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On the Arrangement of the Real Branches of Plane
Algebraic Curves.

By V. RaGSDALE.

Introduction.

In the consideration of any problem relating to the number and arrange-
ment of the real branches of plane algebraic curves, the division of circuits into
the two classes odd and even is of fundamental importance.* An odd circuit can
be met by a straight line in an odd number of points only; an even circuit in an
even number of points. Two odd circuits have an odd number of intersections;
an even and an odd circuit, or two even circuits have an even number of points in
common. Hence, as Zeuthen shows (Sur les differentes formes des courbes planes
du quatriéme ordre, Math. Ann. VI1I, 1878, pp. 410-432), a non-singular curve
of even order must be composed entirely of even circuits, and a non-singular
curve of odd order must have one circuit odd and the rest even.}

In a paper published in 1876 (Ueber die Vieltheiligkeit der ebenen algebra-
ischen Curven, Math. Ann. X, pp. 189-198) Harnack proved that a curve cannot
have more than p 4 1 circuits, where p denotes the genus of the curve; also
that for every value of p, a curve of some order does exist having p + 1 real
branches. In particular, if p be of the form #(n—1) (n — 2), there exists a
non-singular 2 with §(» — 1) (n — 2) + 1 real branches. Later, Hilbert (Ueber

* Von Staudt, Geomeirie der Lage, 1847, p. 80.

T Zeuthen (loc. cit. p. 426) proves the existence of a quartic ‘eirecuit with two double points, which is met
by every straight line in at least two real points, and hence can not be projected into the finite part of the
plane. Cayley (On Quartic Curves, Collected Papers, V. op. 361, 1865) points out that the sextic may be com-
posed of one non-singular circuit which is met by every straight line in at least two real points. And C. A.
Scott (On the Circuits of Plane Curves, Transactions of the American Mathematical Society, 1902) establishes
the general theorem as to the existence of circuits that cannot be projected into the finite part of the plane.
In the following pages, however, the only circuits that present themselves are those which can be projected
into the finite, and for these the term oval is here employsd.
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die reellen Ziige algebraischer Curven, Math., Ann. XXXVIIT, 1890, pp. 115-138)
considered certain possibilities of arrangement for the circuits of a non-singular
n* when the maximum number of branches is present, and Hulburt (4 Class of
New Theorems on the Number and Arrangement of the Real Branches of Plane
Algebraic Curves, American Journal of Mathematics, XIV, 1892, pp. 246-250)
extended Hilbert’s theorems to certain cases of curves with double points.
Hilbert proved that for n even, not more than }(n — 2) of the p -4 1 ovals can
be nested ; that is, so situated that the first lies inside* a second, the second
inside a third, and so on; and that curves of even order do exist having p+ 1
ovals, #(n — 2) of which are nested; similarly, that for » odd, not more than
$(n — 3) ovals can be nested, if the maximum number of circuits is present, and
that curves of odd order do exist having p -+ 1 circuits, #(n — 3) of which are
nested ovals.

A footnote to this papert contains the statement that if the non-singular
sextic have its maximum number of branches, eleven, these cannot all lie external
to one another. Hilbert speaks of the process by which he arrived at this con-
clusion as ‘‘ausserordentlich umstéindlich,” but no hint as to the character of
the argument is given, and no proof of the statement has ever been published.
However, if such a limitation on the arrangement of the ovals does exist for the
6%, there arises at once the question as to the existence of a similar limitation
for all non-singular curves with the maximum number of branches. For curves
of odd order no such restriction holds,—at least, in the form stated by Hilbert,—
for it can be shown that a non-singular curve of odd order may have the maxi-
mum number of circuits with every oval lying outside the others. For the dis-
cussion of the question for curves of even order, however, itis convenient to cast
Hilbert’s statement into a slightly different form.

For the two types of the 6 given by Hilbert, the only types that can be
derived by his method of generation, the arrangement of the ovals is the
following : :

(1) An oval O; 1 oval inside O, and 9 outside.

(2) An oval O; 9ovalsinside O, and 1 outside.

It is seen that the numbers of ovals “inside” and “outside” are interchanged
in the two cases, and the natural inference is, that the law of arrangement to

*For the definition of «inside’’ and ¢“outside’ of a closed circuit see Von Staudt (L e. p. 90) and Zeuthen
(l. c. p. 410).
t1 c. pp. 118-119.
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which the ovals are subject, is independent of the distinction between the
“inside” and “‘outside’” of a closed ecircuit, as defined by Von Staudt and
Zeuthen, and, in fact, is based on no distinctive or permanent property of any
one region of the plane. Thus the division of the plane by the curve w=0
into regions where w is positive and regions where u is negative offers a more
promising basis for investigation of the problem, because of the element of arbi-
trariness introduced in ascribing to a certain region the positive rather than the
negative sign. Suppose that the curve is non-singular and of even order, and
that all its ovals have been projected into the finite. According to the usual
convention let the sign be determined so that the expression u is positive at
infinity. A region where « is negative may be a region bounded by a single
circuit as in Fig. 1, or a region bounded by two or more circuits as in Fig. 2.

Each additional boundary introduces a new positive region. If such a boundary,
or an oval which cuts off in the midst of a region where u is negative a region
in which w is positive, be called an internal oval, and an oval which cuts off in
the midst of a region where w is positive a region in which » is negative, an
external oval, Hilbert’s statement can be expressed as follows : If the non-singu-
lar sextic have its maxtmum number of branches, at least one of the eleven ovals must
be internal ;—that 1s, not more than ten of the eleven ovals can be external.
There is as yet no formal proof forthcoming for this statement in either its original
or altered form, but as curves of higher order are investigated a most interesting
law governing the arrangement of the ovals presents itself so persistently, and in
curves of such widely different types, as to give strong reasons for belief in the
existence of a general theorem. Itisfound that the 8% 10* 12% 14%* ........ ,
with the maximum number of circuits, will have respectively 3, 6, 10, 15,... .,
or more internal ovals. And in general, if the non-singular 2n% have the maxi-
mum number of branches, at least ¥(n — 1) (n— 2) of the p 4+ 1 ovals must be
internal ; or not more than n* + }(n— 1) (n — 2) can be external,
49
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As will be shown later, the only processes by which curves with the maxi-
mum number of branches have been derived, yield curves of even order whose
circuits conform to this law of arrangement. These are the two processes em-
ployed by Harnack and Hilbert. The Harnack process offers two modes of
generation, each of which determines a distinct law of arrangement for the cir-
cuits of the derived curve C,,; but these two laws and all modifications of them
which arise from combinations of the two modes of generation differ only in the
distribution of the internal ovals. The number in every case is }(n — 1) (n— 2).
For example, of the 22 ovals of the 8, 3 are internal, though these 3 may be
distributed in two ways (Fig. 34, ). Of the 37 ovals of the 10, 6 are internal,
though these 6 may be distributed in four ways (Fig. 8, @, ). @)-

The Hilbert process gives less simple arrangements of the circuits. Hilbert’s
‘own statement is, that if the 2n* have the maximum number of nested ovals,
n— 1, the remaining ovals must be external to one another and may be dis-
tributed in various ways in the annular regions bounded by two successive nested
ovals, and in the region lying outside the mest. Itis shown (p. 389) that the
simplest arrangement of these remaining ovals is represented by the following
scheme, which gives the number of ovals in the annular regions, beginning with
the innermost ring, 0, 2, 4, 6, 8,....2n— 10, 2n— 8, 2n— 6 ; the other ovals
lie outside the nest entirely. In this case the number of internal ovals is exactly
3(n—1) (n—2). But for all curves of order 2n(2n>>6), the process gives
choice of three distinct modes of generation, and hence affords various possibili-
ties for the arrangement of the circuits. It is still true, however, that no type
of 2n” obtained has less than }(n — 1) (n — 2) internal ovals.

Both these processes are based upon the principle of small variation from
a special degenerate curve. This reducible curve. is composed of an m—k'°
with the maximum number of circuits and an auxiliary curve of order %4 which
bears a certain specified relation to the m —%°. The m* obtained has the max-
imum number of circuits, and bears a relation to the auxiliary curve similar to
that possessed by the m —%". The two methods differ only in the type of
auxiliary curve employed. The Harnack process is characterized by the use of
the straight line as auxiliary curve; the Hilbert process by the use of the ellipse.
Hulburt has proved® that in the generation of curves by the method of small
variation, the only auxiliary curves that will yield the maximum number of

*1, ¢. p. 250.
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branches on the derived m¥, are the straight line and the conic; that is, the
only processes of this type that will give curves with the maximum number of
circuits are the Harnack and Hilbert methods, and modifications of the Hilbert
method due to the use of other conics as the auxilary curve. Hence if all non-
singular curves with the maximum number of branches are obtainable by the
method of small variation, the law which expresses the arrangement of ovals for
curves derived by the Harnack and Hilbert processes becomes a general law, and
holds for all curves of even order with the maximum number of circuits. But
whether the law is of perfect generality or not, it is of interest to investigate

more fully the various types of curves that can be derived by these different
methods.

Curves witH THE MAXiMUM NuMBER oF BrANCHES DERIVED BY THE HARNACK
AND HiLBERT PROCESSES OF (GENERATION.

Curves Derived by the Harnack Process.—Let C,_; be a non-singular curve
of order » — 1 with the maximum number of circuits, and let a straight line »
meet one circuit of the curve in n — 1 real and distinct points which -have the
same order of succession on (,_,; as on v. Harnack shows then that by a proper
choice of § and the straight lines, 4, &, &, . . L, C.=v.C,, 4+ 9 .'1“1'1"1,. =0 can

i=
be made to represent a curve of order n having properties corresponding to those
of the n — 1%, Certainly for n = 3, such an n — 1* exists; viz., a conic cut in
two real points by a straight line ». Let three lines [}, 7, /; be chosen so that
they cut the infinite segment of ». Then the cubic represented by the equation
Co. v+ 4. LLl; = 0 will passthrough the intersections of C, and v with %l,l;, and
for a small value of § will have the maximum number of circuits, two. More-
over, the infinite branch is cut by the straight line v in three real points (Fig. 1,
Plate I). The quartic can be derived from the cubic in the same way. Let the
lines 7, 15, I, I, be so chosen that they cut the same segment of »; then for a

1=4
proper choice of §, the equation, ;= C;.v + § .I1 ;, = 0, will represent a quartic
=1

with four ovals, one of which meets v in four real points (Fig. 2, Plate I).
Similarly, the quintic with the maximum number of circuits can be obtained from
the quartic, and the sextic from the quintic, and so on.

The restrictions imposed on the n—1% viz.: (1) That the » — 1 must
have the maximum number of branches, (2) that a straight line » must cut C, _,
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in n—1 real and distinct points, (3) that all these points must lie on the same
circuit of C,_,, are necessary in order that (/, may have the maximum number of
branches. Let that circuit of the n—1" which is cut by » in n— 1 real
points be called the generating circuit g,_i-. Restrictions (2) and (3) require
that g,_, be the infinite branch, if n—1 is odd. There are also certain
restrictions that must be imposed on the lines L, by &yl The points in
which €, cuts v are determined by the points common to » and the lines
I, 5. -1, Ifan odd number of these lines cut any finite segment determined
on v by C,_, (n odd) or any segment (n even) the number of circuits of C, falls
short of the maximum number. It is clear that by admitting imaginary lines
there can be obtained from the given n — 1%, n* with the maximum number of
branches, and cut by » in 0,2, 4,....0r 7 real points if n is even, or in
1, 3, 5,....n real points if n is odd; and also that these points of intersection, if
more than two, may lie on different circuits. But for the generation of the
n 4 1° with the maximum number of circuits from the n'¢ all the intersections
of C, and v must be real and lie on the same circuit g,. Hence the straight lines
L, b, L,. ...l must be chosen to cut the same segment of v, and in = real and
distinct points. If n is odd, this segment must be the infinite segment; if n is
even, the segment may be any one, finite or infinite. The general arrangement
of the circuits of the n® with the maximum number of branches is the same
whether the intersections of C, and v are all real and lie on the same circuit or
not. The difference in the two cases manifests itself in the number of branches
on the n + 1 and curves of higher order derived from the ne. Hence, in con-
sidering the different types of n** with the maximum number of branches, it is
necessary to take account only of those cases where the lines l, b,....l, are
subject to such restrictions as allow the process to be continued.

In the generation of the quintic from the quartic (Fig. 3, Plate 1), one
circuit of C, must cut v in four points. Of the four segments of g,, two with their
corresponding segments of v give rise to two ovals lying external to one another.
Of the other two, one, together with the infinite segment of v, generates the
infinite branch of the 5 the other, with its corresponding segment of v, produces
an oval on the 5%, which must lie in one of the regions bounded by a segment of
» and a segment of the infinite branch of C, (Fig. 3, Plate I). Hence the 6
arising from this 6° must have one oval lying inside another; the other ovals
are external, five representing the five remaining ovals of the 5%, and four gen-
erated by the other segments of v and the infinite branch of Cj (Fig. 4, Plate I).
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Though with reference to the arrangement of the circuits there is only one
kind of 6% obtained, there are with regard to the 6% two essentially different
positions of the lines /;, L,....l;, which are of importance in the generation of
curves of higher order. According as these lines cut that segment of » which,
together with one segment of C;, encloses a region containing an oval, or one
of the other segments, the generating oval encloses (a) one other oval (Fig. 4,
Plate I), or (b) includes no oval (Fig. 5, Plate I). '

From the 6 of type (a) is derived a 7* with the maximum number of
circuits each oval of which lies external to the others ; from the 6 of type (3), a
7% with the maximum number of branches and with two ovals nested. It is
seen from Figs. 4, 5, Plate I, that of the six segments of g;, three lie on one side
of v and with segments of v give rise to three ovals on C; which are external to
one another; but of the other three, two lie in the region bounded by the third
and the finite segment z; o5 of ». This third segment of g; and the infinite seg-
ment zg, of v give rise to the infinite branch of the 7. The other two
segments, with their corresponding segments of v, generate two ovals external to
one another, but situated in one of the seven regions formed by the intersections
of g; and ». In this region must lie also the representative of the oval, if any,
which is encircled by the generating oval. Hence the 7° of the first type must
have three ovals lying in one of the 7 regions bounded by a segment of v and a
segment of g;, and the 7 of the second type (the one that has the pair of nested
ovals) must have two ovals lying in one of these seven regions. In both cases
the remaining six regions contain no ovals; the arrangement of the other ovals is
similar to the arrangement of those on the sextic from which they are derived.
Hence the 8% generated by the 7° of the first type will have one oval which encloses
three others. There is only one type of 8% obtained, but the generating oval may
be that which encircles three others, or one which includes none. Thus, in
passing to the 9%, there is a choice again between two modes of generation. Zhe
8ic generated by the T° of the second type has one oval enclosing two others and one
including a single oval ; and two cases arise as before, according as the generating
oval is the oval which encloses two others, or one which includes none. Hence,
just as two types of the 7 were derived from the one form of the 6, two types
of the 9% are generated by each of the two forms of the 8%. _

By exactly the same argument it can be shown that each type of the
2m — 2% gives rise to two types of the 2m — 1%, determined by the character of
the generating oval, g.n_; Which may enclose a number of other ovals or may
contain none at all. But since in the generation of the 2m* from the 2m — 1%
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the straight lines 7,4, . ...k, _, must cut the infinite segment of v, each type of
the 2m — 1% can give rise to only one type of the 2m'. In this way two types
of the 2m™ arise from each form of the 2m — 2 (2m > 6), and as the process is
continued (2m =8, 10, .... 2n) there will arise 2"~3 types of the 2n*. These,
however, do not differ in the number of internal ovals. For with the exception
of the ovals derived from v and the infinite branch of C,,_,, the arrangement of
the ovals of the 2n” is similar to that of the 2n— 1%*. The infinite branch of
C,,_, and » form 2rn — 1 regions, each bounded by asinglesegmentof C,,_; and
a single segment of v, and in one of these regions must lie the representatives of
all the ovals, if any, included by the generating oval of C;,_,, as well as
3(2n — 2) — 1 of the 2n — 3 ovals which arise from segments of g,,_, and w.
No other of the 2n — 1 regions contains an oval. Hence the oval on the 2n*
derived from the segments of C,,_, and of » which bound this region, will include
n — 2 ovals and also those representing the ovals which were contained by g, _».
Thus whatever be the type of 2n*, the number of its internal ovals exceeds by
n — 2, the number on the 2n — 2,

For the 6 the number of internal ovals is 1,

for the 8%, 1+ 2,

for the 10%, 1 + 2 + 3,

for the 12%, 1 + 2 + 3 + 4, ete.

Hence on every curve of even order (2r) with the maximum number of circuits
thereare 14+ 24+34+4+4+.... +n—44+n—3+n—2 ie ${n—1) (n—2)
internal ovals, and hence n* + $(n — 1) (n — 2) external ovals.

Though the number of internal ovals is the same for all 2n** thus generated,
the distribution differs from type to type. If on each 2m¥ (2m = 2,4,6,....
2n — 2) from which the 2n” is derived the generating oval be one which contains
others, that is, if the first mode of generation be used throughout, all the internal
ovals lie inside the same oval (Fig. 3 4, (4, ). If, however, the generating oval be
one which encloses no other, then among the additional circuits formed in passing
from a curve of order 2n — 2 to a curve of order 2n, there is just one oval which
includes others, and this contains » — 2. Thus the 2n* which is derived by the
second mode of generation throughout has its internal ovals distributed in n— 2
different ovals, in groups of 1, 2, 3,4, ....2— 3, n— 2 (Fig. 3.4 ) Com-
binations of the two modes of generation afford (2"—% — 2) other arrangements of
the internal ovals, but there are certain restrictions to which the distribution is

subject. Nosetot1,2,3,...., n— 2 ovals can be separated, and combinations
can be made only of successive sets (Fig. 3, 1y, . G, 0. @, . )+
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If the non-singular curve of even order has not the maximum number of
circuits, the question arises, whether in this case the number of external ovals
can exceed n* + 3(n — 1) (n — 2). The generating oval of Ce,_ with » gives
rise to the infinite branch of C,,_, and to 2n—3 ovals, n — 2 of which become
internal ovals on the 2n*. The remainingn — 1 ovals, and all additional ovals
arising from g,,_, and v become external ovals. It is obvious that the 2n —2
straight lines 1, b, I, - - ooz could have been so chosen that the position of
Jon —» With regard to v would have been that indicated by Fig. 4, and hence that

Fia. 4.

none of the n — 2 internal ovals would have appeared on the on*. This is the
only way, however, in which the presence of internal ovals can be prevented
without decreasing the number of external ovals, and this method admits of no
increase in the number of the latter. Hence the conclusion can be drawn that
no 6 derived by the Harnack process, can have more than 10 external ovals,
no 8¢ more than 19 external ovals, no 10 more than 31,...,n0 2n* more than
n? + §(n—1) (n — 2), even though the number of circuits on the curve be less
than the maximum number.

In support of the statement that on curves of odd order, the ovals may be so
arranged that each lies outside the others, it was seen (p. 383) that from the
6 whose generating circuit included another oval, a 7“ can be derived whose
ovals lie external to one another. And in general from every 2n* whose
generating oval includes all the internal ovals can be derived a 2n + 1%, all of
whose ovals are external to one another. For as Oy, . ; is generated from G,
the generating oval opens out, so to speak, to form with the infinite segment of v,
the infinite branch of the 2n + 1%, thus leaving the ovals which it contained
free of any encircling oval.

Curves of Even Order derived by the Hilbert Process.—For the types of 2n*
which present themselves by the Harnack process, all the ovals which lie
¢ipside ”’ others satisfy the definition of ¢ internal’’ ovals. Not so for curves
with nested ovals; for within the annular regions bounded by two successive
ovals of the nest, beginning with the outermost ring the expression, G, is alter-

L S
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nately negative and positive. The internal ovals, then, are to be looked for only
in these negative regions, that is, in the 1st, 3rd, 5th, . ... etc., from the outside.
The circuits lying in the 2nd, 4th, 6th,.... regions lie “inside” certain ovals
but are themselves external ovals.

It has already been mentioned that the Hilbert method of generating curves
with the maximum number of circuits, differs from the Harnack process only in
the use of the ellipse instead of the straight line as auxiliary curve. The process,
as given by Hilbert, applies to curves of both odd and even orders, but here
only curves of even order will be considered. Let C,, be a curve of even order
with the maximum number of circuits, p + 1, and the maximum number of
nested ovals, » — 1; and assume that an ellipse, %, can be drawn to enclose one
or more of the nested ovals and cut one of the non-nested ovals, g,,, in 4n points
which have the same order of succession upon C,, as upon the ellipse. On a
segment, S, of Ej,, but not that which with a segment of g,, encloses the one or
more nested ovals inside the ellipse, let 4n 4-4 points be chosen and through these
points let 2n + 2 straight lines, 7, 7,,....7, ,,, be drawn, connecting the first
point with the second, the third with the fourth, and so on.¥ Then for a small

i=2n+2
value and the proper sign of § the equation G,,. E, + § i l;=0 represents a
i=1

curve of order 2n + 2, which has the maximum number of branches, p + 1, the
maximum number of nested ovals, n, and satisfies all other conditions analogous
to those assumed for the 2n".+ Hence if a 2n° exists satisfying the assumed
conditions, from it can be derived a 2n 4 2, subject to similar conditions,
from this a 2n + 4%, and so on. For the case 2n = 4, such a curve does exist.

* It can be seen, as in the preceding method, that the assumptions made for the 2n* are necessary for the
maximum number of circuits, or for the maximum number of nested ovals on the 2n + 2%, or for the continua_
tion of the process beyond the generation of Cszm.  The assumption that the ellipse must enclose at least one
of the nested ovals and the restriction made on the segment, S, are not given by Hilbert but are shown by
Hulburt (Topology of Algebraic Curves, Bull. N. Y. Math. 8oc. I, 1891-2, p. 197) to be necessary for the continunation
of the process. Otherwise the curves of higher order would not bave the maximum number of nested ovals.
The restriction of the 4n» + 4 points to the same segment is necessary in order that curves of order >2%n + 2
may have the maximum number of circuits.

t With the exception of the oval, g,,, each circuit of C, gives rise to a circuit of Cype. Also the boundaries
of the 4n regions formed by the intersections of g, and E, generate 4n ovals. Hence the total number of
branches = }(2n — 1) (2n — 2) + 4n = p + 1. The ovals arising from the nested ovals are nested, and one of the
4n ovals generated by the segments of g,, and F is itself a nested oval. Hence the number of nested ovals
=31@n—2) +1=10n+2-—2). Moreover the ellipse encloses one or more of the nested ovals, and a non-
nested oval, ., ., cuts E: in 4n + 8 points whose order of succession is the same on the oval and the ellipse.

50
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Let C, and E, represent two ellipses cutting each other in four real points. On
a segment, S, of B, let 8 points be chosen and joined by the straight lines U, ls, 05,y
the 1st point from one end of the segment with the 2nd, the 3rd with the 4th, and

=4
so on. Then the equation C, . B, + 8 . I1 ;= 0, for a proper choice of §, will
i=1

represent a quartic satisfying the assumed conditions (Figs. 1, 2, Plate II).
And therefore for all order values, 2m, curves do exist satisfying similar
conditions. '

There is only one type of quartic obtained, but two cases arise from the
two possible positions of the lines 4, 1, 15,1, with reference to the auxiliary
ellipse. If in the derivation of the 4% from the conic, C;, no real points. had
been chosen on a segment, S, of B, the quartic would have consisted of two ovals
inside E, and two ovals outside. Hence according as the 8 points chosen lie on
a segment, S, outside C, or on a segment inside C,, one of the two ovals inside J,
or one of the two ovals outside E, becomes the generatihg oval. Each of these

=6
two quartics gives rise to a distinct type of 6°(C,.E,+8.TLL=0) with the
i=1

required properties (Figs. 3, 4, Plate IT). Itis easily seen thatin the generation
of each type of 6%, there are possible three essentially different positions of the
12 points which, taken in pairs, determine the 6 straight lines &, %,....%. For
one position, the ellipse, By, is cut by a non-nested oval of C; which would other-
wise lie inside the ellipse; for another, by a non-nested oval which would other-
wise lie outside the ellipse; for the third, by a nested oval. And, in general,
the same possibilities arise in the derivation of the 2n* from the 2n — 2%, thus
affording three modes of generation of the 2n + 9% froma given 2n“. The third
case, however, as Hulburt points out, leads to curves with less than the maximum
number of nested ovals. It will be found later that after an application of the
third mode of generation, a fourth mode becomes possible.  All four modes yield
curves with the maximum number of circuits, but only the first and second
admit also the maximum number of nested ovals.

If at each stage of the generation of the on’ from the curves of lower order,
one of the non-nested ovals inside the ellipse be taken as the generating oval,
that is, if a curve be derived by the first mode of generation throughout, the circuits
situated in the n— 2 annular regions determined by the nested ovals are dis-
tributed according to a perfectly regular scheme. The non-nested oval of the
on — 4% which cuts the ellipse forms with the latter, 4n —8 regions in which
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are generated 4» — 8 new ovals of the 2n — 2. Of the 2n — 4 of these which
lie inside the ellipse, one is a nested oval; another is to be taken as the
generating oval ; hence in the region bounded by the outer oval of the nest and
those segments of the ellipse and the generating oval which give rise to the new
nested oval of C,,, there are situated exactly 2n— 6 ovals. Therefore the 2n'
will have in the last annular region formed 21— 6 ovals. Since one new
annular region is formed at each stage of the generation, and the arrangement
of the ovals lying in this region is not disturbed as curves of higher order are
generated, there corresponds to each curve, C,,, (2m < 6) from which the 2n' is
derived, one particular ring. For the 6%, the number of ovals in the ring between
the two nested ovals = 0; for the 8*, the number of ovals in the 1st, or inner-
most, and the 2nd rings = 0, 2; for the 10 the number of ovals in the 1st, 2nd,
and 3rd rings = 0, 2, 4; and so on; for the 2n* the number of ovals in the 1st,
2n0d, 3rd, .... n— 2" rings =0, 2, 4,6,....22— 10, 2n — 8, 2n — 6. But in
the consideration of the number of internal or external ovals, that nested oval
which forms the inner boundary of a ring itself, belongs to the group of ovals in
that region; hence the foregoing scheme becomes

1,8, 5,7, ... 2n—9, 2n— 17, 2n— 5

H

and these groups are alternately internal and external ovals, or vice versa.
Therefore for n — 2 even (Fig. 5, Plate I, n = 4),
the number of internal ovals =20 —5 4+ 2n—9 + . . + 74 3
=3#(n—1) (n—2);
for n — 2 odd, :
the number of internal ovals = 22— 5 + 22— 9 4 . . + 5 +1
=3(n—1) (n— 2).

If in the generation of the 2n* one of the non-nested ovals lying outside the
ellipse be taken at each stage as the generating oval, that is, if the curve be
derived by the 2nd mode of generation throughout, there is obtained a similar
arrangement of circuits in the annular regions. Beginning with 3, however,
the series is reversed (1,2n — 5, 2n— 7, 2n— 9, - 7, 5, 8), since by this pro-
cess after the generation of the 6%, the nest is buxlt up from the outside inward;
and the innermost ring contains not only one oval in accordance with the scheme,
but also all, save one, which by the other process lay in that part of the plane
exterior to the nest. Therefore for »n — 2 even when within the innermost ring,
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the expression, C,,, is positive (Fig. 6, Plate II), the number of internal ovals
= }(n — 1) (n — 2), but for » — 2 odd the number of internal ovals
=n"+ }n—1) (n—2)—1 >}(n—1) (n—2).

Combinations of the 1st and 2nd modes of generations give other types of curves.
At each stage of the development of the curve, C,,, from the conic, C,, either
mode of derivation may be adopted; hence from the quartic of which there is
only one type, are derived two 6, from each 6%, two 8', and so on; the number
increasing in geometrical ratio as n increases. Therefore for the 22%, if the two
regular types just discussed be included, the number of types of curves with the
maximum number of circuits and the maximum number of nested ovals, is 2" 2.
By a combination of the two modes, the nest is built up alternately from the
inside outward and from the outside inward. If the curve, G, _,, is derived
throughout the process by the first mode of generation, all of its nested ovals lie
inside the ellipse, E,. For the generation of the curve, (,,, from this, let a
change be made to the 2nd mode; then the new nested oval of (i, lies outside
the ellipse, and the annular region which corresponds to the curve, C,,,, is the
one in which the ellipse is situated. As curves of higher order are generated
all the mew ovals appear in this région, and from it are cut off successively
the mew annular regions lying inside or outside the ellipse according as
they are formed by the 1st or 2nd mode of generation. The curve is built
up in such a manner that there are formed sets of annular regions, (1) a
inside the ellipse, (2) a' outside the ellipse, (3) b inside the ellipse, (4) &'
outside the ellipse, and so on. HExcept in those rings which are formed at
stages where a change in the process occurs, the number of ovals in each
annular region is the same as that in the corresponding region when one type
of generation is used throughout,—that is in the last annular region formed
whether outside or inside the ellipse there are 2n— 6 ovals. But consider the
ring formed in the derivation of (,, from C,,_, where a change is made from
the 1st to the 2nd mode of generation. The outer nested oval of C,,_, is one
of the 2m — 4 ovals arising from segments of ¢,,_, and E,, and lying inside the
ellipse; and the generating oval of C,,_, is one of the 2m — 4 ovals outside the
ellipse. Thus 2m — 5 ovals are left in the region between the ellipse and the
outer nested oval of (,,_,. Hence as C,, is derived from this 2m — 2%, an
annular region is formed which contains 2m — 5 4+ 2m — 2 ovals inside the
ellipse and 2m — 3 lying outside. If the second process is continued through
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the generation of Cj,_,, the number of ovals in each new annular region formed
follows the regular scheme up to this stage, and the appearance of every group
of 2¢ — 6 ovals in a ring outside the ellipse (29 =2m + 2, 2m + 4,....2p— 2),
1s accompanied by the appearance of a group of 2¢— 4 ovals in the region con-
taining F, and inside the ellipse. Hence this ring contains
p-1
2m — 5 +21 29 — 4 + 2p — 4 ovals inside the ellipse and 2p — 5 outside.
m—+1

If at this stage a change is made back to the first type of generation, one of
the 2p — 4 ovals inside the ellipse must be taken as the generating oval, g,,_,,
and hence in the new annular region formed for C,,, a region which lies inside

p—1
the ellipse, there are 2m — 5 +E 29— 4 + 2p—5 ovals, and in the region
m+1

which contains the ellipse 2p— 3 ovals inside the ellipse and 2p —2 4+ 2p—5
outside. Hence as O, is derived, if there is a change from the 1st mode of
generation to the 2nd in the derivation of (,,, from the 2nd to the 1st in the
derivation of C,, from the 1st to the 2nd in the derivation of C,;, and so on,
the scheme of arrangement of the ovals in the annular regions beginning with the
innermost ring is represented by the following sets of groups, a, @/, 5, ¥, e, ¢,....,

p—1
(@)10,2,4,6,8,....2m — 8|, (B)|(2m — 5 + Dy 20 — 4 + 2p — 5),
= m-t-1

2p—4,2p—2,....25 — 8],

t—1

()|(2s—5+Dj20—4+2—5), 2%6—4, 2%—2,....20—86,

s+1 n
(2n— 2+ 20 — 34 D7 29 — 4 4 2% —5)|,
: t+1
s—1
(¥)]2t—8,.... 25— 2,25 — 4, (25— 5 + Dy 20— 4 + 2p — 5],
< D+1

(@)2p—8,....2m— 2, 2m — 4|;

P

or if in the enumeration of the ovals in the annular regions the nested oval
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which forms the inner boundary of the ring be included, the foregoing scheme
becomes

_ p—1
(@)]1,38,5,7,....2m — 7|, ®)[(2m—5+>; 29— 4 + 2p— 4),
m+1

2p—38,2p—1,....25— 1],

t -1
() (25— 5 +D12g— 4+ 2—4), 9—3 2—1,....20—5,
8+1 N

(2n—1+2n— 34+ 29— 4 4 20—35)],

t+1
8—1
)| 2t—17,....9—1, 25 — 3, (26— 4+Di2— 4 + 2p —5)|,
p+1

(@)|2p—1,....2m —1, 2m — 3.

If the 2nd mode of generation is applied first, then the region which includes
the ellipse corresponds to the 6°." The foregoing scheme applies, but 2m has
the value 6, and group (a) disappears.

If the annular regions be considered in the order of their formation but
that region in which the ellipse is situated be left to the last, the series of
numbers representing the groups of ovals is (@)]1, 8, 5, 7,.... 2m — 17|,
(@)[em —38, 2m — 1 .... 2p — 7|, ete. Comparison with the regular series
obtained when the first mode of generation is employed throughout shows that
after 2m — 7, each number in this series is greater by 2 or by.a quantity exceed-
ing 2, than the corresponding number in the regular series. If in the last region
of each set, «, a/, 5, ¥/, . ... the expression, (, is negative, or more briefly if the
last region in each set is negative except in that set in which the ellipse is
situated, the series which represents the number of internal ovals is
1, 5,9....2m—11, 2m— 7, 2m — 3, 2m + 1,....2p—7,2p—3,........

or 3, 7, 11,

in exact agreement with the regular series representing the number of internal
ovals when the 1st mode of generation is used throughout. For though the first
region of (') is negative the number of its ovals exceeds by 4 the number in the
last region of (a), and as the first regions of all the other sets b, b,ec c,.... are
necessarily positive there can be no break in the series as passage is made from
set to set. But when there is a change made from one mode of generation to the
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other, two regions which are formed consecutively are separated by other regions
as the process is continued, and hence the expression C,, may be negative in
both tkese regions. This apparently introduces the possibility of the existence
of a series in which some of the numbers are less than the corresponding
numbers in the regular series, and in this case the number of internal ovals
might be less than §(n — 1) (n—2). For example, if the last region of (3') and
the first region of (¢) are both negative, the series will contain a sequence of the
form, 2¢— 7, (2t—4 4 . ) 2% — 1,243,...., (A), in which the numbers
beginning with 2 — 1 are less by 2 than the corresponding numbers in the
sequence 26-—7, 2t — 3, 2% 41, 2% +5........ But the conditions for the
existence of such a sequence as (A) demand the existence of a preceding sequence
of the form 27— 9 20—3, 21+1, 245 instead of the regular sequence
2l— 9, 21—5, 91— 1, 20+ 3. Thus the numbers in the serjes which pre-
cede such a sequence as (A) exceed by 2 the corresponding numbers in the
regular series, and hence the numbers following the sequence will be the same
as the corresponding numbers in the regular series.

Suppose such a sequence as 2p— 7, (2p—4 + ..), 2p—1, 2p + 3 occurs
in the passage from the set (a') to the set (3). The last region of (a’) and the
first region of (6) are both negative. Since the first region of (2) is negative, the
last region of () must be positive. The last negative region of (a) then con-
tains 2m — 9 ovals, and hence in the series of numbers, representing the groups
of internal ovals there is g spring from 2m-—9 to 2m — 3, preceding the
succession 2p — 7, (2p — 4 + ..), 2p—1, 29p + 3.

(@........ +B)— ... .. —() ... +(d)........ (&) ........
— e e
@)........ 01 N +(0)— . (@)y— ........ —

No such break can oceur again in the series so long as the last region in each
set considered is negative, for as a prerequisite to such a sequence as the above,
the first region of some set must be negative and this is impossible unless the
last region in the preceding contiguous set be positive. Let the first set whose
last region is positive be (c). The last region of (¥) is negative, hence the first
region of (¢/) is positive. Therefore in the passage from (c) to (¢) there is a
Jjump over two annular regions, that is, from a group of 2/— 9 internal ovals to
a group of 27— 3. If the last region of (¢') is positive, the series representing
the groups of internal ovals goes on regularly except that in the 1st region of
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(d), which is negative since the last region of (c) is positive, the number of
internal ovals is greater than it would have been had there been no change in
the mode of generation. This regularity continues until the last region in some
set is negative, and at this stage occurs again a sequence of the form 2r— 7,
(2r—4+ ..),2r—1, 2r+3.... Inevery case asequence of the above form
is preceded by a succession of the form 2/—9, 21 — 3, 9l 4+ 1, 201+ 5. Thusin
the series representing the groups of internal ovals there may be numbers
exceeding but none less than the corresponding numbers in the regular series.
Hence since the series of numbers which represent the groups of internal ovals
on curves derived by both modes of generation is either greater than or equal to
the series obtained when the 1st mode of generation is used throughout, the
number of internal ovals T 3#(n — 1) (n — 2).

The third mode of generation in which the new nested oval is taken as the
generating oval, is not applicable to the generation of curves of degree lower
than 8, for the 6% is the first curve whose generating oval can be a nested
oval. Hence the first application of the process must be preceded by the use of
the first or second mode of generation. Each application of the process reduces
the number of nested ovals by 2. For suppose the new nested oval of Cyn 5 cuts
the ellipse; then on C,, there is no nested oval representing this, and moreover
none of the 4m — 4 ovals arising from the segments of the ellipse and this gen-
erating oval encloses either the ellipse or the nested ovals lying inside the
ellipse; that is, the nested oval contributed to the nest by C,,_, disappears as
such, and no new nested oval is added by Cym. It is evident that since there is
no nested oval among the new ovals formed at this stage, the third mode of gen-
eration cannot be applied twice in succession. Thus the different types of curves
which are derived in part by the 3rd mode of generation are those obtained by
the 1st and 3rd modes of generation or by the 2nd and 3rd, or by combinations
of all three modes, or by combinations of these with the fourth. If the curves
be derived by the 1st and 3rd modes of generation, let the 3rd mode be introduced
for the first time for the generation of the curve C,, The new nested oval of
C,n_s lies inside the ellipse, and in the new annular region formed there are
om — 8 ovals, and in the region between the nested ovals and the ellipse there
are 9m — 5 ovals. The new nested oval of C,,_,is to be taken as the gener-
ating oval. Hence in one of the 4m — 4 regions bound by segments of E, and
gam_» there are 2m — 5 ovals, and therefore of the 4m — 4 new ovals appearing
on GC,,, one contains 2m — 5 \others, and this lies inside the ellipse. The
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remaining 4m -- 5 are distributed with respect to the ellipse just as the corre-
sponding 4m — 5 ovals would have been distributed had the first mode of gener-
ation been used instead of the third; so the process can be continued as if the
third type had not been introduced except that a nested oval cannot be taken as
the generating oval. Hence the general arrangement of the ovals of the curve,
Com, which is derived throughout by the 1st method of generation is affected by
the introduction of the third method for the generation of C, only in the follow-
ing manner. The ring which by the continuation of the first Dprocess would have
contained 2m — 6 ovals disappears, and in place of the two nested ovals bounding i,

~

.

N

2 m-8 2m-6 2m-4 2m-8 2 m-5 2 mig-
ovals ovals ovals ovals ovals ova
F1e. 5. Fie. 6.

with the 2m — 6 ovals lying between them, there is now one oval enclosing 2m — 5
others. Thus three annular regions are thrown into one, and the arrangement
of circuits represented by Fig. 5 becomes that indicated by Fig. 6. Or if the
process stops here, the two outer rings become one with the region outside the
nest.

If the annular region which is composed of the three is positive, it con-
tributes the same number of internal ovals as the middle region would have
contributed, if the three were distinet, namely 2m — 5. If negative, it yields
the same number that would have been given by the other two regions. In
the enumeration of the internal ovals the nested oval which forms the inner
boundary of a negative ring must be included, and though the two regions in
question would yield two such internal ovals and the composite region only one,

51
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yet as compensation for the other there is the oval which contains the 2m — 5
other ovals. If the new nested oval of Con + 5 be taken as the generating oval for
the derivation of C,,,, that is, the 3rd mode of generation applied again, then
there are combined into one the five annular regions which would have appeared
had the first mode of generation been used throughout; but in this composite
region there are besides 2m —8 4 2m —4 + 2m ovals, one oval enclosing
2m — 5 others, and another oval encircling 2m — 1 ovals. The arrangement is
indicated by Fig. 7. It is evident that the number of internal ovals is not
altered by the introduction of the third mode of generation, and hence every

2m-§ 2m4 2m-1 2m
ovals ovals ovals ovals

Fia. 7.

combination of the 1st and 3rd modes of derivation gives a curve with }(n — 1)
(n — 2) internal ovals.

The arrangement of the circuits of a curve derived by the 2nd mode of
generation or by a combination of the 1st and 2nd modes of generation is
modified by the introduction of the 3rd mode in a manner similar to that
in the preceding case. Suppose the 3rd mode is introduced for the derivation
of C,,. Either the 1st or 2nd process must have been used for the derivation of
Com—z  If this process had been continued for Opm 2lso, an annular region would
have been formed containing 2m — 6 ovals between the two nested ovals. The
use of the 3rd method causes the disappearance of these two nested ovals as such
and introduced in the place of them, with the 2m — 6 ovals between them, one
oval enclosing 2m — 5 others. And this is the only alteration produced. The
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conclusion is easily deduced ag ip the preceding case that the number of internal
ovals on curves derived by the 2nd and 3rd modes of generation or by all three
modes combined, is not less than #(n — 1) (n — 2).

2 m-2

2m-4 or
ovals |2m-14-—-
ovals

Fiq. 8.

Although the 3rd mode of generation cannot be applied twice in succession,
it need not be followed by the first or second, for the ellipse may be cut by the
oval which contains 2m — 5 others. This introduces g fourth mode of derivation,

2m-8

or 2m-3|2m-5
2 m-7 4 e ovals | ovals
ovals
Fia. 9.

closely related however to the 3rd type, for though the generating oval is not
one of the nested ovals, yet it does include others. It is not difficult to see that
if the arrangement of the ovals in the annular regions formed at the stages
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Con—sy Oomy Comssy Comyy on a curve derived by the 1st, 9nd and 3rd modes be
represented by Fig. 8, the use of the 4th mode for the derivation of Chpn ., Will
modify the arrangement to that indicated by Fig. 9. That is, there is a combi-
nation in pairs of the four annular regions which would have appeared if instead
of the 3rd and 4th modes of generation the one preceding the 3rd had been used;
the first and third are united, and the second and fourth. If one region is nega-
tive, the other is positive, so that the same number of internal ovals is obtained
as if the ovals were distributed in the four regions. Hence in this case, the
introduction of the 4th mode of generation does not decrease the number of

2 m-6
ovals

Fi1a. 10.

external ovals. If the 4th mode of generation be followed by the 3rd instead of
the 1st or 2nd, then a somewhat different arrangement is produced. There are
combined into one the five annular regions which would have appeared, if the
mode by which C,,_, was derived had been continued for the generation of
Cimy Coms2y Comysy Oimio Instead of the arrangement represented by Fig. 10,
the result would be that indicated by Fig. 11.

If all possible combinations be made of the four modes of generation,
various arrangements of the circuits are obtained, but the investigation of the
preceding combinations makes it evident that the number of internal ovals on the
derived curve is equal to the number on a curve which is generated by the 1st
and 2nd modes only and hence is not less than §(rn — 1) (» — 2).

The appearance of a curve derived by the 1st or 2nd mode of generation, or
by a combination of the two, is only slightly modified by an occasional intro-
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duction of the 3rd mode of derivation; but an extensive use of the 3rd method
gives a curve differing greatly in form from that derived by the 1st or 2nd mode
alone, or by the 1st and 2nd together. For example, if for the derivation of the
8% from the 6% which is generated by the 1st mode of generation, the 3rd mode
be employed, and for the derivation of curves of higher order the 4th and 3rd
modes be used alternately, then no nest whatever is built up. The type of
curves obtained is the same as that derived by the exclusive use of the 1st mode
of generation in the Harnack process. The 8% has one oval containing three,
and the remaining ovals are external to one another; the 10% has one oval

(Rm-7) 9m
or or
®Rp-5 Rm+ 1
m?’}- 2 mig T
ovals 52
§«1 2q4 §u 2q-4
P +1 m -+ 4
+ +
2 m-6) 2 5-5)
ovals ovals
/
Fia. 11.

containing 6 and the remainder external to one another, and so on. If the 1st
mode of generation is combined with the 3rd and 4th, but after the generation
of the 8% not applied twice in succession, there are derived in this way m—2
other types of curves of order 4m, and 7— 2 other types of curves of order
2(2{—1), which agree with types obtained by the Harnack process. But no
other types of the Harnack curves are derived by the use of the 2nd mode
instead of the Ist or by the use of both the 1st and 2nd.

It is evident from the method of generation that the number of internal
ovals can be diminished in the same manner as in the generation of curves by
the Harnack process, and also that this diminution ean in no case be accom-
panied by an increase in the number of external ovals. Therefore the number
of external ovals is not greater than n? 4 #(n— 1) (n — 2) even if the number
of circuits falls short of the maximum number.
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Curves Derived by the Modified Forms of the Hilbert Method.—The use of the
hyperbola or parabola as auxiliary curve, since these can be projected into the
ellipse, can certainly yield no type of 2n* differing from those obtained by the
Hilbert process. Neither does the degenerate comic. This, however, requires a
special proof. But when the pair of straight lines is substituted for the ellipse
as the auxiliary curve, passage can be made at any time to the Harnack process,
by the mere disregard of one of the lines, and a return to the original mode of
derivation can be effected after the generation of any curve of even order. Thus
new types of curves may arise by a combination of the two processes, but it can
certainly be shown that no type of 2% obtained has less than }(n— 1) (n — 2)
internal ovals.

If it could be shown that all non-singular curves with the maximum number
of circuits can be generated by this method of small variation, the proof of the
validity of the law for these remaining cases would establish it for all non-
singular curves of even order. But as yet there is no formal proof that the list
of such curves is exhausted by the types considered.

CONCLUSION.

There are several other forms in which the theorem can be stated that are
of interest, either as facts resulting from the theorem if established in its pre-
ceding form, or as statements which may afford a better starting point for the
proof of the theorem. A few of these equivalent forms are obtained by a con-
sideration of the Theory of the Characteristic, which though apparently yielding
no results toward the proof of the theorem, bears a most interesting relation to
the problem. The theory as given by Kronecker* is purely algebraic; he
proved that for any system of algebraic functions satisfying certain conditions,
there exists a number derived algebraically which is invariant for that system.
Dyck,t however, was led by a study of Kronecker’s investigations to a geometrical
definition of a characteristic number associated with a manifold, a number which
is built up as the manifold itself is developed. He showed that if the manifold
can be expressed algebraically, it can be developed by processes which also are
capable of algebraic expression. The whole geometrical configuration thus

*Ueber Systeme von Functionen mehrerer Variabeln, Werke I, 1869, pp. 175-212, 213-226. Ueber die Charac-
teristik von Functionen Systemen, Werke II, 1878, pp. 71-82.

 Beitrdge zur Analysis Situs, I, I1, 111, Berichte der K. Sichs. Gesellschaft der Wissenschaften (Math. Phys.
Classe) 1885, 1886, 1887. Math, Ann., vol. 32,
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introduces a system of algebraic functions subject to certain conditious. Dyck
proved that the characteristic number associated with the manifold can be
derived from this system of functions and that the number is identical with the
Kronecker characteristic of the system.

In Dyck’s Theory the manifold is regarded as made up of elements, and to
each element is assigned the characteristic 4 1. Whatever be the process of
generation of the manifold,

(a) the appearance of a new element contributes + 1 to the characteristic ;

(8) the vanishing of an element contributes — 1;

(c) the separation of an element into two pieces contributes +1;

(d) the joining of two elements, or of two parts of the same element, con-
tributes — 1.

For a one-dimensional manifold,—that is, a figure composed of lines,—the
element is a broken piece of a curve. For a two-dimensional manifold, the
element may be a part of a plane or of a surface that cap be developed as a
plane. The manifold suggested by any problem relating to the arrangement of
the circuits on a plane curve, f(xy) =0, of even order, with no singularities
and with the maximum number of circuits, is obvi-

ously the two-dimensional manifold determined as the

parts of the plane lying inside the curve,—that is, the /

parts of the plane where £« 0. The element 18 a piece

of the plane bounded by a non-singular closed circuit /
(Fig.12), and to this is assigned the characteristic + 1.

If the figure is initially non-existent, its characteristic
is zero, and as the manifold is generated the char-
acteristic is'increased by unity as an element appears or separates into two,
and is diminished by unity as an element vanishes, or as two elements or
two parts of the same element unite, Therefore the characteristic of the
manifold is equal to the sum of the characteristics of the separate parts
which make up the manifold, and is independent of the mode of generation,
Thus in the given manifold a part of the plane bounded by a single oval has
the characteristic + 1, whether it arises from a single element in the process
of gemeration or from the union of several elements. Hence each external
oval on the curve contributes to the manifold a region whose characteristic is
+ 1. Iftwo parts of such a piece of the plane unite and thus enclose in the midst
of aregion in which £ is negative, a region where /' is positive, their union ig

Fie. 12,
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marked by — 1 in the characteristic. But this is just the way in which an
external oval makes its appearance. Hence the presence of each internal oval
on the curve diminishes the characteristic of that piece of the plane to which it
belongs by unity. The whole number of circuits on the 2n” is n* + §(n — 1)
(n — 2), and hence according to the theorem which ascribes the minimum limit
3(n—1) (n — 2) to the number of internal ovals, the characteristic cannot
exceed ¥ + }(n — 1) (n — 2) — &(n — 1) (n — 2) or #%, if the maximum number
of circuits is present. It has been noted that a decrease in the number of
internal ovals cannot be accompanied by an increase in the number of external
ovals. Hence the characteristic cannot be greater than n* 4+ ¥(n—1) (n —2)
even if the number of branches is not the maximum number.

Fi1e, 13.

The process of generation of such a manifold can be expressed analytically
by considering the manifold as one of a singly infinite system of manifolds. Let
the curve # =0 be obtained as one of the pencil f/=24. Then the region where
f is negative decreases as A decreases, and for some value of A sufficiently near
— w, the curve disappears altogether. The characteristic of the corresponding
manifold is zero. Let A increase from this value. The curve makes its appear-
ance as an isolated point spreading into a circuit as A continues to increase.
Other circuits also may come into existence in the same way. Thus an isolated
point gives rise to a part of the plane and hence has the value 4 1 for the
characteristic. Two circuits may unite, producing a node (Fig. 13) and thus
join two pieces of the plane together, or a single circuit may cut itself (Fig.14),
and so unite parts of the same region of the plane. In either case the node is
marked by — 1 in the characteristic. As2increases, an internal oval shrinks until
it becomes an isolated point and then passes out of existence, or it may cut itself
in such a way that at the next stage it breaks into two internal ovals. In all cases
the isolated points which present themselves in the region < 0 contribute
+ 1 to the characteristic, and the nodes — 1. The singular points of the system
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are given by £, = 0, f, = 0, and are nodes with real tangents or isolated points
g Yy /1 ’ b g

;11 ;12 Ju foe ]be used

12 /22 .flz 22
to represent + 1, 0, — 1 according as the determinant is positive, zero, or nega-
tive, the characteristic of the manifold can be written X = S [ I “;:-” ﬁz ], the
12J22
summation taken over all points £ = 0, =0, f< 0; and Dyck shows that
this is the same as the Kronecker characteristic for the system of functions
J, /1, fo-  Since the characteristic cannot exceed 2 if S =0 be a curve (order 27)
with the maximum number of circuits, it follows that the number of isolated
points passed over in the system f=2 from A =—w to A= 0 exceeds the

according as

is negative or positive. If the notation [

Fra. 14.

number of nodes by a quantity less than, or equal to #>. And if /= 0 has not
the maximum number of circuits, the excess of the number of isolated points over
the number of nodes in the region f<C 0 is either less than or equal to n® 4
Hn—1) (n—32).

The relations between the critic centres of the pencil f= 2 thus obtained in
applying the Theory of the Characteristic to an interpretation of the problem are
interesting, but afford no clue to the solution. There is even some indication
that the theory is not the most promising instrument of proof, for this is
applicable to curves of even order only, and though the theorem on the mini-
mum limit of the number of internal ovals is stated for these curves alone, it
most probably can be extended to include curves of odd order also. It has been
seen that on a non-singular 2n 4 1% with the maximum number of branches
the ovals may lie each outside the others; but even in this case they may satisfy

52
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the definition of ¢ internal ovals,”” for the odd circuit divides the plane into two
regions both infinite, in one of which (,,,, is positive, and in the other, nega-
tive. And as a matter of fact, no 2n + 1% with fewer than } (n—1) (n— 2)
interval ovals presents itself directly by either of the two processes of generation
discussed.

There are still other forms in which the theorem can be stated, the most
interesting of which is perhaps one relating to the number of regions into which
the plane is divided by the curve. It has been shown that if the maximum
number of branches is present, then the curve must have atleast §(n — 1) (n — 2)
wnternal ovals, and whether the number of branches present is the maximum or
less than the maximum, the curve can not have more than n* 4 }(n — 1) (n — 2)
external ovals. By a similar line of reasoning it can be proved that whatever
the number of circuits, the number of internal ovals can not exceed n* + (n—1)
(n — 2)—1; and hence if the maximum number of circuits is present the
number of external ovals can not fall below }(rn — 1) (n — 2) + 1.

Therefore if the maximum number of branches is present,
the number of regions in which the expression G, is positive S §(n—1) (n—2)+1,
and the number of regions in which C,, is negative T4(n—1) (n— 2) + 1;
and whatever the number of circuits,
the number of regions in which C,, is positive Tn® + §(n — 1) (n — 2)
and the number of regions in which C,, is negative Tn®+ (n — 1) (n— 2).
From these statements, it seems that any limitation on the arrangement of the
circuits is of a dual nature; and it is worthy of note that no modification of
these statements is necessary, if the sign of C,, be so chosen that it is negative
at infinity. '

The statement of the theorem in this last form suggests that there may be
some underlying relation to the theory of Multiply-connected Surfaces.

In the figures of Plates I and II the curves are much distorted, inflexions being inserted where none
exist, in order to bring the figures within the scale of the paper. The figures represent the distribution of
the ovals of the curves accurately only with respect to the number in different regions of the plane. In the

i=2n .
drawing of the figures representing curves of the type, C,, = C, E,4-6 I1 I, =0, the straight lines [, are
d==1

n—2°

omitted.
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