 2 refer to the _unow
MM“MFM_MG pathsets and cutsets respectively, 8::5:. 3 :w the ?.o_u_namom anwo_m.”_:w_“m
the polynomial f or g, and column 4 to the approximation problem define p
9 and 10 of the theorem.

2, Proof of the theorem. The format for nmﬁc:mrim a ?:oﬂon M Mm H M.HWE.M_WM
is as follows. We first establish that f is in 4P by showing Ewr. o_.a ivmz_ Pt mruc. :
exists a polynomial algorithm for 38@5”& m:wM“MMMmMJMMWm e e

i . In the context of the functi : h ! t

W.waw hm“.mv_.mnm“nuwwzﬂ_&_% all the functions count mw.m_q recognizable AWM“MM.“: iﬁn
. h G a mﬁhnmmﬁoa with the input z. To show that f is #w.ooan_nﬁ_ e for
m_,mv n #,4, P-complete function g, and show that there mEmpm. an m_mo_.:_ra.:c“:w n.n o
M=<=w£n<»_=m8m g(z) using a polynomial number of n<m_=m:.o=m %_m h,.o :ﬁu_ AN
this &.BUG involves altering the input z A:o._.o the m_w_ur %ﬁ_:mw BM O oes, however,
new input z' (here a new graph G') for which ﬁﬁl\%f s boimg polynomial
we must evaluate f for a number of inputs z,, - - -, NM;" .w. .::: e e e of £ by
in the size of z. We then relate the values f(z,), i =1, ,
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equations of the form

k
L u=f)=¥ ap, i=1,... 4
i=1
where the a; are known
that the & x k matrix of t
evaluations of f, an
the value of g(z).

Valiant, in [12}, has made use of a special class of matrices to produce the desir

nonsingular systems discussed above, A Vandermonde marrix isan (n+1)x(n+
matrix of the form

and g(z) is some simple function of the b, If we can sh

for (1) is nonsingular, we can perforn
stem to obtain the valyes of 4, and he;

1 wo wj &0
a=fl # ai Kt
1 un u? T

(or its transpose), where 4, - - -

about these matrices (see, for example (7, § 5.1]) is det
immediately from the previous discussion:

LeMMa. Suppose we have viand b, i=1,..

» Hn are arbitrary real numbers, A well-known fa

Du:._,v\. (&~ ;). We hay

s n+ 1, related by the equation

n+1

=3 agb,

i=1,- n+l,
j=1

Further, suppose thas the matrix of coefficient (a;) is Vandermonde, with parameters
K0 *** 5 un which are distinct. Then, given values for v, - - - s Uns1, We can obtain the
values by, b, in time polynomial in n.
We will make repeated use of this lemma ¢
Tt is easy to see that the problems 1-10 of ¢
. they are #P-complete, we establish a seque
following counting problem.
CARDINALITY VERTEX COVER
Input: graph G = (V,E), integer k
Output: ISc V- Sisqa vertex cover
This problem is known

Intermediate problem for
0. VERTEX COVER
Input: graph G = (V.E)
: O:BE”:MM«\“\Q;&%«MAF imm‘zm,mawcm,w:‘
E We now give the reductions,
9 0. CARDINALITY VERTEX COVER o VE
L (V.E), for(=1,... »m =V, construct graph G'(/) with vertex set Viih={v]:vev,
pi=1,.. *» 1} and edge set E'y={ul,c)): (4, veE, i=1,. b f=1,-- I}, This
- onstruction is illustrated in Fig. 1. Now every cover C’ of G'(/) has the property that

_:chmm.ﬁrn: ?T....i Lo, uile Therefore, for each cover C
,\.,cm G there corresponds a class 0(C) of covers of G'(/) with elements of the form
Uier S, where §7 ={tt,,vi}if veC and Sos{vl, -+, 0} if vg C. The class
2(C) consists of @2'-pym-ic covers, and the classes {(C):C a cover of G} partition

hroughout the proof of the theorem.
he theorem are in % P. To show that
nce of reductions, starting with the

RTEX COVER. Given G =
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G'(3):

F1G. 1. Example of rransformation used in reduction 0.

the covers of G'(!). The number of covers of G'(/) is therefore

m-1 X
=¥ A2 -1
2) I = _mc (
inali i, i=0, -+, m—1. Now
where A; is the number of covers o.m G of Mwﬂa:wwww"w\ ﬁMr ~ w._ NM.HE‘ e
atrix B = (by) with eatries by = (2 — =1, , m, e
ve M_ x:ﬂ_”“m with u; = .NN —1distinct for =1, -+, m. Hrmnomono. by Hrwhn.ﬂ“_c?
Van o__. (2) to obtain each A, and hence solve the cardinality vertex oo<O.<Uo oo
o mHo Mwmw,ﬂmx COVER « BIPARTITE <m-.u.mx OOS.wW. . _8 tacing
. for 1=0,---,N=("7%)~1 construct bipartite graph G'( v: y Nuvo i
wammh.mww —.?. v) wn Q.c< the subgraph shown in Fig. 2. AZO:M "”_MM k:m::::&m.. ot
raph I"(/) has no edges at all.) This m=cw3v=~ has the unovmnw s comtaining &
cert vers containing neither u nor ¢ is 2', the number of c e e
<on”wox=_nwn.v. one of u or v is 3' and the number of covers containing
arti he
MN. Thus, the number of covers of G'(/) is

. iqigkyl
(3) = T Aw@YGYEY= T Aw@3sh,
i+i+k=n

Lik=0

B
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where A is the number of sets § of vertices in G for which i ed
vertex in S,  edges have exactly one vert
S. The N x N matrix B =(b,) defined

ba = (243 5%

ges of G have neit
ex in S, and & edges have both vertices

a=1,--- N, [=0,---,N-1,

ngton.is Vandermonde, Further, u, = 2430 5,
Ja=Jj,and k, =k, Therefore, the Hq are distinct a
3) to obtain each Ay, for i+j+k =niz0,;=0, k=

where (i,, 7. ky)areall triples summi
273755 =4, if and onlyif i, =,
by the lemma we can solve (
In particular, we can obtain

A = F Ay

j+k=n
fkz0

which is the number of sets of vertices of G for which no edge of G is uncovere,
that is, the number of covers of G.

2, BIPARTITE VERTEX COVER x BIPARTITE INDEPENDENT SE7]
Given G =(V,E) we note that Cc V is a cover for G if and only if V—C s a
independent set in G, The reduct

ion follows,
3. BIPARTITE INDEPENDENT SET o ANTICHAIN,
graph G =(V, E) with v = Vi

UVzand Ec ViXV,, define
X =V and order defined forx=yex: =y ifandonlyifx e
X, =)is trivially transitive and antisymmetric, Further, a s
in (X, =)if and only if it is independent in G. The reduction
4. BIPARTITE VERTEX COVER o MINIM
BIPARTITE VERTEX COVER (MAXIMUM CARDINALITY BIPARTITE
INDEPENDENT SET, MAXIMUM CARDINALITY ANTICHAIN, RESPEC.
TIVELY). Given bipartite graph G = ( V, E). construct bipartite graph G’ = (V',E"
by adding vertices {t:veV}ito Vand pendant edges M = {(y, v):ve V}to E. Now

& since M consists of m disjoi f G (a perfect matching),
: is of cardinality m. Further-

covers of G and minimum
h cover C of G the cardinality

Given bipartit
partial order (X, =) wit]
Vi,yeV,, and (x,y)eE
et S <X is an antichaiy
follows,

e vt ey

T .

more, there is a 1-1 correspondence between vertex

cardinality vertex covers of G’ obtained by associating wit
m cover

h:n?..emm,vcr.xcmﬁ,v.

. In view of the discussion in reductions 2 and 3, it follows easily that the bipartite
vertex cover problem reduces to any of the three given minimum or maximum
 Cardinality problems.

5. BIPARTITE VERTEX COVER « BIPARTT
ENE

TE 2-SAT WITH NO

GATIONS. Given bipartite graph G = (V,E)with V= v,U VaVi={uy, -+, wid,
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Va={vy, -+, v;} define Boolean expression in xy, * * *, Xk, y1,* * *, y1 by

fyn s xeyn oy =s A (kv

e=(u, y;))6E
Then f(xy, -+, Xk y1, -+ -, y1) is true if and only if {u;:x; = T}U{v;:y; = T} forms a
no<nm &w%ﬁ%ﬂﬁwﬁmwﬂ“@ma SET o« MINIMUM CARDINALITY
(s cA.uS. Given a bipartite graph G =(V,E), V = a.& UV, EgV, w"ﬂmommnﬁ_\.:mm
z_.o raph G’ with vertices V' U{s, ¢} and edges consisting .on E w_o,zm. wi _ . \
Sc_m_u_w edges of the type (s,v),ve V or (v,t),ve —\.N i:.r B.E:v:QQ equal to the
degree of v in G. An example of this construction is given in Fig. 3. Now a minimum

FiG. 3. Example of ransformation used in reduction 6.

. . n
cardinality (s, f)-cut in G' is of cardinality _.m._, since (a) E is M: _,vacm“:” M”M %‘mem
(s, 1)-flow of size |E| can be obtained _...,< a__dn::m. »:.ommom o n S0t and Buing
omor a flow of 1. It is clear that if a :::5.::: oma_sw_:« (s, aw-nm o s
one edge of a set M, then it must no=~w_:oM<MMv\mmmMMwﬂw= M\M.mn i:m nm:. e e
i ! ann , Ve !
aw " »:a_?\. «w mMnUE_,Mu_,NMMM %N\WWM h\\x with all edges in E m&wnm.zﬂ to n_.wcm_m
i:”\ oﬂﬂcmﬁa._om moﬁm “\ﬁ of C’ have ends in G which are independent in %<M“nx e
“.Bmi:m wawnm in C’ must be all those edges in E ci:n.: naomam_pcwwwm e
common with these sets. Conversely, any set of edges of this typ e M etween
cardinality (s, £)-cut in G’. Thus, nrm_.m‘_m a one to one noQ:.mﬂMn T o 1y mow
minimum cardinality (s, ¢)-cuts in G’ and _:nmvozani mo.ﬁm :” a.»:a e rected cases,
complete. Note that this reduction applies in both the directe

o

B
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The use of multip
sake of sitnplicity.

7. DIRECTED MINIMUM CARDINALITY (s,
CARDINALITY DIRECTED

le edges could have been avoided but we omit the argument for t

£)-CUT o« MINIMU
NETWORK CUT. Given directed graph G

nality of a minimum cardinality (s, t)-cut. (It is we

:Uo_wnoamw-mao using a network flow algorithm
Construct directed graph G’ from G by adding multiple edges of the form (1, v} wi;

multiplicity k +1 for each p € v —{s.¢}. Fig. 4 illustrates this transformation. Now ar

G: 0

FI1G. 4. Example of transforme-on used in reduction 7.

minimum cardinality (s, r)-cut in G remains a network cut jn G’

edges point out of r, Thus, the size of 2 minimum cardinality n
most k. But since removal of any set § of at most k edges from
one edge from ¢ to every vertex x # s in

since all of the added
etwork cut in G’ is at
E’ must leave at least
V. then § is a network cut in G’ if and only

, the use of multiple edges
could have been avoided.

8A. MINIMUM CARDINALITY DIRECTED N
CONNECTEDNESS RELIABILITY. Giver G

“)

ETWORK « DIRECTED
=(V, E), we write, as in §1,

=. B o i
8(G,s;p)= Y gp'(1-pr '=il-p) ¥ @.Thv.
=0 i=0 =-p

dinality j whose complement admits a
€ =(}) —g is the number of sets of edges

where g; is the number of sets of edges of car.
path from s to every other vertex in G. Thus,
of cardinality that contain a directed network cyt. Further, the matrix B = (by) with

by =(p/(1 =p)Y fori=0,--. m, J=0,-+,n is Vandermonde for any choice 0 <
Por--<p, <1, Therefore, by evaluating g(G. s ip)/(1-p)* for i=0,-++-,n, and
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solving (4) we can obtain g; and hence § for j=0,---,n. The value of the first
nonzero g; then solves the minimum cardinality directed network cut problem.

8B. MINIMUM CARDINALITY UNIDIRECTED (s,¢t)-CUT «< UNI-
DIRECTED CONNECTEDNESS RELIABILITY. Given undirected graph G,
vertices s, £, write the network reliability polynomial of G with respect to s as above

8(G,s;p)=(1-p)" M NWA%V..,

i=0

where g; is the number of sets of cardinality / whose complement admits a path from
every vertex to s. Consider now the graph G’ obtained from G by replacing the
vertices s and ¢ with the vertex vy, in every edge in which either appears. The network
reliability polynomial of G’ with respect to v, is

8(G viip)= T gip'1-pr~=1-p)" ¥ gi(z2)
i=0 i=0 4

Now g is the number of sets of edges in G of cardinality i whose complement admits
a path from every vertex of G' to v, or equivalently, the number of sets of edges in
G of cardinality / whose complement admits a path from every vertex of G to either
s or t. Therefore, g; —g; is the number of sets of edges in G of cardinality ; whose
complement admits a path from every vertex to s or ¢ but does not admit a path from
every vertex to both s and ¢. Such a set in particular contains an (s, f)-cut. Let k& be
the cardinality of a minimum cardinality (s, ¢)-cut. Then the complement of any set
of k edges that contains an (s, ¢)-cut must allow a path from every vertex to either s
or ¢t {otherwise, an edge could be added to the component containing a vertex not
connected to either s or ¢ and still not allow a path from s or ¢). Thus gi —g; is the
number of minimum cardinality (s, t)-cuts in G. As in problem 8A, by evaluating
g(G,s;p) and g(G', vy;p;) for 0<po<--- <p,, we can obtain g, and g for i =
0,- -+, n, and in particular, the value g} — g.. This completes the reduction.

9. MINIMUM CARDINALITY NETWORK CUT o« CONNECTEDNESS
RELIABILITY APPROXIMATION. Suppose we are given G=(V,E)and se V.
We produce this reduction by showing how to compute the g; successively for i =
0,1, -, using as a subroutine an algorithm for the connectedness reliability approxi-
‘mation problem. Suppose we have computed g; for i =0, 1, - - -, k —1; define

k-1 , .
a=Y gp'i-p)"7;

i=0
then for 0 <p <1 we have
g(G,sip)-a= T gp'(t-p)"”
iz

”hw:|ﬁv=|wﬁwk+|wl M‘.“ W,.Ahv_vlwl~g.

1-pisis1 " \l=p
Using the fact that 0= g, =(7)fori=k +1, - -, n, we obtain the inequalities
(G,s;p)—a
wJ.llwl.l =g
p(1-p)

st

LA oA o

e e

COMPLEXITY OF COUNTING CUTS

and

g(G,s;p)—a

pr1-p) "
sarrl § (1))
=8 1-piica NAHImv

& +%Thl r: ..M_l :_::..;M_lQ:ANIIMIIMVA%V..LLM
=80T mn ?_ |M_| 2:; “ ;:: éw,ﬂg

uwibﬁﬁv lvj‘.

Now if r is an ¢ -approximation to & it follows for 0<p <1 that

r+e-a
8= ok

A

_lr-¢g)-a +2:_g(G,sip)~a+2¢

pr=p)" T PRI S R
=g +A " v P, 2
B VT TS

1 n 2¢
=g, +
B :»ivnﬁ.&.
so that, if we choose

p=min {1270 3" :
2 \k+1

and £ =p*/4, then

el (R (L Rt B 0

Hence,

2 Iﬁ. r+e—qa g
k= .

EwAH lﬁvk
The proof is now complete.

10. MINIMUM CARDINALITY (5,8)-CUT o« (s,7)-CONN]

f s )= ECTEDNES

xms.»m:l:..% APPROXIMATION. The reduction here is identical to that i
problem 9. This completes the proof of the theorem.

3. Further discussion. We remark that problems 9 and 10 easily show th
#* w.ooBm_mS__nwm of the a-approximation problem (see [11], called the point estimar
problem in [1] for the functions g and £, This problem is: given a < 1, 0=p=1, fin
a number r .m:nr that ar <g(G, s ;p) (respectively f(G, s, t;p)) <r/a. We should not
that a mnm.BEw_w more difficult unsolved problem involves the case where « (or €) i
constant, i.e. is not allowed to vary as part of the input list.

We om:.:v_aﬁ our discussion by considering the complexity of certain reliabilit;
and counting problems for two special classes of graphs. One class is that of directec
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i s, that is, graphs that have no closed (directed) paths. For Smmw graphs
wﬂwnwmzﬂmw nwn&sw:w Am, t)-cut problem (6) .m:= _.n_..awm:m # P-complete since the
network constructed in the proof of the theorem is acyclic; hence, n.ro (s, :-nozamﬂnoa.
ness problem (10) for acyclic graphs remains # P-complete. The 9320@ :m.ﬁ.sg cut
problem (7), however, is polynomial, and, in fact, the connectedness 3_59_._@ %novm
lems (8 and 9) are also polynomial (see [3]). The monoan .n_mmm of mn.w_ur.w is that ow
planar graphs (directed and undirected). Here, both the minimum nw_d_:w_,_c\ :m:ﬁwa
cut problem and the minimum cardinality (s, £)-cut problem are vo_§05~m_ Amooﬂ mam_o
[3]). The complexity of the reliability problems, however, are open questions. Table
2 summarizes known results for these classes of graphs.

TABLE 2
Min. card. Min. card
pathset cutset Rel. poly. Rel. approx.
! 'TH
directed acyclic two terminal “ 3] .«.HM_ a.m.u*.w o
directed acyclic network (3] 3]
undirected and directed planar two . - . ) s
terminal . 3] X ﬁww ? a
undirected and directed planar network [10] [ ?

The table entries hdve the same interpretation as those in Table 1.
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ASYMPTOTIC EXP

ANSIONS OF MOMENTS OF THE WAITING
TIME IN A SHARED.-

PROCESSOR OF AN INTERACTIVE SYSTEM*+

DEBASIS MITRA* axp J. A. MORRISONt

Abstract. Ap interactive computer system's service
response) time perceived by users.
computing the second moment of the
system consists of a bank of terminal
waiting for service from a CPU whicl
obtaining higher order waiting time m

is characterized by the random w.

aiting (or
This paper presents a novel solution to t

he problem of efficiently

ve systems. The physical
s, each of which asynchronously alternates between “thinking” and

h operates under the processor-sharing discipline. The probiem of
oments is quite different from that of obtaining CPU queue statistics.

inals. Hence, as the system grows,” quite
i i ieve the desired accuracy. Beside jts
results give new insight since the leading terms of the series, which contain most
tained explicitly. The novelty also rests on the fact that instead of solving matrix
turned into one of solving a second order differential equation. A simple two-
ds all the terms of the asymptotic expansion.

fortuitously, fewer terms
numerical advantages, the
of the information, are ob
€quations. the probiem js
dimensional recursion yiek

Key words. queueing networks, Queueing theory, asymptotic expansions, waiting time moments

L. Introduction. An interactive computer system’s service is characterized by the

random waiting (or response) time perceived by users of the system. This paper
presents a novel approach to the problem of efficiently computing the first and second
moments of the waiting time for large interactive systems. The physical system, see
Fig. 1, consists of a bank of user terminals in series with a CPU which feeds back to

Enﬂo_.sm:m_m.mwnr:mow mvnaamw:n_.amzamz.sn periods in the "think" mode and the
"waiting" mode; in the former, the user takes an independent amount of time to
gencrate jobs with random service time requirements, while in the waiting mode the

The waiting time distribution for such a model has been i i

matrix equation. These
is the number of user terminals.
ie. large N, and in this case the
h is compounded by the equation’s
age. Also, insight into the nature of
er we give a quite novel technique for

is focused on large systems,
equations pose a computational challenge whic
worsening conditioning with increasing system us
solutions is less readily forthcoming. In this pap
armiving at the second moment E[W#?), Given

are most amenable to interpretation.
The novelty of the technique also rests on the fact that
matrices, we transform the problem into a differential equati
—_—

*Received by the editors September 1, 1982,

, instead of inverting
on for the generating

w:amnao_.mmnanowa UonosvﬂNr_cmN. ._.___muuvn_.
inmQvomonghﬁao_nvﬁioﬁ wn=~.wvo_.»81nm. Murray Hill, New Jersey, using the troff program
running under the Unix™ operating system. Fina] copy was produced on April 4, 1983,

1Bell Laboratories, Murray Hill, New Jersey 07974,
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