A simple, O(|V)?) time algorithm is presented that reduces - ; . ,
single edge, by way of series and parallel reductions and delta-wye transformations. The method is applied 10 a class of
optimization/equitibrium problems which includes max flow,
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a connected two-terminal, undirected, planar graph t 3

shortest path. and electrical resistance problems.

H: this paper, let G = (V, E) be a connected planar

undirected graph, in which we allow loops (edges
of the form (v, v)) and parallel edges (edges having the
same two endpoints), and let s and ¢ be denoted as
terminals of G. We allow the graph to be transformed
by one of the following six rules.

TI:

loop reduction: any loop can be removed from

G,

T2: pendant edge reduction: if edge e = (v, u) has u
a nonterminal vertex of degree 1, then ¢ and y
can be removed from G;

T3: series reduction: if e = (v, u) and /= (u. w) with

# a nonterminal vertex of degree 2, then e and f

and v be replaced by the single edge (v, w);

T4: parallel reduction: if ¢ and f are parallel edges,
then they can be replaced by a single edge having
the same endpoints;

TS: delta-wye transformation: if e= (v, w), f=(u, 2),

and g = (z, v) are edges, then ¢, f and £ can
be replaced by the three edges e’ = (u, v), " =
(1, w), and g’ = (u, ), where u is a nonterminal
vertex of degree 3;

T6: wye-delta transformation: the inverse of T6.

These reductions and transformations are illustrated
in Figure 1. (Note that it is riot necessary to require
the vertices of these reductions to be distinct, because
loops are allowed. This generalization actually simpli-
fies some of the discussion, although degenerate trans-
formations can be spurned without affecting the
results of the paper.) The goal is to use the transfor-
mations T1-T6 to efficiently reduce G to a single edge
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algorithms: solves a class of flow equilibrium probl

(s, 1). A graph that can be reduced this way jg called g
AYA-reducible graph.

For over a century, series and parallel reductions
and delta-wye/wye-delta transformations haye been
used to simplify the analysis of electrical networks;
for a survey of this, see Seshu and Reed (1961) or
Brylawski (1977). Akers (1960) uses these operi-
tions to help solve the shortest path and maximum
flow problems on undirected. two-terminal graphs,
He proves that the application of these transformg-
tions preserves the optimal length or flow valu
Lehman (1963) shows that the series and pury
reductions preserve reliability in the two-terminal,
undirected, network reliability problem. He also pre-
sents approximations for the delta-wye transformg.
tions. These transformations have also been used (o
solve a variety of problems in statistical physics involv.
ing the evaluation of crystal lattice energy (Buster
1982). They appear as well in the “Reidermeister
moves” of Knot theory (Reidermeister 1948) and
provide a method for solving other kinds of problems
in combinatorial enumeration (Colbourn, Provan and
Vertigan 1992),

Both Akers and Lehman noe.nmE.da, ﬂF..m any con-
nected, two-terminal, undirected, planar graph'éin be:
rediced “fo mw:.ﬁnnnmo between its terminals by

employing ratior. This con-

cal op
Az.,vdww,“m,%ﬂml% (1986). using a proof
which is ingenious but fairly obscure. Independently,
Grunbaum (1967) provides a proof to a simplified
version of the Akers-Lehman conjecture, :uar._«_
when the graph possesses no terminals. The result is

ructure for solving many types of network problems. Zn_;.c_‘r,\minsw.aﬂﬂ“
lems. Networks/graphs, theory: reduction method for 2-terminal planar graphs.
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¥ Figure 1. Topological reductions and transforma-
5 tions, where vertex y is not a terminal of
' the graph.
t
m used by Grunbaum to shorten the proofs of several
w important theorems, including Steinitz’s theorem

characterizing the edge graphs of convex 3-polytopes.
¢ Recently, both Grunbaum'’s and Epifanov’s proofs
¢ have been simplified considerably by Truemper
r (1989), making use of the fact that G can be embedded
< in a grid graph.
= The computational complexity of reducing a con-
£ nected graph using these operations has also been
2 studied. When only transformations TI-T4 are
u allowed then series-paralle] graphs (graphs which do
= not contain a homeomorphic subgraph K) are pre-
- cisely the class of graphs which can be reduced to a
. Single edge, and in fact Valdes, Tarjan and Lawler
~(1982) give an O(| V)) algorithm for recognizing and
* Teducing series-parallel graphs. Several’y Ers.
-eonsidered the two classes of graphs reducible
- dddvtion of SitheF transformation 45 or T6 (called A
“toYand yio A reducible grapks, respectively), giving
forbidden minor characterizations, linear time reduc-
tion algorithms, and applications to the computation
- of all-termina) reliability and other hard prob-
- lems (Politof 1989, Politof and Satyarayana 1999,
- Amborg, Proskurowski and Corneil 1990, Ei-Mallah

Delta-1iye Transformations

and Colbourn 1990). The chas terization ¢

feducible graphs remains an open question, |
a planar graph G there remains the question

many applications of the operations T1-
required to reduce G 10 a single edge. Epifan
no indication as to how many reductions are re
The technique given by Truemper implig
o transformations are required. Actually
menting Truemper's technique in 13
problematic. for the size of the smallest grid g;
which G can be embedded can grow as the sq
that of G itself, 5o that a naive implementatiy
resultin an O] F'i)algorithm. In any case. Feo
provided the first 0| VI?) time algorithm for the
reduction of a two-terminal graph; his method—
on Epifanov's work—is complex and the pr
lengthy.

The purpose of this paper is two-fold. Firsy,
O V') algorithm is given for reducing a planar
0 a single edge using the reductions T -Té6
algorithm is strikingly simple, relatively easy to i
and can be applied directly to the graph itself;
avoiding the problems of grid embeddings. Se,
an approach is given for looking at optimizatior
equilibrium problems which unifies the shortest
maximum flow, and electrical network problems
tioned above, as wel] as indicating how more con
related problems can be solved in this context.

1. THE DELTA-WYE REDUCTION (DWR)
ALGORITHM )

We assume that the reader is familiar with starng
graph terminology., especially with regard to pl:
graphs (see, for example. Bollobas 1979, Section |
The DWR algorithm transforms a two-terminal p
graph G (planar graph with a fixed planar embedd
10 a single edge using the transformations T1-T¢
is given in Figure 2 and consists of two parts,
labeling procedure gives each edge and vertex a la
which will denote the feve/ of that edge or vertex w
respect to the terminal 5. A sample graph and
labeling is given in Figure 3. The reduction proced
performs a modified set of transformations. cal
positive transformations, which depend upon
levels of the edges in the transformations. The positi
transformations are given in Figure 4. The transfc
mation P2 is technically not allowed as a penda
edge reduction when 1 is a terminal; it s, howeve
convenient to perform this reduction symbolically
order to simplify the algorithm and the accompanyin
discussion. We note that all P2 reductions of this typ
except the first are simply series reductions, and ths
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Input: Oaaaﬂﬂnvrﬁgz.mv.&o:nli.ga&guir

contour C may consist of a single vertex. a single edge B empty
and its incident vertices, or a loop or simple polygon ~X& M &
(called a simple contour). Figure 3 gives examples of ==
these, marked by C,, C: and C, 3. Tespectively, Thus, 3
contour defines a partition of R\C into tWo open “—
regions (one being empty if C is not simple). exactly -
one of which contains only edges or vertices of _né._ .
£+ 1 or higher. This region will be called the uphiyy
region of C, and the other region is the downhifl region,

Output: Sequence of mansionmations T1-T6, which reduces G 1o the single edge (5.1).

Step I: {Label}

Assign the label 010 5, and declare all other vertices and edges uniabelied.

Setd =1 ({= curren lovel).

do while (there are unlabelled vertices or edges),
To each unlabetled edge incident 1 a labelied vertex, assign the labe £,
To cach unlabelled edge sharing a face with a labelled vertex, assign the label fs /.
To each unlabelled veriex adjacent 10 & newly Labelled edge, assign the label /s /.

(f u=t, set vat)
- A

3
:< e

" {u=t)
B —

<
Settiminz, Note that the contour at level O consists of the single - i3 y+1 y
end while. vertex {s}, which is :..n.oiv. contour whose downhi - yory+!
region is empty. An adjacent uphill contour (AUC) of i3 Pt veA — Yli
Step2: (Reduce) C m.w any contour of level / + 2 lving in the uphill m, y .
do while (G is not a single vericx), region of C. . i L . i
Find and perform a posicive transformazion. Intuitively, it is easiest to visualize the labe ings and » " "
end while. Contours by reorienting the embedding of G s that 5 P5 y ¢ . ¥
is on the exterior face and given level O (this wil) not ) 7y
Figure 2. The DWR algorithm. change any vertex labels). Now for each even leve] /, ¥
Wwe can recursively obtain the level / + 2 vertices and
edges as the boundary of the graph obtained afier ;
removing the level / vertices and their adjacent edges, : [ M o=t y y
this transformation will have no affect on the allow- The contours will proceed 10 appear as a serjes ‘of W el
able transformations available to the DWR algorithm “layers™ of even labeled vertices and edges. which are £ ’ ¥+
(modulo possibly having to re-embed a pendant edge connected to adjacent layers by the appropriately odd £ Figure 4. Positive transformations, where y and
out of a loop, parallel, or delta region). The sequence labeled edges. (Odd labeled edges can also connect £ ¥+ 1 denote level of the edge.
of transformations now ends with the single vertex vertices of the same simple contour from the inside.) m4
t ='s; reversing the first P2 transformation on ¢ thus Each contour C # {s} now has its uphill region the §
yields the edge (s, 1) as required. interior of C, which is empty if C'is not simple, and % Thatthe positive transformations will have labelings
To prove the validity of the DWR algorithm, we

its downhill region to be its exterior. Thus, the sim-
ple contours at level / produce a further partition
of the contours of level / + 2. with each contour
C of level / + 2 lying inside a unique simple
contour of level / for which C is an AUC.

= as given in Figure 4 can easily be seen in the context
¢ of the structure given above. We will consider trans-
m formations P5 and P§: the transformations P3 and
¥ P4 are left to the reader. The only way a P5 transfor-
i mation can appear is when the edge with label y is on
E 2 simple contour (so that v is even) with the level v+
w 1 edges uphill of this contour, After the transforma-

POV,

first give some notation. A contour of level / is any of
the isolated vertices, bridges, or 2-connected compo-
nents in the subgraph of G consisting of all edges and
vertices with the same level I, where [ is even. A

.m
E tion, the two edges that connect the endpoints of the
m level y edges will be on the same contour as this edge,
& with the third edge again Iying uphill. The only way a
w P6 transformation can appear is when the two edges
i

& with level y + | are on the same simple contour or
|$ comprise two single-edge contours, with the level y
edge connecting them to the adjacent downhill con-
5 lour (so that y is odd). In this case, after the transfor-
mation the edge that connects the endpoints of the
W level y + | edges will remain at the same level, with
+ the level edge downhill. Thus, if the edges are given
nzv the labelings indicated by Figure 4, then the graph will
Continue to have labels consistent with that produced
by the labeling procedure.
The inability of the DWR algorithm to perform the
=~ appropriate positive transformations at a given level
turns out to be caused by exposed vertices on a contour
< and their associated obstructions. An exposed vertex

Qi = obstruction of type i .
Ci = contour of type i (1 = vertex, 2 = edge, 3 = simple)

Figure 3. Example of a graph labeling.

Delta-Wye Transformations

of contour Cis a vertex of C having no inciden
edges (with respect to C ) Cis called a k-cont,
has k or fewer exposed vertices. It follows t
contour {s{ has no exposed vertices unless G i
(a single vertex with no edges), and that each
in any other nonsimple contour is exposed. St
then. that C # {5}, and let D be the (unique) ¢
for which Cis an AUC. Associated with each e
vertex v are three types of obstructions of v with
to C. which are illustrated in Figure 5. The ve
itself is a fype-1 obstruction if it is contained in -
one other AUC of D. Type 2 and 3 obstructions
when v is not a type-1 obstruction. They are d
by a region P lying in the downhill region of
enclosed by two clockwise consecutive
of level / - | adjacent to v together with that p
T of D lying between them. P is a type-2 obstn
if it contains another AUC of D in its interior
type-3 obstruction if it contains no such AUC .
contains an exposed vertex. In Figure 3 obstru,
of types 1, 2, and 3 occur, respectively, at poin
0., and 0;. Note that the (single vertex) obstri
at O, is an obstruction only with respect to co
C3, since it is not exposed in the AUC above it
obstruction at 0, is comprised of the region ey
to the d-edge polygon of level 3 edges at O, tog
with the two adjacent level 2 edges connecting
endpoints, and contains, for example, the AU
The first result establishes that, barring a po:
transformation, each exposed vertex must be as
ated with at least one obstruction.

Lemma 1. Ler C be a contour of level 1 in a laf
nontrivial graph thar admirs no positive transfo
tions. Then each exposed vertex of C must either

terminal or be incident to qn obstruction of type
or 3.

Proof. Letvbean exposed vertex of C which is nei
a terminal nor an obstruction of type 1. Then v
have at most two adjacent leve] / edges, and
must have at least two adjacent level / — | ed
because otherwise v would immediately admit a |
itive transformation. Choose two of these edges ¢,
e; that are consecutive in a clockwise sweep of
downhill edges incident to v. Let D be the contour
which C is an AUC, and consider the region P s
rounded by e,, e, and the portion T of D betw
them. If there are any vertices inside P, then ther
at least one AUC of D inside P, and hence Pisa ty
2 obstruction. If there are only edges inside P, it
these must connect vertices of I. The fact that th
are no P1 or P4 transformations on Dimplies il
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Type 1 (vertex)

~— €

Yo 1 obstruction)
Type2 (region P) —— 73\ (vootarype

€ s
S
,

& t 1 obstruction)
Type 3 (region P) !Iv/ (v not a type

AUC / D -
/.IOIl‘O\

Figure 5. Types of obstructions to an exposed vertex.

the two nearest points of T' m&.monE.S_.o:w.: one of
these edges cannot be the same or adjacent in T, and
thus any vertex between them must be exposed.
Finally, if P has empty interior, then the fact Swm e
and e, are not part of a P4 or P5 transformation
implies that there is at least one vertex A.n, I’ between
them, which must again be exposed. In either of these
last two cases P is a type-3 obstruction and the lemma
follows.

Lemma 2. Ler C be a k-contour whose uphill waax
is vertex nonempty. Then at least one of the following
two conditions holds:

There exists an AUC of C having no G..ﬁ; or2
obstructions and at most k type-3 obstructions.

There exist two AUCs of C each having @BQ\. v one
type-1 or 2 obstruction and together having at most
k type-3 obstructions.

components and associated type-2 obstructions, This
sequence must likewise terminate in component B, #
B;, having exactly one type-2 obstruction. Thus, we
D

- have produced the component or components, as
required,

- We next find the desired contour or contours
- required by the lemma among those in B; or B If
- Bi(B)isa single contour, then it can have no type-
~ 1 obstruction. Otherwise, the contours in B, (B,)
|~ consist of the single-edge and simple contours of
= Bi (B,,) joined by curvertices that are exactly the type-
1 obstructions on Bi(B,). Thus, B, (B,) forms a tree
b - structure—called the block-curvertey graph of B,
~ (B.)—with contours and cutvertices corresponding to
- the vertices of the tree and contour-cutvertex inci-
|- dences defining the edges of t

he tree (see Bollobas, p.
= 51). It follows that there must be at least two degree |

- vertices of this tree (called m:ns\oq\a,y which must
wr.no_._.n%osa to two contours D, and Di(D;, and D,)
< each having exactly one type-1 obstruction,

From the above discussion, we obtain one of
¥ the following: a) one contour with no type-1 or 2

No //nN

» €) three contours with a total of
AUC at jevel | our or fewer type-1 or 2 obstructions, or d) four
contours with a total of six or fewer type-1 or 2
obstructions. If case a does not occur, then cases b-d
dmply that there must be at least two contours with
kone type-1 or 2 obstruction each. Finally, by the
definition of type-3 obstruction (particularly that
fihe associated vertex o is not a type-1 obstruction) it
ollows that each exposed vertex contributes to at most
one type-3 obstruction on the AUCGs of C. Since there
jire at most & exposed vertices, there can be a total of
Bt most & type-3 obstructions among the contours
#10sen, and hence the contoyr Or contours will satisfy

€T part i or ii, as required by the lemma,

Edges at level i-1

Conrtour at level 1-2

O Exposed vertex

Proof. Let Dy, ..., D, be the set of AUCs of C
partitioned into connected components #,, e .9.
We first prove that there exists a com ponent #4; with
no type-2 obstruction, or two noaucdﬁ.:z \.b. and
B;, with one type-2 obstruction each. Start s.:: any
component B,. If B, has no type-2 ovw::n:c:.. we
are done. Otherwise, let P, be any typc-2 :._Za&g )
on By, and let B, be any component ....EE:_Q. in }_~
If B;, has two or more type-2 obstructions, _._.2__-
least one of the obstruction regions acﬁf. not 2”53 -” .
B, inside it, because the type-2 ocw:cﬁ_::.a E%hgaﬂu ] -
to B;, have disjoint interiors. Sct / to be this z.wa Acmaﬂ}‘
tion. Proceeding in the same manncr, we “u -
sequence B;, B;, ..., of components, frzmxkﬁﬁ,
incident type-2 obstructions Py, Pi. ..., acmroaa_ﬂw .
contains no B,, g < j. This sequence must, :

€ next give two lemmas which take care of special

ma 3. Let C pe g simple |
Py uphill region. Then C
Bnsformation,

-contour with vertex
admits a positive

» We have that ¢ con
B¢%, and that all of jis y
C.IfCh
admit

tains at most one exposed
phill edges connect points
23 no uphill edges, then ¢ is a loop and
a PI transformation, Otherwise let ¢ be
REphill edge, cutting Cinto parts ¢, and C,, and let

that par not containing an exposed vertex.
the nearest pair of vertices on C, 1 adjacent by an
edge must ajso be equal or adjacent on C, itself,
'8 0 aPtorpy transformation exists,

avi o
terminate in component B;, # B,, having at most Of

Delta-Wye 1 ransformations

Lemma 4. £ C p
Jollowing conditions:

€ a contour Satisfying o)

LC={)v= t,and C has no obstructions
i C={u}, p s t,and C has ar most one obs
iil. C = o, o) v = Loand v is neither k

obstruction nor adjacent 1o g 1ype-;
obstruction,

Then G admits g positive transformation,

Proof. Part jii follows from
€xposed) and parts i and i foll
same argument,

Lemma | (sin
ow from essent;

Theorem 1. Lot G pe a two-terminal plane
which has been labeled according to the DW]
rithm. Then G is either a single point or ad,

least one positive transformation.

Proof. Let C be a simple k-contour of highes
k< having at most | — k terminals in s
region. (There must exist at least one such
because {s} is such a contour.) First suppose t
has a vertex-empty uphill region. Then Lem
applies. and ¢ ‘admits a positive transform
Otherwise Lemma 2 applies, and we have two ¢

Case 1. There exists an AUC D having no type
2 obstructions and at most & type-3 obstructions
is a single vertex then Lemma 4i or ii applies, g
a positive transformation onD. IfDisa single
then one of the ends of this edge must be a no
minal vertex incident to no type-3 obstruction. -
Lemma d4iij applies, again giving a positive tran
mation. Finally, if D is simple and G admits
positive transformation, then Lemma | implies
D can have at most k + r exposed vertices, where
the number of terminals on C (and, hence, not i
uphill region). Thus, D is a contour of higher |

that satisfies the same properties as C, contradic
the choice of C,

Case 2. There exist two AUCs D, and D,, each hay
exactly one type-1 or 2 obstruction and together h
ing at most k type-3 obstructions. Now D, and
have at most one vertex in common, which then m
be a type-1 obstruction to both, Furthermore,
definition each type-3 obstruction of D, U D, is as:
ciated with exactly one vertex of either D, or D,. ¢t
not both. What this means is that D, and D; togeth
have at most 3 obstructions, and so one of D, or |
say Dy, has at most | obstruction, If ¢ js downhill fro
Dy, then similar 1o case 1, Lemma 1 or 4 can |
applied to identify a positive transformation or
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contradiction. If ¢ is downhill from D, but not down-
hilt from D,, then &k = 0, so that D, has at most |
obstruction and again Lemma 1 or 4 applies. Finally,
if ¢ is downhill from neither D, nor D;, then t must be
the type-1 obstruction to both. Thus, D, has at most
1 obstruction, ¢ is not in the uphill region of D;, and
if D, is a single edge, then the nonterminal end of D,
cannot be a type-1 obstruction. Again Lemma 1 or 4
applies, and this completes the proof of the theorem.

Corollary 1. The DWR algorithm correctly reduces a
2-terminal plane graph 1o a single edge in time

oiqve).

Proof. The validity of the DWR algorithm follows
from Theorem 1. To analyze the complexity we first
note that the labeling procedure can be performed in
linear time. Furthermore, since at least one new vertex
is labeled at each even numbered level, the highest
label any edge or vertex can take is 2| V|. Define the
potential of the graph at each stage of the algorithm
to be the sum of the levels of the edges at that stage.
Then the original potential is at most 2|V||E} =
O(] V]?), and each transformation reduces the poten-
tial by at least one. It follows that after O(]V}?)
transformations the resulting graph has potential 0,
implying that it is a single point. Each transformation
or reduction requires constant time to perform. By
keeping track of the degree of all vertices and faces,
locating the positive transformations as they occur
also requires constant time per transformation. Thus,
the total running time of the DWR algorithm is
o).

2. AN APPLICATION OF THE DWR
ALGORITHM TO NETWORK OPTIMIZATION
AND EQUILIBRIUM PROBLEMS

The kinds of reductions considered in this paper have
an interesting application to problems of network
optimization and electrical equilibrium. The general
setup for these problems is as follows. We are given a
graph G = (V, E) with terminals s and 7. Associated
with each edge (i, j) is a real-valued flow f; and
potential v;. These two values are connected by a
potential-flow equilibrium relation R, < R* that
describes the allowable pairs of values which can be
taken on by f; and v; when the network is in equilib-
rium. The R, can have a fairly general form, depend-
ing on the particular application considered. Figure 6
gives three such forms. The relations given in the

(O]

(b)

€ij

€y

Slope =,

Figure 6. Three potential flow equilibrium relations,

figure happen to be symmetric, that is, negating both
fi and v, will result in the same relation. This. in
essence, allows bidirectional flow without having to
specify which direction corresponds to positive flow.
In general, R, need not be symmetric and in this case
a specific orientation must be given to the associated
edge to distinguish the direction of positive flow.
Asymmetric relations thus correspond to directed
graph models,

The general equilibrium problem has as input G
(along with edge orientations if the problem is asym-
metric), relations R;; for each edge (i, j), and either an
(s-t)-flow value F, or an (s-t)-potential value T. The
output is a collection of pairs (f,, v,) for each edge
(4, j) satisfying the following conditions.

L fy=—f, vy=—v, foreach edge (i, ).
2. The vector f constitutes a valid flow (of value F if
F is given), that is,

Z =0

HuNEE

M fo=

FODEE

i€ Wis, 1

M Li=F

JUDEE

if Fis given.

3. The vector v constitutes a vafid potential (of valuc

T if I is given). that is
¥ Vi =0 forallcyclesiy, (o, ir), iy, (i1, 2),. . .
=)

iy (i1, 8= i in G,
-

2 vii=T forany(andhenceevery)(s,)-path

i=}
$=lo, o, i) i1, (s f2)se o o s
b1, (i ) =1in G (if T is given).
4. The pair (f;, v,) € R, for each edge (i, /).

Three examples of equilibrium problems and their
associated relations can be illustrated by the relations
given in Figure 6.

Shortest Path Problem. Here we are given distances
d, on the edges of G, and we wish to find the shortest
(s, $)-path in G. To do this, we use the relation given
in Figure 6a and set F = 1. Then the (s, ¢)-potential T’
associated with the equilibrium solution will be the
minimum cost of moving one unit of flow from s to
1, i.e., the length of a minimum cost (s, ¢)-path.

Maximum Flow Problem. Here each edge (i, j) of G
has a capacity ¢, and we are interested in finding the
maximum flow which can pass from s to ¢. This uses
the relation given in Figure 6b. By setting I' = 1, the
equilibrium (s, ¢)-flow F will be the maximum (s, ¢)-
flow in G.

Electrical Resistance Problem. Here G represents an
electrical network with each edge (/, j) having resis-
tance r;. We wish to compute the resistance between
two vertices s and 7. Here f, represents the current in
(i, j) and v, represents the voltage across (4, ), and
the relation given in Figure 6¢ is used. To compute
(s, t)-resistance, it is simply a matter of determining
the net potential = voltage between s and ¢ necessary
to maintain a flow = current of 1 from s to ¢. Thus,
again we set F = [, solve the associated equilibrium
problem and determine the resulting T'. We could also
compute conductance between s and 1, which is the
inverse of resistance, by setting T to 1 and solving
for F.

The relations given in Figures 6a and 6b are simply
the “kilter diagrams” associated with the maximum
flow and shortest path problems. respectively. That
the equilibrium conditions produce the optimal solu-
tion can be seen easily from noting that the equilib-
fium flow values comprise the optimal primal solution

Delta-Wye Transformations |

for the associated linear program, and that the eq
rium potential value on each edge is equal t
difference between the cost and the reduced cc
that edge at optimum. By using more complex
tionships, one can as well mode! nonlinear ele
resistance problems or minimum cost flow prot
as well as many other equilibrium situations.

When any of the transformations given in Se
1 are performed (other than loop or pendant
reductions) it is necessary to define appropriate
tions on the new edges so that the equilibrium 1
for the remaining edges are identical to those
could occur before the transformation takes plac
define these equations we use the following not
for relations R and -S:

—R'={(x, »): (=x.-y) ER}
R+S=x.y+x(x,WER (v.2)E S}
RVS=lx+y X 2YER, (3,2)E S].

One important property of relations involves
description relative to the two orientations of an

If e is an edge with endpoints i and j and R,
relation for the orientation (i, j), then -
the relation for the orientation (, i).

It is immediate that the relations used for an
rected network must have the symmetry R, =
and this is true of the relations given in Figure ¢
will henceforth give the relation in the orient
which is most convenient.

The series and parallel reductions have
straightforward relational transformations, nam

If (v, u) and (u, w) are replaced by the edge (v.
a series reduction, then R., = R,, + R

If e and fare parallel edges replaced by the edg
a parallel reduction, then R, = R, V R,
the relations are all taken with respect to the
orientation.

Figure 7 gives the relations of the edges resulting
a series or parallel reduction performed on edges
relations given by Figure 6, in terms of the rel
parameters. Thus, in principle the equilibrium
lem for series-parallel graphs can be solved for a
of relations on the edges, and in practice this ¢
done efficiently for refations which are piecewis
ear. It is easy to verify that the amount of work
in computing R + S and R V S is linear in the
number of piecewise-linear parts of R and S. By
the linear time series-paralle! reduction algorith
Valdes. Tagjan and Lawler. we get the following
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@ dp=d.+dp

(©  cg=min{c, er}
(G

—_—

—t

fp=re 4t

-—

—t

@ dg =min{d,, d¢}
®) ep=coreq
{c} fp=torp/ (to 4 1p)

Figure 7. Series and parallel transformations of
potential equilibrium relations.

Theorem 2. The general equilibrium problem with
continuous, piecewise-linear, nondecreasing, potential-
Slow equilibrium relations can be solved on a series-
parallel graph in time O(k\V}]), where k is the total
number of piecewise-linear parts in the potential-flow
equilibrium relations. In particular, any minimum cost
Slow problem with convex, differentiable, Emmms.ﬂm‘
quadratic edge cost functions can be solved on a series-
parallel graph in time O(k| V), where k is the total
number of piecewise-quadratic parts in the edge cost
Sunctions.

The delta-wye and wye-delta transformations
involve a more complex analysis of the associated
relations. Consider a transformation between a ao._gm
with edges (v, w), (w, z), and, ( u), and a wye «.55
edges (u, v), (4, w), and (1, z). To see how the relations
are interconnected, we equate the composite .,n_m:g

+ linking, respectively, v and w, w and z,and zand v in
the wye and the delta. Using the series and Uw_,m.__m_
transformations given above, this yields the following
three relational equations:

R+ Ruy=R,, V (R + R,.)
Ruu + Rz = Rz V (Ruy + R,,)
Reu+ Ry = Ry V (Row + Ruy).

To derive the relations associated with a delta-wye or
wye-delta transformation, it is necessary to solve m.on
Ruw, Rum, Ry in terms of R,., R.:, and R... or vice
versa. For general relations this is difficult, and in
most cases impossible, and furthermore it does not
guarantee agreement of values when 3-way flow is
present. For the relations given in Figure 6. however,
there are solutions, and the linearity of potential-flow

equilibrium relations between extreme values of b or
5 guarantees that they will jointly satisfy the equilib-
rium conditions. The equations (in terms of the rele-
vant parameters defining the relations) are

duw + duw = min{d,,, d.. + d}
dyw + du: = min{d,., d-, + d..}
Ay + dy = min{d., d,. + d.J.

minfCu, Cud = o + Minfe,.. caf

RN Cus Cuc) = Cuz + MiDfCear G}
minfc.., Cw} = Cz + Min{Cp Cusl.

L, ! !
uo & P =\ Fuz + sy

L, 1 -
Toe ¥ T =\ ¥ S Ton

t, | -
fuz F = Fao  TowF Re:)

The solutions are given in Figure 8. Corollary 2 now
follows the DWR algorithm of Section 2.

Corollary 2. For any of the relational Sorms "
in Figure 6 the associated equilibrium problem

@  dy=dy tdy,
Quz = Gz + duy

dgy = dy; +dyy

®)  cyu=lcytcy-c)/2
Cur ={C; + €y =€) /2
Sy =(Cz 40y - €y} /2, where

Cor @ Cos * oy
Ty " v * Uy

Cyu *tvw * Cup

Cy = MiN(Cypn €y +Cyu
Cor = 00 (€ Cy +0 |

€z = min{Cyy. Cpy +Cyu ]

Tur ®artre/fa
v * TyeFew /14 4
Tyw * Towtar /g  #PEE

A Tvw *tye * te

{©  raw=tylng
Tug =0y /Ty
Ty = Ty Ty o Where

Ty = Fugluv + Fuzfuw + Tuvfuw

can be solved by the delta-wye reduction method
intime O(| V{3,

In the context of the min-cost flow problem, more-
over, we get the following interesting result,

Theorem 3. 4 minimum cost uncapacitated (s, t)-flow
of specified value F can be Jound on a planar und;-
rected network with quadratic edge costs of the form
X)) =r.x%r.>0. e €E, in time OV ) using the
delta-wye reduction method,

3. EXTENSIONS AND CONCLUSIONS

The purpose of this Paper was 10 present the DWR
__ algorithm, an O(| V') algorithm for reducing a planar,
2-terminal graph to a single edge using the transfor-
mations T1-T6, and to show the application of the
DWR algorithm to two-terminal equilibrium prob-
lems relating to shortest path, maximum flow, and
electrical resistance, To conctude we will mention
- briefly two further uses of the DWR algorithm for
. solving related problems. The first of these involves
= the extension of the various equilibrium problems to
. situations involving more than two terminals. A good
Y example has been illustrated by Feo who extended the
.- maximum (s, ¢)-flow application to multicommodity
& flows, where several commodities flow between mul-
[ tiple sources and sinks in a network subject to capacity
£ constraints on total flow through each edge. Feo
showed that the same transformations given in Figures
b and 8b can be used for the multicommodity case,

I

& The multiterminal extension raises an important
kqQuestion, namely: Does the DWR algorithm reduce
graphs with more than two terminals to “small” final
graphs through positive transformations? The answer
s no, even for the case of three terminals, as illustrated
B Figure 9. In this graph there exists no positive
nsformation (with respect to ), and hence the
Blgorithm as it is given would halt on this graph. One
y ask further whether there exists any series of
nsformations T1-T6 which can reduce a given 3-
inal planar graph to a single delta (or wye). This
Jucstion has recently been answered in the affirmative
tler 1991), although an O|v)? algorithm is not
0wn. When four or more terminals are present there
Y be no way of reducing the graph by T1-Té
B.'Sl0rmations, as illustrated jn Figure 10. Here all
e} and nonterminal vertices are of degree four, and
RO transformation of type T1-T6 can be per-
ed. The DWR algorithm, however. can provide

3

-

Delta-Wye Transformations

© Terminal

Figure 9. Three-terminal graph admitting no
transformation.

2 good method for obtaining a substantial re
in the size of an arbitrary graph by, for e
applying it successively, using each terminal
as s, until no further positive transformation:
found. Preliminary empirical studies by Feo sh
a careful application of transformations T1-
often produce a substantial reduction in the s
multiterminal graph. In solving multicommod
problems, for example, this results in a graph ir
the commodity flows can be found either dir
by solving a reasonably small linear program.
Another useful application of the DWR alg
is 1o the computation of source-to-sink connec
reliability in a planar graph with randomly an
pendently failing edges. Although this prob
known to be NP-hard (Provan 1983), a nice a
mation scheme was suggested by Lehman, wh
edge failure reliability transformations associate
each of the transformations T1 -T6 used in the
algorithm. Although the delta-wye and wy
transformations do not preserve reliability e
they offer remarkably good approximations
actual (s, r)-connectedness reliability (Chari, Fe
Provan 1992). These transformations apply |
multiterminal case as well, and thus suggest a
approximation heuristic for the problem of comy
the probability that a given set X of vertices ¢
connected pairwise by operating paths in the ne:
(called the K-rermingl reliability problem).
One final open Question concerns a lower bou

O Terminal

Figure 10. Four-terminal graph admitting no
transformation.
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