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Abstract

In this paper we present an optimality result for
the Delaunay triangulation of a set of points in R
We also show that some of the well known proper-
ties of the Delaunay triangulation in IR? can, when
appropriately defined, be generalized to the Delau-
nay triangulation in IR¢. In particular, we show that
(a) the maximum min-containment radius (the radius
of the smallest sphere containing the simple)i) of the
Delaunay triangulation of a point set in IR” is less
than the maximum min-containment radius of any
other triangulation of the point set, (b) if a valid tri-
angulation consists of only self-centered triangles (a
simplex whose circumcenter falls inside the simplex)
then it is the Delaunay triangulation, and (c) there
exists an incremental flip algorithm (one that mod-
ifies the triangulation locally to make it Delaunay)
that can generate the Delaunay triangulation for any
point set. We further show that the Delaunay tri-
angulation can be seen as the optimum solution to a
continuum optimization problem.

1 Introduction

The Delaunay triangulation of a set of points in R? is
defined to be the triangulation® such that the circum-
circle of every triangle? in the triangulation contains
no point from the set in its interior. Such a unique
triangulation exists for every point set in R?, and it
is the dual of the Voronoi diagram {3)].

In R? it has been studied extensively and large
number of its properties are known [1, 3, 11]. (a)

1Simplicial decomposition of the convex hull of the point set
2d-dimensional simplex (d-simplex), which is defined by its
(d + 1) vertices.
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Among all the valid3 triangulations of a set of points
in IR2, the Delaunay triangulation lexicographically
maximizes the minimum angle, and also minimizes
the maximum circumradii. (b) If every triangle in a
triangulation is non-obtuse then it is the Delaunay tri-
angulation. (c) There exists a flip algorithm [9] which
Jooks at the four vertices of two adjacent triangles and
modifies the triangulation to ensure that it is locally
Delaunay. This algorithm transforms any triangula-
tion to the Delaunay triangulation in O(n?) time and
can be used as an incremental algorithm. (d) Optimal
O(nlogn) time divide and conquer and plane sweep
algorithms are known and elegant data structures to
support their implementation exist {7, 8, 11].

In three and higher dimensions, very few results
are known [3]. There exists a “lifting” transformation
(discussed below) that allows the Delaunay triangu-
lation problem in IR? to be transformed into a convex
hull problem in R4*+!. The convex hull algorithms
can therefore be used to obtain the Delaunay trian-
gulation. But no min-max result, such as the ones
discussed above, was known.

The Delaunay triangulation, (and its dual Voronoi
diagram) has been used extensively in both design
of efficient algorithms and in practical applications
[10, 3]. Since, the Delaunay triangulation has some
optimal properties in IR?, and efficient global and in-
cremental algorithms exist to construct them, they
have been used in finite element mesh generation as a
way of yielding “good” meshes [13]. A “good” mesh
is loosely defined as the one whose elements are of
uniform size and shape. We have used them in R3
for the same purpose though no such properties were
known.

In this paper we present a new optimality result
for Delaunay triangulation of a set of points in R%.
We also show that some of the well known proper-
ties of the Delaunay triangulation in IR? mentioned
above can, when appropriately defined, be general-
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ized to the Delaunay triangulation in IR?. We define
a triangle to be self-centered if the circumcenter of
the triangle lies inside or on its boundary. In R? all
non-obtuse triangles are self-centered and vice-versa
and thus it is a generalization to IR? of the non-obtuse
triangle. We define the Min-Containment Sphere
of a triangle to be smallest sphere containing the tri-
angle. We will show that for a self-centered triangle
min-containment sphere is the same as the circum-
sphere. But for a non-self-centered triangle it is the
circumsphere of one of its facets?, its center lies on the
boundary, and its radius is less than the circumradius.
(See section 2.) In IR? the min-containment circle of
an obtuse triangle is the circle with the longest edge
as the diameter. (See figure 1).

In section 3 and 5 we show the following results
which correspond to the properties in IR? mentioned
above. (a) The maximum min-containment radius of
the Delaunay triangulation of a point set in IR? is less
than the maximum min-containment radius of any
other triangulation of the point set. (b) If a valid
triangulation consists of only self-centered triangles
then it is the Delaunay triangulation. (¢) In section 4,
we define a generalized flip, which deletes (d+2—k)
non-Delaunay triangles (of the d+2 triangles) defined
by d + 2 vertices in IR and replaces them with k
Delaunay ones. In section 5 we show that when a
new point is inserted into a Delaunay triangulation
there is a way to organize the flips to ensure that
the triangulation is always valid. This leads to an
incremental algorithm for the Delaunay triangulation
that takes O(n/(4+1)/21) flips. Further in section 3
we show that the Delaunay diagram is the optimal
solution to a (linear) optimization problem and use
this prove some of the above results.

2 An Optimization Problem
over a simplex
Given Py, P, ..., Pyy1 be (d+1) points® in IR? that de-

fine a triangle T, consider the function F(X) defined
at every point X in the space:

d+1 d+1
D hi=1 SMR=X (1)
i=1 i=1

d+1 d+1 _
F(X)=) MPFP-X)*=)_NPP-X% (2
=1 =1
The (d + 1) weights A; (also called the bary-centric
coordinates of X) are uniquely determined by the
equations (1). The equation (2) defines F(X) to be
the weighted average of the square of the distance to
each of the vertices of the triangle. P? denotes the
square of the norm of the point. For a point X inside
the triangle, all of the bary-centric coordinates ); are
positive and hence F(X) is also positive. At a vertex
P;, Ai =1 and all other coordinates are zero, hence
F(P;) = 0. The following lemma give the F(X) at any
point in space.

Lemma 1. The Maz x F(X) occurs at the circum-
center (X¢) of the triangle, the value of F(X) at that
point is equal to the square of the circumradius (R?)
and the value of the function at any point X in space
is given by

F(X) = R*—(X-X¢)?
= (R*-Xc?H)+2Xc.X - X2 (3)

Proof: We can find the maximum of function F (X)
(equation (2)) subject to the constraints (equations
(1)) using Lagrange multipliers. After some algebra
we get that the maximum occurs at the point X
that satisfies the relationship that (P; — Xc)? is in-
dependent of i. Thus X is the circumcenter of the
triangle and F(X¢) = R2. The function F(X) for an
arbitrary point is given by:

d+1
F(X) = Y M((Pi—Xc) - (X - X¢))?
=1

= R2-2(X-Xc)*+(X - Xc)*.

Hence the result (3).0

We can give several geometric interpretations for
F(X). The Power of a point with respect to a sphere
is the square of the length of the tangent from the
point to the sphere. For points inside the sphere it
is negative and is minus the square of half the length
of the chord with the point as the midpoint. From
equation (3) we see that F(X) is minus the power
of the point X with respect to the circumsphere of
the triangle. Hence we will take the liberty of calling
F(X) the power function of the triangle. Another
interpretation is given by the lifting transformation

* A sub-simplex of the triangle. Its circumsphere is the smallest  considered by Edelsbrunner and Seidel [4]. Consider

T Mgt ath its verices i P, P?) which lifts the
*Throughout this Paper we will assume that, unless otherwise the transformation a(P) — (P, )

. . d . — D2 : d+1
stated, the points are in general positions. Hence, for example, points in IR® onto dt!le Parabolmd z =PpP l.n R :
no (d + 2) points are co-spherical The triangle in IR® is lifted to a triangle lying on a
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plane in R*™!. F(X) is the verticle distance of the
plane above the paraboloid at the point X.

We can show that the circumcenter of the trian-
gle lies on the normal to each face® of the triangle
passing through the face’s circumcenter. For a non-
self-centered triangle one or more of the values of the
weights ); at the circumcenter is negative.

Lemma 2. The constrained Maz x F(X), with the
added constraint that X lies in (or on) the triangle
T (i.e. A; > 0), occurs at the center of the min-
containment sphere of the triangle and the maximum
value is the square of its radius (r?).

Proof: For a self-centered triangle, the circum-
sphere is the smallest sphere spanning the triangle.
Because, if we move the center of the sphere away
from any of the vertices, the radius of the mini-
mum spanning sphere will increase. For a non-self-
centered triangle, the constrained optimum is the
point where the smallest sphere centered at the cir-
cumcenter touches the simplex. Let this sphere touch
the facet f of the simplex at point X,.. The sphere
centered at X. with radius square F(X,) is the cir-
cumsphere of f. It is the smallest sphere spanning f.
It also contains the remaining vertices of the simplex
in its interior. Hence the result. (See figure 1.) Also
notice that the constrained optimization problem is
a quadratic programming problem whose dual is the
minimum spanning sphere problem [10].0

We will use the following result in the next section.

Lemma 3. Let Ty = [Py,..., Py, Pgyy] and T =
[Py, ..., P4, Pgy2] be two self-centered triangles that
lie on the opposite sides of their common face F =
[P1,..., P4]. Then the circumsphere of one does not
contain the opposing vertex of the other.

Proof: Let X be a point lying on the normal to
the face F and on the opposite side to Pyy;. If the
sphere centered at a point X passing through the ver-
tices of F contains Pgy) then Ti is non-self-centered.
Choose X to be circumcenter of T3 and a proof by
contradiction follows. O

3 An Optimization Problem
over a set of points

Let Sp = {P,Pa,..,P,} be a set of n points in
IR? then consider the function f(X) defined at every

6(d-1) dimensional facet of the triangle

point X in the convex hull of Sp (CH Sp):

Ai >0, i/\; =1, Z)\ipi =X (4)
i=1 i=1

F(X,\) = zn:,\,-(P,- —X)?= zn:,\,-P,? - X2 (5)
i=1

i=1

F(X,)) is the weighted average of the distance
square to the points, except, now up to (n — (d+ 1))
weights A; can be be varied for a fixed point X.
f(X) is the minimum for a fixed X over this choice
of weights. One (not necessarily optimal) choice of
weights would be to give non-zero weights to only
some set of (d + 1) points (whose convex hull con-
tains X, cf. equation (4)) and set the remaining
(n—(d+1)) weights to zero. In this case the function
F(X,)) = F(X) where F(X) is the power function
of the triangle defined by the chosen (d + 1) points.

Theorem 1. At Min, F(X,)) for a fixed point X
the only non-zero values of A; occur for the vertices of
the Delaunay triangle containing the point X. Thus
f(X) is given by Lemma 1,

f(X) = [H(X)=R®—(X - Xcx)?
= (RZ-Xci®)+2Xce. X - X2 (1)

where X ¢ and R, are the circumcenter and circumra-
dius of the Delaunay triangle containing X. (¢ denotes
the label of this triangle.)

Proof: To prove this result we use following
well known result {2, 4]. Consider the transfor-
mation a(P) +— (P,P%) which lifts the points
in IR? onto the paraboloid z = P? in R
The point Sp is lifted to a set of points SP =
{(Py, P,?),(Py, Py?). ...,(Pa, P,%)} in R%*!. Take the
lower part of the convex hull of SP. Project this back
into R and we get the Delaunay triangulation (D)
of Sp.

Now consider a point (3 i_; MNP, Yi=y AiP?) =
(X,F(X,A) + X?), subject to the conditions in the

equation (4). This is a general point inside the convex’

hull of SP. The minimum of F for a fixed X is given
by the point with the lowest : coordinate, hence the
point on the lower convex hull of SP. This triangle
(d-facet in IR%*1) is the Delaunay triangle containing
X.a

Corollary Among all the triangles with vertices in
Sp and containing the point X, the Delaunay triangle
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minimizes the power function F (X) of the triangle at
the point (or maximizes the power of the point with
respect to the circumsphere of the triangle).

Theorem 2. The maximum min-containment ra-
dius of the Delaunay triangulation is less than the
maximum min-containment radius of any other tri-
angulation of the point set.

Proof: Given any triangulation 7 of S P we can de-
fine the function Fr(X) at each point X in CHSp
as power the function F(X) of the point X with
respect to the triangle T € 7 that contains the
point X. Let Fp(X ) define the corresponding func-
tion for the Delaunay triangulation D. Let Xt and
Xp respectively represent the points in CH Sp where
Fr(X) and Fp(X) attain their respective maxina.
Let Ry and Rp be respectively the maximum min-
containment radii of the triangulations 7 and D re-
spectively. From the results of the previous section
the square of the min-containment radius of a trian-
gle T is the maximum of the power function over the
triangle and hence its maxima for the triangulation
T is equal to maxima of Fr(X). The same is true for
the Delaunay triangulation. Hence:

Rp? Fr(Xr) > Fr(Xp)

2 Fp(Xp) = Rp2. (8)

i

Hence the result.0

While theorem 2 is true in all dimensions, the lex-
icographical version of the theorem is not true even
in R%2. A counter example to this was given by H.
Edelsbrunner. (See F igure 2.) Also, notice that the
triangulation 7 does not have to be valid for the The-
orem 2 to hold. As long as the triangulation spans the
CHSp, the theorem holds. If the triangulation is not
valid then there may be more than one triangle cov-
ering the point X and the function Fr(X) will be
multiple valued at those points. The inequality (8)
still holds and hence the theorem.

Theorem 3. If a valid triangulation consists of
only self-centered triangles, then it is the Delaunay
triangulation of that point set.

Proof: Suppose we are given a valid triangulation
of Sp consisting of only self-centered triangles. Then
from Lemma 3, every pair of adjacent triangles satisfy
the Delaunay condition. If we project the triangles
using a(P) defined above, then this states that the
resulting surface is convex locally. Since a surface
that is locally convex everywhere is globally convex it
follows that we have generated the convex hull. O

In the next section we will discuss how the local
modification technique can be used to provide an in-
cremental algorithm to generate the Delaunay Trian-
gulation.

4 The flip procedure

Consider now the optimization problem discussed
above for aset sp = {P,, P,, <oy Pay 2} of (d+2) points.
Let Ty = [Pl, vy Py, Pd+1] and Ty = [Pl, ey Pd,Pd+2]
be two triangles that share a common face F =
[P1,...,P4). If the circumsphere of 77 does not con-
tain the vertex Pgy3 then the triangles 7 and T, and
their facets are Delaunay-valid with respect to the
point set sp. We say that a facet is Delaunay-valid
with respect to a point set if there exists a sphere that
passes through the vertices of the facet and does not
contain any of the points in the set in its interior. If
a k-facet” is Delaunay-valid, then all its subfacets are
Delaunay-valid.

Now consider the case when the circumsphere of T}
contains the vertex Piyz. Then Ty is not a valid De-
launay triangle and the power function F(X) is not
the minimal one for any point X in T;. We can mini-
mize the function and get f (X) by giving more weight
to Pyy2. We solve this one variable linear program-
ming problem as follows.

Let Pays = T2 BiP (T35, = 1), then for
any point X inside 7} we have

d+1 d+1 d+1
X = D NP=3 MNPt p(Pays— Y fiPy)
i=1 i=1 i=1
d+1
= Z(’\l’ = pB8:i)P; + uPays (9)

i=1

The minimum possible value of # is 0 and we know
that it does not correspond to the optimum. The
maximum value of x4 is determined by the require-
ment that all the weights be non-negative. Thus
Mazp = Mingu; = Min;();/B;) where only posi-
tive values of 8; are considered. If this minimum is
achieved for point number J then the optimum and
hence the Delaunay triangle spanning the point X is
given by replacing P; with Py, in 7). Hence if there
are k positive values of 8 then by looking at differ-
ent point X in T; we can see that there are k valid
triangles in the convex hull of the (d+2) points. Sim-
ilarly we can show that there are (d + 2 — k) invalid

"k dimensional facet of the triangle, it is a k-simplex




triangles in the the convex hull of the (d + 2) points
We can also show that the (k-1)-facet described by
the corresponding k points is invalid, and all higher
dimensional facets, and simplices incident on it are
also invalid. The flip procedure consists of replacing
the invalid simplices with the valid simplices. It has
the effect of minimizing the function F(X) with re-
spect to the (d + 2) points. In the lifted space the
image (d+ 2) points form a simplex, and the flip pro-
cedure replaces the top triangles of the simplex with
the bottom triangles.

We would like to develop an algorithm for gener-
ating the Delaunay triangulation from any triangula-
tion using this procedure. Unfortunately, for k < d ,
this requires that more than two triangles be deleted.
Since some of these triangles may not exist, the flip
can lead to an invalid triangulation. The optimality
results mentioned in the last section is still valid. But
we need a way of organizing the information so that
the end result is valid.

In the next section we show that if a triangulation
is the Delaunay then it has enough structure so that
when a new point is added to the set, we can find a
sequence of valid flips which allow us to go from the
existing triangulation to the new Delaunay triangula-
tion.

5 An Incremental Algorithm

The “lifting” transformation, discussed in section 3,
maps the points in the set Sp to the surface of the
paraboloid z = X2. Under the transformation the
Delaunay triangulation mapped to a convex piece-
wise linear surface. We can use the results of The-
orem 1 and Lemma 1 to obtain a functional form for
this surface.

Lemma 4. The equation for the convex surface is
given by z = fi(X)+ X2 = 2XceX +(R* — Xed?) =
9(X) where R; and X are the circumradius and the
circumcenter of the Delaunay triangle containing the
point X. (¢ denotes the label of this triangle.)

The convexity imposes an order structure on the
surface [5]. This is of value in the incremental algo-
rithm. Start from any point Xy on the surface and
shoot a ray downward in the —z direction. Extend
the hyperplane of each of triangle, then, the hyper-
planes will strike the ray at point (X, g:(Xo)) where
9e(Xo) = (R,2 — XC,z) 4+ 2X¢¢.Xy. These points can
be sorted starting at the surface. If we start at the
surface and move downward along the ray, then the
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triangles will become visible in the order that we meet
the corresponding point along the ray. By saying a
point is visible from another point we mean that a
line joining the two points do not intersect the sur-
face g(X). The fact that g(X) represents a convex
surface is allows us to use the following Lemma.

Lemma 5. If from a point on the ray defined above
a point P on the surface is visible, then all the points
on the curve, that is formed by projecting the straight
line connecting Xy to P on the surface, are also visi-
ble.

Proof: Take a section of the surface using the 2-d
plane defined by the ray and the point P. The theorem
is self-evident in this plane. O

Now let us consider what effect inserting a new
point at Xo has on the surface (that is, the Delau-
nay triangulation). Since the surface touches the
paraboloid at each of the vertices, this is equivalent
to moving the z coordinate of the point X, from
go(Xo) (the old surface point), to Xo? and then re-
triangulating the surface to maintain its convexity.
The first useful result to note is the following known
Lemma [8].

Lemma 6. When a point is inserted into a De-
launay triangulation, then every new triangle or facet
created during the modification to satisfy the Delau-
nay criteria, has the new point as one of its vertices.

Notice that the new point may render some of the
old triangles and facets invalid. One way to delete
these unwanted old triangles and create the new ones
is to use the flip algorithm mentioned in the last sec-
tion. But we need a way to organize the flips, so that
they always yield a valid triangulation. This orga-
nization is provided by Lemma 5 and the discussion
before it.

Instead of moving the z coordinate of the surface in
one step from go(Xo) to Xo?, move it continuously.
As the point is moved in the —z direction triangles
become visible. Each time a triangle becomes visible
it needs to be flipped since the Delaunay criteria in
IR? is equivalent to the convex hull condition in RA+L.
Further, from Lemma 5, it follows that before any
triangle becomes visible, all it faces, hence adjacent
triangles also becomes visible. Thus we will always
have a valid triangulation. We need to maintain a
sorted (according to z intersection) list of triangles
opposite to the new point, and every time we flip a
triangle, we also have to enter all the new triangles
that are opposite to the point. We can drop all the z-




intersections < Xo? from the list since they lie below
the parabolic surface.

Algorithm Incremental Delaunay triangulation
e Inputn points in IR?.
¢ Output The Delaunay Triangulation of the n points.

1. Inttialization Start with a suitably chosen
large triangle that covers the domain.

2. Insertion Locate (if not known) the trian-
gle containing the point and Insert the point
there. That is replace the triangle with (d+1)
new triangles.

3. In-circle test Create a sorted list of the z in-
tersection (with decreasing z) for each of the
adjacent triangles. Drop the triangles with
z2 < on. :

4. Iteration While the list is non-empty, pop the
first triangle and flip. Perform the In-circle
test on each new triangle exposed and insert
it into the list, if appropriate.

5. Loop Go back to the Insertion step until all
points have been inserted.

of having the smallest maximum min-containment
spheres. However, this optimality result is differ-
ent from the previous ones known to be true in IR
Firstly, it is not lexicographically valid, secondly, the
method used to prove it is different from the ones used
to prove the optimality result in IR%2. Those results
are proven using the flip algorithm [3]. This raises
several interesting questions. Can this new method
be used to prove other results? Are there optimality
results that are lexicographically valid in IR? ? Can
the flip algorithm be generalized to yield the Delau-
nay triangulation starting with any triangulation in
IR?? An IR3 version of the incremental algorithm has
been developed by Barry Joe[6].
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