TRIANGULATIONS OF CYCLIC POLYTOPES
AND
HIGHER BRUHAT ORDERS

JORG RAMBAU

ABSTRACT. Recently EDELMAN & REINER suggested two poset struc-
tures i (n,d) and 5 (n,d) on the set of all triangulations of the cyclic d-
polytope C(n,d) with n vertices. Both posets are generalizations of the
well-studied Tamari lattice. While $(n,d) is bounded by definition, the
same is not obvious for $;(n,d). In the paper by EDELMAN & REINER
the bounds of $,(n,d) were also confirmed for $; (n,d) wheneverd < 5,
leaving the general case as a conjecture.

In this paper their conjecture is answered in the affirmative for all d,
using several new functorial constructions. Moreover, a structure the-
orem is presented, stating that the elements of S;(n,d + 1) are in one-
to-one correspondence to certain equivalence classes of maximal chains
in Sy (n,d). In order to clarify the connection between S; (n,d) and the
higher Bruhat order B(n — 2,d — 1) of MANIN & SCHECHTMAN, we
define an order-preserving map from B(n— 2,d — 1) to S;(n,d), thereby
concretizing a result by KAPRANOV & VOEVODSKY in the theory of
ordered n-categories.

1. INTRODUCTION

In this paper we examine the structure of the first higher Stasheff-Tamari
order Si(n,d) on the set of all triangulations of the cyclic polytope C(n,d)
(definitions below), introduced by EDELMAN & REINER [6]. It turns out
that it is similarly structured as the higher Bruhat order B(n —2,d — 1) of
MANIN & SCHECHTMAN [13]; in particular it is bounded.

*

Given a triangulation of the convex hull of a finite point configuration
in Euclidean d-space that is not satisfying a certain quality measure, can
one find a better, or even the best triangulation (with respect to this mea-
sure) by performing a finite sequence of (computational cheap) local trans-
formations? A necessary condition for the latter case is that any possible
triangulation is accessible by this kind of transformations. In particular,
a repeatedly pesed question in combinatorial and computational geometry
(see for example BILLERA, KAPRANOV & STURMFELS [3], EDELSBRUN-
NER (7, Open Problem 8], and JOE [10, Conjecture 1]) is whether or not any
two triangulations of (the convex hull of) a given finite point configuration
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in Euclidean space of dimension d can be connected by a sequence of bis-
tellar operations.

For d = 2 the answer is affirmative, as is for the restriction to regular tri-
angulations (by the work of GELFAND, KAPRANOV & ZELEVINSKY [8D.
For d > 3 and general triangulations, however, the problem is open in spite
of many attacks in this direction.

Similar problems attained attention in several fields of pure mathematics,
thereby leading to remarkable new concepts, such as the secondary poly-
tope defined by GELFAND, KAPRANOV & ZELEVINSKY [8]), further stud-
ied by BILLERA, FILLIMAN & STURMFELS [1] and BILLERA, GELFAND
& STURMFELS [2]. The theoretical question behind this all is the follow-
ing: Has the set of all triangulations of a point configuration a well-behaved
global structure with respect to local transformations? A far-reaching gen-
eralization of this question to restricted polyhedral subdivisions was re-
cently answered in the negative by RAMBAU & ZIEGLER [14].

The cyclic d-polytope C(n,d) with n vertices appears on the scene as a
combinatorially well-understood natural generalization of (convex) n-gons
to higher dimensions. The triangulations of an n-gon form the extensively
studied Tamari lattice — which one is definitely willing to consider as a
good-natured structure in this context. (For a historical background on
Tamari lattices and their different combinatorial interpretations we refer to
the paper by EDELMAN & REINER [6] and references given there.) The
natural question now is which properties of the Tamari lattices survive in
higher dimensions.

Since in general dimensions there are non-regular triangulations of cyclic
polytopes (see BILLERA, GELFAND & STURMFELS [2]) it is not a pri-
ori clear that the set of all triangulations of the cyclic polytope C(n,d) is
well-behaved. In the paper by EDELMAN & REINER [6] two poset struc-
tures S;(n,d) and $(n,d) are defined on this set, both generalizing the
Tamari lattice and hence quite interesting from a purely combinatorial point
of view. In the following we sketch their definitions.

The triangulations of the cyclic polytope C(n,d) are in one-to-one cor-
respondence to the piecewise linear sections from C(n,d) into C(n,d + 1),
according to the projection from C(n,d + 1) onto C(n,d) that deletes the
last coordinate. EDELMAN & REINER [6] suggest two partial orders on
all piecewise linear sections, and hence on the set of all triangulations of
C(n,d).

The first higher Stasheff-Tamari order S;(n,d) is defined by a covering
relation between two sections if exactly one (d + 1)-simplex fits between
them in C(n,d + 1); the section that contains the upper facets of this simplex
is defined to be greater than the other one. This corresponds to an increasing
bistellar flip that replaces the lower facets of the (d + 1)-simplex by the
upper facets. Thus we get a purely combinatorial description of this poset
in terms of local transformations. The second higher Stasheff-Tamari order
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S (n,d) is defined geometrically via pointwise comparison of the heights of
the sections.

While S(n,d) has a unique minimal element F'(n,d+ 1) (the set of
lower facets of C(n,d + 1)) and a unique maximal element F*(n,d + 1)
(the set of upper facets of C(n,d + 1)), the same is not obvious for i (n,d).
On the other hand, the local structure of §; (n,d) is clear by definition while
the covering relations in S;(n,d) are a priori unknown.

This motivated the following conjectures and results by EDELMAN &
REINER.

e For even d, both §;(n,d) and 5, (n,d) are self-dual [6, Prop. 2.11, true
in general].

e Si(n,d) coincides with S(n,d) [6, Conj. 2.6, true for d < 3].

e F!(n,d+1) is the unique minimal element of $;(n,d) [6, Conj. 2.7a,
true for d < 5].

e F*(n,d+1) is the unique maximal element of S; (n,d) [6, Conj. 2.7b,
true for d < 4].

e Any two triangulations of C(n,d) are connected by a sequence of bis-
tellar operations [6, Conj. 2.8, true for d < 5].

e S (n,d) respectively 5 (n,d) is a lattice [6, Conj. 2.13, true for d < 3].

e In any interval of Sy(n,d) respectively $(n,d) distinct subsets of
coatoms have different meets [6, Conj. 2.14, true for d < 3].

Our main Theorem answers their Conjectures 2.7a, 2.7b, and 2.8 affir-
matively and points out the connections between the triangulation posets in
different dimensions. Its proof is completed in Section 5, using the functo-
rial constructions in Section 3 which we consider as interesting in their own
right.

Theorem 1.1. (Main Result)

(i) Forallnand all d < n the first higher Stasheff-Tamari order S (n,d) is
bounded. The unique minimal element is the set F'(n,d + 1) of lower
facets, the unique maximal element is the set F*(n,d + 1) of upper
facets of C(n,d+1).

(ii) The elements of Si(n,d+ 1) are in one-to-one-correspondence with
the equivalence classes of maximal chains in S (n,d) under the fol-
lowing equivalence relation: Two maximal chains are equivalent if
they differ only by a permutation of their increasing bistellar opera-
tions.

(iii) Two maximal chains in S)(n,d) are equivalent if and only if they differ
by a sequence of interchanges of consecutive bistellar operations that
correspond to non-adjacent (d + 1)-simplices in C(n,d + 1).

The following list of implications demonstrates the quantitative conse-
quences of the main Theorem and the constructions provided in Section 3.

Corollary 1.2. For all n and all d < n the following hold:
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(i) The number of simplices in a triangulation of C(n,d) lies between the
number ("_[Zﬁ}_l) of upper facets and the number ("I([i(iT)l}z( Jz]) of
lower facets of C(n,d + 1). In particular, for even d all triangulations
of C(n,d) consist of ("‘Zﬁ_l

(ii) The length of a maximal chain in Sy(n,d) lies between the number
("—{EZE;%]_I) of upper facets and the number ("Id%/ le;l) of lower
facets of C(n,d +2). In particular, for odd d the length of any maximal
chain in S;(n,d) equals (""Eji}gﬁ_l).

(iii) For even d the diameter of the Hasse-diagram of S(n,d) is between

("_jﬁ_z) and twice this value. For odd d it is equal to ("_Ejﬂgﬁ_l)

(iv) For odd d, S(n,d) is a ranked poset with rank function
r(T):=#F(n,d+1)—#T forall T € S(n,d).

) simplices.

Theorem 1.1 points out a similarity to the structure of the higher Bruhat
order B(n —2,d — 1), a certain generalization of the weak Bruhat order on
the symmetric group, defined by MANIN & SCHECHTMAN [13] (see also
ZIEGLER [15]). Previously, KAPRANOV & VOEVODSKY [11] reported
the existence of an order-preserving surjection from B(n — 2,d — 1) onto
a poset structure on the set of all triangulations of C(rn,d) that is inherited
by a certain ordered n-category. Unfortunately, it is not clear whether their
poset structure is equivalent to S;(n,d). This led us to the investigations
in Section 7 where we present an explicit order-preserving map 7" from
B(n—2,d—1) to S;(n,d) that should help to get a more concrete idea of the
connections between higher Bruhat orders and higher Stasheff-Tamari or-
ders. Furthermore, we relate some of the functorial constructions for higher
Bruhat orders to similar constructions for higher Stasheff-Tamari orders.

In Section 6 we will recall the main definitions and results in the frame-
work of higher Bruhat orders. Additionally, we answer a question posed by
ZIEGLER [15] on the existence of an order-preserving embedding of B(n, k)
into B(n+ 1,k+ 1) affirmatively.

The following three problems concerning the higher Stasheff-Tamari or-
ders remain open:

e Is Si(n,d) equal to 5(n,d)?

o Is S)(n,d) or 5;(n,d) alattice?

e Is 7 surjective; in particular is 7 the map suggested by KAPRANOV
& VOEVODSKY?

*

Throughout this paper the following notation is used:

e For a set L and “<;” a linear order on L, we denote by L., the set L
linearly ordered by “<;”.

e Numbers in brackets (i, ... ,i,) denote the set {iy,...,in}< Which is
linearly ordered by with iy, < iy,q forv=1,... ,n—1.
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e Let L be a set. For a subset S C L let CS = (.S be the complement L\S
of Sin L.

e For a set L and two sets K and K’ of subsets of L such that SN S’ = &
forallS€ Kand S € K' let K+xK':= {SUS' : S€K,S €K'} be the
join of K and K'.

e For a set K of subsets of L and Sy € K the deletion of So from K is the
set K\Sp := {S € K : SNSy =@}, and the contraction of Sp in K is
the set K/Sp:={S\So : SEK,S2 8 }.

e For integers a < b the interval [a,b] is the set {a,a+1,...,b—1,b}
and Ja,b|is the set {a+1,...,b— 1},

e [n] denotes the interval [1,n], and ]n[ is the interval ]1,n][.

e Let L be a linearly ordered set and S a subset of L. An element sy € Cs
is an even gap in Sif #{s € S : s > 50} is even, otherwise it is an odd

gap.

2. A COMBINATORIAL FRAMEWORK FOR TRIANGULATIONS

In this section we present a combinatorial concept of triangulations that
is similar to that of DE LOERA [5]. Dealing with vertex labels when inves-
tigating triangulations is formally justified by the following considerations
that are closely related to the theory of abstract simplicial complexes.

Definition 2.1. Let L be a finite set, the label set. A combinatorial d-
simplex in L is a (d + 1)-element-subset S of L. Its (k+ 1)-subsets are
called k-faces of S, and its d-subsets facets of S.

If £: £L— RY is an injective function with £(L) =: A4, and SC Lis a
combinatorial d-simplex corresponding to affinely independent points then
the convex hull o = conv £(S) of £(S) is the geometric d-simplex with vertex
set verto = £(S) and label set 1ab(G) = S with respect to £, the labelling
function.

A combinatorial simplicial complex in L is a set K of combinatorial sim-
plices in L. Its k-simplices are the k-faces of its elements. (That is, we
identify the usual abstract simplicial complexes with their set of inclusion-
maximal faces.) A set A of geometric simplices ¢ with the property that the
set {lab(c) : 0 € A} of label sets is a combinatorial simplicial complex,
and that

conv(vertoNvertt) =cN1tT forall 0,7 € A,

is a geometric simplicial complex.

A combinatorial simplicial complex K’ is a combinatorial subcomplex
of K if all simplices of K’ are faces of simplices in K. A geometric subcom-
plex is defined analogously.

For a combinatorial simplicial complex K in £ and a combinatorial sim-
plex Sg in L the combinatorial link of S in K is defined as

Ikx (So) := {S\So : SEK,SoC S};
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the combinatorial star of Sy in K is defined by
stg(Sp) :={S€K:5CS},
and the combinatorial antistar of Sy in K is the complex
astg(So) :={S€K:SNS=a}.

If K is a combinatorial simplicial complex in £ and Sy is a combinatorial
simplex in £ where £ and L' are disjoint then the combinatorial join of K
and Sy is the complex

KxSy:={SUSy:S€K}.

The convex hull conv.4 of 4 is a d-polytope if the affine hull of 4 is
R¢. For A’ C A the polytope conv.A’ is a facet of conv 4, if conv A’ is
the (d — 1)-dimensional intersection of A with a hyperplane H such that
one closed halfspace defined by H contains conv.4. In this case the label
set 1lab(A') is a combinatorial facet of £. Note that the set of facets of a
simplicial polytope (all facets are simplices) forms a simplicial complex.

If C = (C*,C™) is a pair of disjoint inclusion minimal subsets C* and
C~ of L with the property

convZ(Ct)Nconvf(CT) # @

then C is called a minimal combinatorial dependence in ¢, or — for short
— a circuit of £. The set supp(C) = CtUC™ is the support of C.

The tripel P(¢) = (L, F, C¢), where C; denotes the set of all circuits
of £, and 7, is the set of all combinatorial facets of ¢, is the combinatorial
polytope of £.

If A a geometric simplicial complex with vertices in 4 such that conv. 4 =
Ugea O then A is called a triangulation of A. In this case the set T of label
sets of the simplices in A is a combinatorial triangulation of P(£).

We will sometimes call the geometric objects geometric interpretations
of the corresponding combinatorial ones, which themselves are said to be
combinatorial models for their geometric counterparts.

A combinatorial, label-based handling of triangulations is made possi-
ble by the following proposition. We present a complete elementary proof
because this characterization is fundamental for this paper.

Proposition 2.2. Let L be a finite set and let £: £ — RY be injective with

L(L) =: A. Furthermore, let P(£) = (L, T, Cg) be the combinatorial poly-

tope of £. A non-empty subset T of the (d+ 1)-subsets of L is a combinato-

rial triangulation of £ if and only if

(UP) for all S € T and all facets F of S either F is contained in some
F' € ', or there is another simplex S' € T such that $' O F (Union-
Property), and

(IP) there is no circuit C € C; with CT C S and C~ C §' for combinatorial

simplices S,S' € T (Intersection-Property).
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Proof. We first prove that (UP) and (IP) are necessary. Let T be a combi-
natorial triangulation with respect to some geometric triangulation A of the
point set 4 given by £: L — R?. Assume there is a combinatorial facet F
of some combinatorial d-simplex S in 7 that is not contained in %, such
that there is no other combinatorial d-simplex in T containing F. Then
the corresponding (d — 1)-simplex T := conv{(F) is contained in only one
simplex G := conv {(S) of A.

Let H be a supporting hyperplane of T such that its closed positive half-
space H' contains ©. Let g; be the barycenter of 1. Because T is not a
facet of P = conv(A4) there is a point xg in P lying in the open negative
halfspace relint(H~). Connect g7 and xy by a segment I. This segment is
completely contained in P since P is convex.

A is a triangulation. Hence, there must be at least one d-simplex Gy, that
contains xo. Either Gy, contains g or not. If it does then Oy, must contain
the complete (d — 1)-simplex T as a facet since g lies in the relative interior
of T and the intersection of T and Gy, must be a face of both. But this is a
contradiction.

If oy, does not contain g; then the segment I intersects the boundary
of o, in a point gy,. Consider the mid-point x; of g; and gx, on /. This
point is neither contained in T nor in Ox,. Since [ lies completely in P there
must be a new d-simplex Oy, in A containing x;. Because this procedure
shows either a contradiction as above or an infinite sequence of d-simplices
in A, which is a contradiction, too. Hence, Property (UP) is necessary.

For the necessity of Property (IP) assume that there are combinatorial d-
simplices S and §' in T and a circuit C = (C*,C~) in C(n,d) such that C* is
contained in S and C~ is contained in §’. Then by the definition of circuits

conv£(CT)Nconv£(C™) # 2,

and their minimality implies that there are geometric simplices in A, namely
conv/(C*) and conv£(C™) the relative interiors of which intersect, a con-
tradiction. Hence, Property (IP) is necessary as well.

Let T be a collection of (d+ 1)-subsets of £ (thatis, T C ( dfl)) sat-
isfying (UP) and (IP). Then T gives rise to a set of geometric simplices
A:= {conv{(S) : S € T}. We must show that every point in P lies in at
least one d-simplex & in A and that for every pair of simplices 6 and ¢’ we
have conv(vertoNvertc’) =cNa’.

Let x be an arbitrary point in P. Since T is non-empty we find a combi-
natorial d-simplex Sy in 7. Hence there is a simplex G := £(Sp) in A. Con-
sider a segment I from an inner point xp of Gg to x that does not meet any
(d — 2)-simplex of A. Such a line exists because of the concept of general
position. This segment is completely contained in P and meets exactly one
facet T of 0 unless x € relint(cy). If this intersection point g, equals x then
we are done. Otherwise this facet is not a facet of P because then gy is an
interior point of I and I is contained in P. Hence the label set F of T is not in
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%, and we find another combinatorial d-simplex S; in T containing F cor-
responding to a geometric d-simplex ¢ containing T. The segment I meets
the interior of G; because of the general position property of I. Choose an
arbitrary point x; in /Nrelint(c;). Note that the distance between x; and x is
strictly smaller than the distance between xy and x. Therefore, by repeating
this procedure we will reach a d-simplex o, lying in A and containing x.
Now assume that there are geometric d-simplices ¢ and ¢’ in A with la-
bel sets S respectively 8’ in T and conv(verto Nverte’) C 6No’. Since
6 D oNnd’ and ¢’ D 6N o’ there are inclusion-minimal faces T of ¢ and 7’
of ¢’ with conv(verttNvertt) O 6No’. From the minimality assumption
we get relint(t) Nrelint(t') # &, hence by Radon’s Theorem there are min-
imal, vertex-disjoint faces p of T and p’ of T’ with relint(p) Nrelint(p’) # 2.
Set C* :=lab(p) and C~ := lab(p’). Then C* and C~ are disjoint and
conv(£(C*)) Nconv(¢(C™)) # @. Hence (C*,C™) lies in Gy, and C7 is
contained in S and C~ is contained in §', but this contradicts the assumption
that T has Property (IP). 0

Pairs of simplices with property (IP) are called admissible.

3. CYCLIC POLYTOPES

In this section we recall the basic definitions and theorems related to
cyclic polytopes in a combinatorial language.

Definition 3.1. Let £ be a linearly ordered set, and letz: L = R, i ¢; be
a strictly monotone function.

The d-dimensional cyclic polytope C(L,d,t), labelled by L, parametriz-
ed by t is the convex hull of the points v4(t1),...,v4(t,) with

va(x) == (x,x%,...,x%) e RY.
For simplicity we set C(n,d,t) := C([n],d,1).

The main reason for the fact that triangulations of cyclic polytopes can
be treated effectively in a purely combinatorial way are the following well-
known properties that follow from the special structure of Vandermonde-
determinants.

The first one — Gale’s famous Evenness Criterion — characterizes the
set Fy,or Of all combinatorial facets of C(L,d,¢?).

Theorem 3.2 (Gale’s Evenness Criterion [9]). An ordered subset F of the
vertex set of the cyclic polytope C(L,d,t) is a facet if and only if between
any two vertices not in F there is an even number of vertices in F. Equiv-

“alently, F is a facet of C(L,d,t) if and only if either all gaps in F are even

or all gaps in F are odd. O

The second one describes the form of ttyse sets of vertices of C(L,d,t)
she convex hulls ofwhich intersect in the relative interior of both. Hence
this determines G ,o;-

i

N A

xR
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Theorem 3.3. [4] The circuits of C(L,d,t) are the alternating (d + 2)-sub-
sets of L, i. e., the pairs (C°,C¢) and (C¢,C°), where C° is the set of odd
elements (c1,c3,¢s, . ..), and C€ is the set of even elements (c;,C4,Cg, - - -) Of
CZ(C],...,Cd+2). O

The combinatorial polytopes P(v, ot) are identical for all # because the
strictly monotone function ¢ does not affect the assertions of these criteria.
This means that the combinatorial study of triangulations of cyclic poly-
topes with any parametrization is equivalent to the investigation of combi-
natorial triangulations of the combinatorial polytopes P(v;ot).

Definition 3.4. The combinatorial polytope C(L,d) := P(v0t) of vyot :
L — R4 is called the cyclic d-polytope with vertices labelled by L. The set
of its combinatorial facets is denoted by F(L,d), the set of its circuits is
written as C(L,d). Those combinatorial facets with only odd gaps are the
upper facets the set of which is denoted by F*(L,d), those with only even
gaps are the lower facets of C(L,d), denoted by F*(L,d).

The set of circuits C with maximal element ¢y, in C* is denoted by
C*(n,d), the set of circuits having their maximal element in C~ is written
as C~(n,d). The cyclic polytope labelled by [n] is denoted by C(n,d).

Note that in odd dimensions there are polytopes that have the same face
lattice as C(n,d,t) but a different circuit structure (see [4]); this leads to
completely different triangulations.

Remark 3.5 (Geometric Meaning, see Figure 1). Consider for some strictly
monotone ¢ : [n] — R the projection

_ . C(n,d+1,t) — C(n,d,t),
p—p(n,d).{ (X1, s Xy Xg41) > (X100, Xg)-

Moreover, consider for some geometric triangulation A of C(n,d,t) the
unique piecewise linear section (linear on each simplex ¢ € A)
{ C(n,d,t) — C(n,d+1,1),

linear

54 > conv (Vd+1 ot(lab(c))), Vo € A.

Then any triangulation A of C(n,d,t) can be recovered from its character-
istic section sy.

The upper facets F*(n,d + 1) of C(n,d + 1) are the sets of those facets of
C(n,d + 1,t) that can be seen from a point in R“*! with very large positive
(d + 1)-st coordinate (geometric upper facets of C(n,d + 1,t)), the lower
facets 7*(n,d + 1) label the sets of those facets of C(n,d + 1,t) that can
be seen from a point in R**! with very large negative (d + 1)-st coordinate
(geometric lower facets of C(n,d + 1,t)). The geometric upper (respectively
lower) facets project down to C(n,d, t) without overlapping. Therefore their
projections define geometric triangulations of C(n,d, ?).

The support supp(C) of any circuit C = (Ct,C™) in C(n,d) corresponds
to the label set of a unique (d + 1)-simplex in C(n,d + 1,¢) where its set
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FIGURE 1. The canonical projection p : C(5,3) — C(5,2)
and sections corresponding to triangulations of C(5,2).

of geometric upper facets belongs to the elements of the star of the positive
part C* in Sllfg(c ), and its set of geometric lower facets corresponds to the

_ elements of{ths) star of the negative part C~ in supp(C).

Lemma 3.6. (Elementary Facts)

(i) F'(n,d+1) and F*(n,d+ 1) are combinatorial triangulations of the

cyclic polytope C(n,d).

(ii) Every facet in F*(n,d) contains n.

(iii) If a pair of simplices S and S, is not admissible then there exists a
circuit in C(n,d) with maximal element cy,, = max(S;US3).

(iv) If a (d — 1)-simplex F is the common facet of the admissible pair
(S1,82) then S{\F lies in an odd gap of F and Si\F lies in an even
gap of F, or vice versa. O

Remark 3.7. The circuits of C(n,d) can be visualized in a table that consists
of columns numbered from 1 to n and rows corresponding to C* and C~,
where a star “+” in column i and row C® means that i € C%, € € {+,—}.
The stars can then be connected by a zig-zag-path with (d + 2) nodes. For
example, if n =6,d =3, and C = ((1,3,5), (2,4)) we get the table

L [1][2]3]4[5]6]
Cct | % * *
c- * *

If the rows are filled with stars corresponding to two simplices then these
two simplices are admissible if and only if each zig-zag-path connects at
most (d + 1) stars. For instance if n =6, d =3, S = (1,3,4,5), and §' =
(2,3,4,6) the table looks as follows:

L [[1[2[3]4][5]6]

S| * x| k| *
S | % | * *
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The reader will easily find a zig-zag-path connecting even 6 > d + 2 stars,
showing that S, S’ is not an admissible pair.

Obviously all C(L£,d) with #£L = n are isomorphic to C(n,d). From now
on we are exclusively dealing with combinatorial triangulations of C(n,d),

and we will leave out the “combinatorial” attribute whenever this is not ) /7
confusing. (/i g
The following Propositions — consequences of Theorems 3.2 and 3. 3 ~

relate cyclic polytopes with different parameters.

Proposition 3.8. (Functorial Facet Properties)

Fn+1,d+1)= F(n,d)*{n+1},
Fln+1,d+1) = Fn,d)«{n+1} J N

U{F\nU{j,j+1}: F€ T‘(n d), j €lfa-1,n[},,
®es | Ciax 07 w S0

Fn—-1,d-1)= IK 1 n) n ;Jl,vx lw{( 0
Fn1d4-1) - i oriee que eSS S e
n—i,d— gru nd (on “s ,.N,‘ I
n—1,d) =1k n)x{n—1 Cxuma 7
7 )= Find) ( ) ¢ b ok ;:mi;/" 0&3 lovt WW(" U /7 /
_‘ﬂ(n— l,d) —astﬁ(n,d)(n). " H" A St
¢ A
Proposition 3.9. (Functorial Circuit Properties) Hrat o hswl. e
\

CHn+1,d+1) = {(CTU{j},C7) : (C*,C7) € C(nd),j > casa },
C (n+1,d+1)={(CT,C"U{j}): (C",CT)eC (n,d),j>css2},
Ct(n—1,d—1)={(C*,C \cys2) : (CT,C7) € C (n,d) },
C™(n—1,d=1)={(C*\cas2,C7) : (C",CT) € C*(n,d) },
Ct(n—1,d)={(C",C") e C*(n,d) : n¢ supp(C) },
C (n—1,d)={(C*,c")e C (n,d) : n¢ supp(C) }. O
The following proposition is the combinatorial description for the geo-

metric connection provided by the projection p(n,d) between (d + 1)-sim-
plices in C(n,d,t) and the minimal affine dependencies in C(n,d,1)

Proposition 3.10. (Functorial Circuit-Facet-Relations)
For C € C(n,d) we have SeiA A5 A gy ”"\.'N}c ~

Starey (C) = F4(supp(C),d+ 1),
tsupp(C) (C—) - ,‘Fi(supp(C),d—{» 1)' O

4. SPECIAL TRIANGULATIONS OF CYCLIC POLYTOPES

In this section we show nice functorial constructions of triangulations of
cyclic polytopes.
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Definition 4.1. For a set T of (d + 1)-subsets of [n] define

T:=Tx{n+1}
U{S\sgr1U{Jj,j+1}:SeT,j€lsgsq+1[}, (extension)
T /n = lkg(n), (contraction)
T\n := astr(n) Uasty ) (n — 1) % {n—1}. (deletion)

Theorem 4.2. Let T € S(n,d). Then the following hold:
() T is a triangulation of C(n+1,d + 1),
(ii) T/n is a triangulation of C(n—1,d — 1),

(iii) T\n is a triangulation of C(n—1,d).

Proof. For each assertion we verify the Union-Property (UP) and the Inter-
section-Property (IP) of Proposition 2.2. Recall that we have to show —
roughly speaking — that
e all simplices are pairwise admissible, and that
e cach facet of a simplex is either a facet of the cyclic polytope or ap-
pears in at least one other simplex.

The reader may get a picture from the proof by inspecting the tables
suggested in Remark 3.7, using that circuits correspond to zig-zag-paths
and facets to sets with only even or only odd gaps.

Part (ii) is true because the link of a triangulation of any polytope at some
vertex triangulates the corresponding vertex figure, and for cyclic polytopes
this vertex figure is cyclic with the correct parameters. This follows from
Propositions 3.8 and 3.9 and well-known properties of vertex figures (see,
e. g., GRUNBAUM [9]).

The proof of (UP) (i). The following abbreviations are used:
A:=Tx*{n+1},
B:={S\sg11U{j,j+1} : SE€T,j€]ss,sa+1[}

Let F be a facet of a simplex S in A\ F(n+1,d +1).

» The case f;,1 =n+ 1. By Proposition 3.8, F\n+1 ¢ ¥(n,d) because
otherwise (F\n+ 1)U {n+ 1} is a facet of C(n+1,d+1). Since T has
the Union-Property there must be a simplex F’ € T with F\n+1 C F’ and
F' # F. Hence

FCcF'Un+1eT.
N —

#S
since F' £ F

» Thecase F €T, fy.1— f; > 1. Then

F CF\far1U{far1— 1, fan1} €T.

#S
sincen+1€S
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Fo=p || or Lo Lo Lo [ [ oo
2 2 2
FO A 2112 |
r— —1 r—1 r—1
F-b b F2 Sl EUUUTIROUPPRIURR lfd ) I N
FOy=p" | . If,i’|.4. F 1 O il

TABLE 1. The expansion of F/ in T.

» The case F € T, fy.1 — f4 = 1. By Proposition 3.8, F\f; ¢ F(n,d)
because either f,,; is an inner singleton in F\f; or fy41 = n with the
consequence that (F\ f;)\nU {n— 1,n} = F is a facet of C(n+1,d +1).
The Union-Property in T leads to the existence of a simplex F’ € T with
F\f; C F' and F' # F. The Intersection-Property in T implies either

fae1 = fat1, fa_1=fas (*)

or that

fas1 > fat1, fo1=fa1- (xx)
(Compare Lemma 3.6(iv).)
In the first case (x) we get
FC fl\f¢'1+1 U{fat1 — L far1} € T.

#S
sincen+1€S

In the second case (x*) we know that F'\f; ¢ F(n,d). Performing the
same steps for F'\ f} yields a finite sequence F' = F(),F@ ___ F() = F"
of simplices in T with

no _ plr—1 (r-2
far1 =T ) > fin > > fu,

f=frV=frD o < fa=fa -1,

where at step (r) we end up in case (*) because case (**) can occur at most
n— f,.1 times. This leads to

FC F”\fz/il-l-l U{fat1— l,fd+1}16 T.

#S
sincen+1€S

For further use we refer to this sequence as the expansion of F'.
Now let F be a facet of the simplex § = G\gy+1 U {j,j+ 1} in B, such
that F is not a facet of C(n+1,d+ 1), where G€ T.
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» The case F =S\j+ 1, j = fay1 > fa+1=g4+1. Then

F Cg\gd+lu{j_ laj}JE T

#S
since j+1€S

» The case F =S\j+ 1, j= fy41 = fa+1 = g4+ 1. Then we proceed
as follows. G\gg is not in F(n,d). Hence there is a simplex G’ € T with
G\gs C G'. Consider the expansion G’ = G),G@,... ,G") = G" of G
We have

gi+1 > farty 4= Jfi1 <fa=fa1—1,
and therefore
FC ?"\gZH U{far1—1,far1} € T.

#S
since j+1€S,j+1> fun

» The case F = S\j, j+ 1 < ga41- Then
FCG\ganU{j+1,j+2}€ T
g

since jE€S,j> g4

» The case F = S\j, j+ 1= g4:+1- Then
F=GcGu{n+1}eT.
N ——’
£S5
sincen+1¢ S
» The case F = S\g;, 1 <i<d. In this case G\g; is not in F(n,d)
because otherwise (G\g;)\gs+1U{Jj,j+1} =F isafacetof C(n+1,d+1)
by Proposition 3.8. Hence we find a simplex H € T with G\g; € H and
H#G.
(x)If hyy1 = ga41 and by < j then

FCH\hgp1U{j,j+1} € T.

45
since H # G,hgy1 = 8441

(xx)If hyy1 = ga41 and hy = j then either hy | = j+1andthus F = H,
or hyy 1 > j+ 1, whence
F=HCHU{n+1}eT in the first case,
~——

#S
sincen+1¢S

FCH\hgU{j+1,j+2}eT in the second case.

#£S
since j+2 ¢S

(+*xx) If hyyy = gg4+1 and by > jthen hy > g4+ 1 and hence hy —hy_| >
g4+ 1— g4 = 1. Therefore H\h,y; is not in F(n,d) because h, is an inner
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HY =H' By | e K, | i I
2 2 @2
H® K20 | WP 70l R
- =) 1) (r—1)
ey || L=
A =m || L [ T L [

TABLE 2. The compression of H' in T.

singleton. This implies that there is a simplex H' € T with H\hy,1 C H !\
The Intersection-Property in T leads to

h£1+1 =hy > J, hy < hy.
Performing the above step with H' instead of H induces a finite sequence
(the compression of H') H' = HY H@ ... H") = H" where for H" case
(%) or case (*x) must occur because the d-th element decreases monotonely.
Then

hy<j< ht(irwl) = hyt1s
and the constructions in () and (x*) work with H” instead of H as well.

(ex#x) If Byy > gay1 then H\hy is not a facet of C(n,d), i. e., we find a
simplex H' in T with H\h; C H', and we can finish the proof by using the
expansion of H'.

The proof of (IP) (i). We must show that any pair of simplices (R,S) in T
is admissible. Without loss of generality max(RUS) € R. There are three
different cases:

» The case RE€ A, S € A. Ttis well-known that a pyramid over a simplicial
complex is again a simplicial complex, i. e., it has the Intersection-Property.

» The case R € B, S € B. We set
R::Rl\riﬂ—lu{jaj_l_l}a r/d<j<r:1+1’
S=:8\s;  U{kk+1}, Sy <k <l

Without loss of generality, j > k. Assume (R, S) is not admissible. Then,
by Lemma 3.6, there exists a circuit C € C*(n+1,d+ 1) with

CT CR, c - cCS, Cay3 =Traa=j+1.

From Proposition 3.9 it follows that C' := (C*\cg43,C ™) is a circuit in
C~(n,d) with

(C)YTCR\{j+1}, () cs, Cara Skt 1<y
Hence c/;, | < j and c; < k. Therefore
(C)Y* CR, (€Y \CjpUsyp C S
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But then
€= (€ (E) 2 Uln)
CR cs
is acircuit in C~ (n,d) showing that (R',§’) is not admissible, contradiction.
» The case R € A, S € B. We set
R=:R'U{n+1},
S=:8"\sl  U{kk+1}, Sy <k <y
Assume again that (R, S) is not admissible. Let C € C*(n+1,d+ 1) be
a circuit with

C+CR, CcCS, cd+3=rd+2:n+l.

Then
C :=(CH\n+ l,g_\cd+2Usfi+lJ)

CR' EE’

is a circuit in C~(n,d) showing that (R’,§’) is not admissible, contradiction.
The proof of (UP) (iii). In order to simplify notation we set

A = asty(n),

B :=asty () (n— 1) x{n—1}.

We bring some known facts into a useful form:

(a) Let F be a facet of C(n— 1,d — 1) that does not contain n — 1. Then
(F,n—1)is afacetof C(n—1,d).

(b) Let F be a facet of C(n,d) that does not contain n then F is a facet
of C(n—1,d).

(¢) str(n)Uastr(n) =T, str(n) Nasty(n) = Ikr(n).

Because of (c) all boundary facets of A are contained in lky(n) or are
facets of C(n,d) that do not contain n. Then by (b) all boundary facets
of A that are not facets of C(n — 1,d) are contained in lky(n). Now let F
be an element of lkz(n) but not a facet of C(n—1,d). If n—1 ¢ F then
(F,n—1) € T\n. If n— 1 € F then by (a) we know that F\(n — 1) is not
a facet of C(n,d)/n. Hence there is a simplex § in asty,(,)(n — 1) that
containes F\(n — 1) and therefore F C (S,n—1) € T\n.

Now let F be a facet in Bthatisnotin F(n—1,d). fn—1¢ F,then F is
contained in asty . (,)(n — 1) and there must be a simplex in A containing F
since there is such a simplex for all elements of Iky(n) by (c). fn—1 € F,
then — by (a) — F\(n— 1) is not a facet of lky(n). Hence there must
be a simplex S in asty, (,(n — 1) containing F\(n — 1) and therefore the
simplex (S,n — 1) is in B and contains F, which completes the proof.

The proof of (IP) (iii). The simplices in A are pairwise admissible because

they are part of T, the simplices in B are pairwise admissible because B
is a pyramid over a set of admissible simplices. Therefore assume there
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are S; € A and S, € B and a circuit C with C* C §; and C~ C S5, where
n—1€ S, by definition. If n— 1 ¢ C~ then S} := S;\(n— 1) Un and Sy are
not admissible either, contradiction because S; and S} are in T. But if we
replace n — 1 by n in C then we get a circuit C' that again shows that S| and

S’ are not admissible. O T
2 ( h ‘\' - ‘BE y ]
Corollary 4.3. Any triangulation of the cyclic d-polytope C(n,d) with n \W o 1< ‘TU
vertices induces Obj‘l& on TV
@u\;i +\/’\ ¢ \S

e a canonical triangulation T of C(n+1,d + 1) containing T as the link & AR
ofn+1, : et ) ¢ Nice W\jm;w
e a canonical triangulation T /n of C(n— 1,d — 1) which is the link of n, !
e a canonical triangulation T\n of C(n— 1,d) containing the antistar
of n as a subcomplex, and
e a canonical triangulation 8T defined as T\n+ 1 of C(n,d + 1) con-

taining T as a subcomplex. (]

Remark 4.4. All these constructions — except for the link — are specific 0 Lstf *'O
for cyclic polytopes and are incorrect for some more general polytopes. <— Ol obsevation .

In order to demonstrate that triangulating cyclic polytopes is neverthe-
less non-trivial, we provide an example showing that they are not greedily
triangulable.

" Example 4.5. Letn=8,d =5 and

Si:=(3,4,5,6,7,8),
S, :=(1,2,3,6,7,8), \ i
Sy = (1,2,3,4,5,6). SR

Every pair of these simplices is admissible.

However, consider the facet F := (1,3,6,7,8) of S,: it is not a facet
of C(8,5). Hence, in any triangulation T of C(8,5) that contains Sy, S7,
and S; there must be a simplex S’ containing F. But all three possibilities
for such a simplex produce non-admissible pairs. Therefore there is no such

. triangulation. Hence, one can get stuck by triangulating a cyclic polytope. E)

s

5. THE HIGHER STASHEFF-TAMARI ORDERS

In this section we describe the notion of increasing bistellar flips (as sug-
gested by EDELMAN & REINER [6]) in terms of our set-up. This leads to
a combinatorial definition of the first higher Stasheff-Tamari order (n,d).
In contrast to this, the geometric definition of the second higher Stasheff-
Tamari order Sy(n,d,t) is related to a geometric interpretation S (n,d,t) of
Si(n,d). Specific properties of cyclic polytopes lead to a simple proof of
Theorem 1.1.

The set of all triangulations of C(n,d), respectively C(n,d,t), is denoted
by S(n,d), respectively S(n,d,t).
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FIGURE 2. Increasing flips in 5; (6, 1) respectively ;(5,2).

Definition 5.1. An increasing (bistellar) flip set in T € S(n,d) is a simplex
Se( d[:-]Z) with the property that the set of simplices F'(S,d + 1) is a subset
of T.

For all (d + 2)-subsets § of [1] we have the increasing flip function of §

S(n,d) — S(n,d),
T\F(S,d+1)
T — UF“(S,d+1) if F(S,d+1)CT
T otherwise.

flips :

Remark 5.2. By Proposition 3.10 this definition is equivalent to the notion
of directed bistellar operations in EDELMAN & REINER [6].

Remark 5.3 (Geometric Meaning, see Figure 2). Let ¢ : [n] = R be strictly
monotone. Let A be a geometric triangulation of C(n,d,t) labelled by T,
and A’ geometric triangulation of C(n,d, t) defined by the labels of flips(7)
for some increasing flip § in T € S(n,d). Then the geometric lower facets
of the (d + 1)-simplex & := vy, 0t(S) in C(n,d + 1,t) defined by § are
contained in the piecewise linear section s,, the geometric upper facets lie
in s/, and elsewhere the sections coincide.

Definition 5.4. (EDELMAN & REINER [6]) The first higher Stasheff-Tama-
ri order on S(n,d) is defined via
<1, <=T,= ﬂipS‘,O' .. of‘lipg1 (T1)
for some sequence (Si,...,S,) in ( d[i]z)' The set of all triangulations of
C(n,d) with this partial order is denoted by $;(n,d).
The second higher Stasheff-Tamari order on S(n,d,t) is defined via

A <o Ay = sA(x)d+1 < sAl(x)dH for all x € C(n,d,t),
that is, s, lifts C(n,d) weakly lower than sy,. It is written as 5,(n,d, ).

'} Remark 5.5. The triangulation F (n,d + 1) is locally minimal, the triangu-
lation F*(n,d + 1) is locally maximal in $(n,d,t).
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Moreover, F'(n,d + 1) represents the unique (hence global) minimal el-
ement, and F*(n,d + 1) to the unique maximal element of 5(n,d, ¢) for all
strictly monotone ¢ : [n] — R. -

)
EDELMAN & REINER [6, Conjecture 2.6] conjectured that §; (n,d) is the ‘ V\) (’ ‘\'
correct combinatorial model for 5,(n,d), that is, $(n,d,t) coincides with o '

] V\
Si(n,d, ) for all strictly monotone ¢ : [n] — R. Theorem 1. 1 shows that, at e (VC l
QA

least the maximal and minimal elements of both partial orders coincid
In order to prove this, we introduce in the following for all T in S(n,d
a partial order on the set of their simplices.

)

Definition 5.6. To each § € ( d[_'ﬂl) we assign a unique string by 6

(d[:l—]l) - {0,*,6}"
S = (Y--5Mn)s |
I: e ifi¢Sand#{jeS: j>i}even, §_

withy; = ¢ * ifi€s,
o ifi¢Sand#{jeS: j>i}odd

while “x” corresponds to an element of S.) ‘
Let “<(ose)” be the lexicographic order on ( d[fr]l) induced by I" and the A N
linear order of letters “o <(gue) * <(oxe) € ‘

Definition 5.7. For S; and S, in T € S(n,d + ) w1th .#(Sl USz) d + ) \\;’,» " q,r i hS "
define the relation N3 2_ e g
aﬁ

(Here the letter “e” denotes an even gap, the letter “o” an odd gap in S, rl
3

PR P | % /Jw'

(\n\ g

S1 <8 <= SiNS¢€ ?M(Sl,@m ,r}—i(S%

“...__Moving from one simplex of a trlangulatlon to an adj acent one can elther

Be considered as moving an element or moving & gap-of the support.

Lemma5.8. LetT € S(n,d) and S1,52 € T withS; < S;. Set S12:=S51NS,, L
51\512 = il, and 52\512 = i2. <} .
1. If ip is an even gap in S| then iy is an even gap in Sy and iy < iy, that v
is, “<” moves even gaps to the left.
2. Ifiy is an odd gap in S then iy is an odd gap in Sy and iy > iy, that is, .
“<” moves odd gaps to the right. \
3. A gap changes parity if and only if it lies between i and iy.

Proof. The assumptions imply that S, is obtained from S; by deleting an -
odd element i; from S, and adding an even gap i ¢ S to'S}2, or equiva-
lently, the gap i, moves to position iy.
If i; < ip then iy is an even gap in S, and /; is an even gap in S5, i. €., the
even gap at i, moves to the left. If i, < #; then i, is an odd gap in Sy, and i;
is an odd gap in S5, i. €., the odd gap at i, moves to the right.
The third assertion is true because for any label i ¢ {i},i,} not between
i; and i, the number of elements to the right stays constant. U
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Corollary 5.9, -Thetr Mosure of “<” is a partial order on the set

of alk (d +1)- szmpllces in ( d[ +]1) A (d+1)-simplex S is minimal if and only

N ifall of its lower facets are contained in F'(n,d + 1); it is maximal if and
\vy oV L only if all of its upper facets are in F*(n,d +1).
“/
(\ (o \ Proof By Lemma 5.8 we have that
; W
><\/\U‘(’, ¥ \u&\@" L \\" g “\‘M o m S1 =82 =51 <(oxe) S2-
o UJV“"")f “\“-“‘NJN . Hence “<” is acyclic, thus defining a partial order. |
3 Q\) " Remark 5.10 (Geome(trlciMeanmg) Let A be a triangulation of C(n,d,t).
' ’\\\(\“-‘ Corollary 5.9 tells us that the repeated transition from one simplex ¢ € A to

an adj acent one docking from below does not create any cycles.

e cannot expect a similar property for triangulations of general poly-
S \ topes, as is shown by the strongly non-regular triangulation of the twisted

capped prism in LEE [12].

'y Now the following proposition can be proved by combining combinato-
rial and geometrical facts.

p“/‘\w\/&" Proposition 5.11. Let T € S(n,d)\ F*(n,d+ 1) and T € S(n,d + 1) such
= that T is a subcomplex of T. Then there is a (d + 1)-simplex § € T that
defines an increasing flip in T.

Similarly, for any T € S(n,d)\ F'(n,d + 1) there is a (d + 1)-simplex that
defines a decreasing flipin T. €

Proof. Choose a simplex S in T\( #*(n,d+ 1)NT). Since S is not an upper
facet of C(n,d + 1) there is an even gap ¢ missing in S. Consider S := SUe.
This (d + 1)-simplex has the property that one of its lower facets, namely S,
lies in T by construction.
We now choose a geometric interpretation by fixing ¢ : [n] — R, strictly
monotone. This gives rise to geometric interpretations C(n,d,t) of C(n,d),
v C(n,d+1,t) of C(n,d+1), Aof T, Aof T, and & of §. Because T is a sub-
w/ complex of T we know that its piecewise linear section s, is a subcomplex R Wy
N of A. But then & lies weakly above the section s, because at least one of its KT
N lower facets, namely sa(0), is contained in s,.

If there exists a lower face%;ae F(§,d+ 1) of S that is not contained

in T then either §’ is a lower Tacet of C(n,d + 1) — which is impossible ,
. because between the geometric interpretation ¢’ of S’ and the lower facets ok - .
'7\ of C(n,d+1,t) lies the section sy — or there is a simplex §' € T with §' C § T
: and §' < §, the geometric interpretation of which is still lying weakly above W o '
\

the section. By continuing this process we will — by Corollary 5.9 —
end up with a simplex §"” € T with F(§”,d + 1) C T (see Figure 3). The
decreasing flip can be found analogously. ’

o b ckeen n 0 v We know that all geometric interpretations have the same combinatorial \/ v
o structure, thus the proof is complete. O S
' ,3 " - .~ The special form of the increasing (decreasmg) flips in Proposition 5.11 oeaw k’ Ty SQ
o ed leads to the following result. d ; . T
v u p d / '\ ] Yoy no H £
o ia o1l | M &“‘)’ OYdlireo
. ‘-/ y k9 4 : /’) A f i
iy . wald pamila gl e Simples
- WV L v ; ;" N 1
‘\d RN ‘ { v o L,\ SV T@ - g \ d(} (/\, AA\V\W»J

(wd)

ol U et
. we oF
{}\ W 5 * v
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FIGURE 3. Finding an increasing flip in 5;(8,1).

Corollary 5.12. Let T be a triangulation of C(n,d + 1). Then every linear
extension “~<,” of “<” on T defines a maximal chain in 5(n,d) via

S S S, S,
Fld+) =Ty < Ty < < Ty < T, = Fi(n,d+1),
where
T:{Sl,gz,...,gr}, Sl <l'§2<l""<l§r- O

Proof of Theorem 1.1. In order to prove (i) we show that any triangulation
of C(n,d) is on a chain from F'(n,d+1) to F*(n,d+1). Let T be an arbi-
trary triangulation of C(n,d). Then, by Theorem 4.3, 67 is a triangulation
of C(n,d + 1) containing T as a subcomplex. Thus, by Proposition 5.11 and
induction, we can connect T to F*(n,d + 1) by a sequence of increasing
flips (compare Figure 3), and to F'(n,d + 1) by a sequence of decreasing
flips, which implies the assertion.

For the proof of (ii) observe that, by the definition of increasing bistellar
flips, any chain

S S,
c: Fnd+1)< < Fin,d+1)

from F'(n,d+1) to F*(n,d + 1) defines a triangulation 7. of C(n,d + 1)
via

TC = {51,...,3}},

hence factoring out the order of ¢. For the converse, let T be an arbitrary
triangulation of C(n,d + 1). Then, by Corollary 5.12,

CT = T'<(o*e)

is a chain in §; (n,d) from F'(n,d + 1) to F*(n,d +1).
Part (iii) follows directly from Corollary 5.12. O

The central roles of the triangulations T, T /n, T\n, 8(T) are underlined
by the following additional results.

Lemma 5.13. (Functorial Flip Properties)
If § is an increasing flip from T to T' then

(S):l = {§\§d+2U{j,j+ 1} : §d+l < ] < §d+2}<l
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is a decreasing flip sequence from T to T',

() otherwise,

is an increasing flip from T /n to T' /n,

~ ~ G) ings,
(S\n) :==¢ S\{n}u{n-1}) ifneSn-1¢S,

() otherwise,

is a decreasing flip sequence from T\n to T'\n, where “<,” is any linear
extension of “<.” O

Proposition 5.14. (Functorial Order Properties)
(1) The map

L Sind) = Si(n+1,d+1),
' T — T,

is order-reversing.
(i) The map

./n;{ Si(n,d) - Siln—1,d—1),

is order-reversing.
(iii) The map

is order-preserving.
(iv) The map

5:{ Si(n,d)

is order-reversing. [l

Corollary 5.15. Every chain in S (n,d) corresponding to a flip sequence
(T) := (8y,...,8,) gives rise to flip sequences
(1) (T)< in 51(n-|—1 d+1),
(i) (/)< in Si(n—1,d— 1),
(iii) (T\n)<l in S§i(n—1,d), and
(iv) &(T)<, in Si(n,d+1). O

6. HIGHER BRUHAT ORDERS

In this section we recall the basic definitions and theorems in the frame-
work of higher Bruhat orders and answer a question of ZIEGLER [15]. Let
L is a linearly ordered finite set. The reader may consider L as the set [n],
without loss of generality.
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Definition 6.1. (MANIN & SCHECHTMAN [13], ZIEGLER [15])

e For some (k+ 1)-subset P := (p1,...,pk+1) of L the set of its k-
subsets

P=()={P\pv:v=1,.. ,k+1}

is a k-packet of L. It is naturally ordered by P\py < P\p, <= u<v,
the lexicographic order.

e An ordering o of (§) is admissible if the elements of any (k+ 1)-
packet appear in lexicographic or in reverse-lexicographic order. Two
orderings o and o are equivalent if they differ by a sequence of inter-
changes of two neighbors that do not lie in a common packet.

e The inversion set inv(o!) of an admissible ordering o is the set of all
(k+ 1)-subsets of L the k-subsets of which appear in reverse-lexico-
graphic order in o.

e Aset U of (k+ 1)-subsets of L is consistent if its intersection with any
(k+ 1)-packet P of L is a beginning or an ending segment of P with
respect to the lexicographic order on P.

e The set of all equivalence classes of admissible orders of (f) partially
ordered by single-step-inclusion of inversion sets — that is, [ot] < o]
if and only if

inv(a)) = U; CU, C -+ C Ug = inv(at')
with #U,\Uy_1 = 1 and all Uy are admissible — is the higher Bruhat

order B(L,k), where B(n, k) denotes B([n], k).
e For an inversion set U € B(L, k) define

U :={I€ (1) : N\iy U, \ix12€U } .

The structure of B(L,k) does of course only depend on the cardinality
of L, but the general setting leads to some advantages in the notation of
functorial constructions. For simplicity, however, we switch now to B(n, k).

Theorem 6.2. (MANIN & SCHECHTMAN [13], ZIEGLER [15]) The higher
Bruhat order B(n, k) is a ranked poset with rank function r(U) = #U. More-
over, it has a unique minimal element 0,y = & and a unique maximal ele-

ment i,,’k = (k[j—]l)‘ O

The following Theorem gives a more geometric insight into the structure
of higher Bruhat orders.
Theorem 6.3. (ZIEGLER[15]) The higher Bruhat order B(n,k) is isomor-
phic to '

1. the set of all consistent sets U of (k+ 1)-subsets of [n] with single-

e _step;i@ly der,
2. the set of ce classes of) extensions of the cyclic hyperplane

arrangement X" *~1 by a new pseudo-hyperplane in general posi-
tion, partially ordered by single-step-inclusion of the sets of vertices
on “the negative side,”
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3. the set of maximal chains of inversion sets in B(n,k — 1) — corre-
sponding to orders of k-sets — modulo equivalence of admissible or-
ders. ad

The following notations for deletion and contraction in B(n,k) provide
intuition via the corresponding notions in X" %=1,
Definition 6.4. For U € B(n, k) define
U/n:={I\n:nel,lI€U}, (contraction)
U\n:={I€U:n¢l}. (deletion)

In order to construct inversion sets in B(n+ 1,k+ 1) from inversion sets
in B(n,k) and in B(n,k+ 1) the following Theorem is useful.

Theorem 6.5. (ZIEGLER [15]) Let U be an inversion set in ‘B(n,k) and V
be an inversion set in B(n,k+1). Then U' :=V UU x (n+ 1) is consistent
if and only if
oUCV and dCU CLV. O
Corollary 6.6. The following maps from B(n,k) to B(n+ 1,k+ 1) are in-
jective:
U—U:=Usx(n+1)udl, (extension)

UU:=Ux(n+1)Ud(U)=Ux*(n+1)U(U\n);”  (expansion)
where 8(U) is defined as

3U)=={1e (L) : Nity2eU}. m

The extension is not order-preserving in general. But the following defi-
nition yields a canonical single-step-inclusion order for the expansion of U
from an arbitrary single-step-inclusion order of U.

Definition 6.7. For some U € B(n,k) with a given single-step-inclusion-
order Q(U) = (Q(U"), ) define the following order Q: For n = k+ 1 start
with
Q({[y) = (n+1)
corresponding to Q({[n]}) = ([n]) in B(n,k). If n > k+ 1 and Q(U’) is
already constructed then define
OO) = (fz(z)/),ﬁ(az),zu (n+ 1},(2(51\31)) ,

where the orders on dI and &/\dI are given recursively by restriction of
Q((U\n)).
Proposition 6.8. Forall U € B(n,k) and all single-step-inclusion orders Q

of U the order Q is a single-step-inclusion order of the expansion U of U in
B(n+ 1,k).
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Proof. The following properties make sure that no cycles are produced:
S(U)\n=38(U\n),
A(U)\n=03(U\n).
At each single-step-inclusion step all packets in B(n,k+ 1) are consistent
by induction. From the remaining packets only those containing U {n+ 1}

are involved.
If n ¢ I then the order increases just by /U {n} which is consistent be-

cause  is a single-step-inclusion order of U and U’ is already ordered
consistently.

Let n be in 1. For all packets P containing 1U {n+ 1} either P/n+ 1
is completely contained in U or only I meets U. In the first case the only
element P\a’ of P\n+ 1 comes before U {n+ 1} in &, in the second case
IU{n+ 1} is positioned after P\n+ 1 in Q; both cases lead to consistent
orders on P. ()

From this we derive the promised result.

Theorem 6.9. The expansion
.. B(n,k) — Bn+1,k+1),
' U — U,
is an order-preserving embedding that maps 6,,,,{ to 6,,+1,k+1 and ka to

L1kt O
7. THE CONNECTION BETWEEN B(n—2,d — 1) AND S;(n,d)

In this section we present an order-preserving map from the higher Bruhat
order B(|n[,d — 1) = B(n —2,d — 1) to the poset S;(n,d) of all triangula-
tions of C(n,d). This map is obtained by two different constructions, each
of them providing complementary parts of the properties claimed. It is not
quite clear whether this map coincides with the map suggested by Kapranov
& Voevodsky [11].

We start with some additional specific properties of triangulations of
cyclic polytopes.

Lemma 7.1. Let T € Si(n,d). Then for each (d — 1)-subset (s3,...,84)
there is at most one simplex S € T with S = (s1,82,...,54,54+1) for some
s1 < sp and some sg4.1 > s4.

Proof. Assume there were S # S’ € T and
S= (51,52, »Sd5d+1),
S = (51,52, 18a,511)-
Either s1 # s} or s441 # 8, ;. If 51 < 5 then define

Coe (51,875-+-+54,8,1) if d even,
(51,875 +84,8441) if d odd.
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Inany case Ct C SandC~ C §'.
The cases 51 > §%, Sg41 < 8.1, and s;11 > 5, , are analogous. O
10 Sd+1 d+1 d+1 d+1 g

Definition 7.2. For S := (sq,...,5441) € T € Si(n,d) let Xs:= (s2,...,54)
be the central set of S. The number Ig := s, is called the left boundary, the
number rg := sy, 1 the right boundary of Xgin T.

Corollary 7.3. Any triangulation T of C(n,d) is determined by its set of
central sets and their boundaries. O

Lemma 7.4. In every triangulation T of C(n,d) every interval of length
(d—1) in [2,n— 1] appears as a central set of some simplex S € T.

Proof. Here is a proof for d odd: Let T be in S;(n,d) and I an interval of
length d — 1. From Gale’s evenness criterion it follows that 7 is contained
in exactly two facets of C(n,d), namely (1,1) and (I,n). Therefore, there
must be a simplex S in the triangulation T containing (1,7).

If S; = (1,1,r) we are done. Otherwise Sy = (1,1;,I). Because (I1,]) is
not a facet of C(n,d) there must be another simplex S, € T with (I;,1) C S,.
If S = (I1,1,r) we are done. Otherwise proceed as above. Because of
Lemma 7.1 at each step /; < [;;1. Hence there must be a k and an r such
that the simplex Sy = (lx_;,1,r)isin T.

The case d even is analogous where the corresponding facets of C(n,d)
are (iy — 1,I) and (I,i;+ 1) and the sequence of the /; is decreasing. [

We start now to construct a map by defining a natural family of functions
on $i(n,d).

Definition 7.5. For an element I = (iy,...,iy) € (]Z[) define the map
51 (n,d) - 51 (n,d),

flip, : T o flip; ; () if (1,4, r) is an increasing flip,
T otherwise.

For an inversion set U € B(]n[,d — 1) let (I;);—1_ sv be a single-step-
inclusion-order of the elements of U, i. e., U,K=1 I; is consistent for all K =
1,...,#U. The flip-map Tq;; is now defined as follows:

g [ Blnld=1) = S(nd),
flip U — ﬂip,#Uo...oﬂiph(.q'—l(n,d))-

Remark 7.6. At this point it is not obvious that this definition is indepen-
dent of the special order (I;);—1,.. #y. But in any case Tg;, maps each
U € B(Jn[,d — 1) to a triangulation in S;(n,d) and it is obviously order-
preserving.

Definition 7.7. Fori € I € (") define the index of i in I as
ind;(i) =k iflI= (il,... ,i= ik,... ,id).
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Definition 7.8. For an inversion set U € B(]n[,d — 1) define the central set
of U as
Xy = {X: (xl,... ,xd_l) € (d]ﬁ[l) : XUjeU Vje [n]\X
xp < J <Xg-15
d —indxy;(j) even,
XUj¢U VYjen\X:
X < J<Xg-1
d—indxuj(j) Odd}.

Definition 7.9. For an inversion set U € B(|n[,d — 1) define the left bound-
ary function of U as

Xy — [n],
Au: ; max{l € [n]: (,X)¢ U} ford odd,
max{l€[n]: (I,X)e U} ford even,

and the right boundary function of U as
fXu - [n),
"”'{ X  min{refn: (X,N)¢U},
with the additional notation
min(@) :=n and max(Q):=1.
Definition 7.10. Now define the direct map Iy, as

T { ’B(]n[,d—l) - Sl(n’d)7
dir U~ {(WwX),X,pv(X)): XEXy}.

Remark 7.11. Here it is neither obvious that 7y (U) is indeed a triangula-
tion nor that the map is order-preserving, but it is uniquely defined.

Proposition 7.12. Let U and U’ := U U {I} be inversion sets in ‘B(|n[,d —
1). Define the following two properties for some i, € I,1 <k <d—1.
Property A: I\ i € Xy but I\ iy & Xy,
Property B: I\ i, ¢ Xy but I\ i; € Xyp.

Then the following hold:
(i) If iy has Property A then all iy, € I with m = k mod 2 have Property A
as well,
(ii) If iy has Property B then all i,, € I with m = k mod 2 have Property B
as well.

Proof. From Definition 7.8 we know that
e i; has Property A if and only if d — k is odd and i, has Property C,
namely
— indp;,u;(j) isevenforall j ¢ I withi; < j<iz_jandI\jUj€U,
and
— indp;,u;(j) is odd forall j ¢ I with i) < j<ig_jand I\§Uj¢ U,
e i; has Property B if and only if d — k is even and iy has Property C.
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In the sequel we will show that Property C for i; induces Property C for all
im € 1.

Assume i € I has Property C. Let j ¢ I,iy < j < iy be arbitrary. (If there
is no such j we are done.) Consider the inversion J := (/U j) \ ix. From
Property C we know that J has Property D, namely

Jc U ifind, () even,
=1 U ifind;(j) odd.

Now we investigate the d-packet P := IUJ. Because both U and U’
are consistent the complete segment that starts at a neighbor of I = P\ j
and contains J = P\ i, must have property D as J, and the complementary
segment must have exactly the contrapositive property D. That means by
parsing the packet P from one end to the other “having property D’ switches
atlI=P\j.

In other words, I\ i, U j € U if and only if I\ { U j € U for all i, lying
on the same side of jas iy in Pand I\ i,,Uj€ U ifand only if I\ {; Uj ¢ U
for all i,, lying on the opposite side of j as i.

Additionally, if m is congruent k modulo 2 then ind;,,;;(/) is congruent
indp\;,,;(j) modulo 2 if and only if i, lies on the same side of j as i in P,
but — since j was arbitrary — this means that i,, has Property C. (]

Remark 7.13. The above Proposition roughly states that for I\ i,, “being
contained in the central set of U” for all possible m only depends on whether
I is in U — not on whether some inversion I \ i, U j is in U — whenever
this is correct for one m.

Proposition 7.14. Let U and U’ as above. Then the following hold for all
I<l<iyandiy1<r<n:

(1LINi) €U <= (I,I\iy) €U forallm=k mod?2,
(I\ix,r) €U <= (I\im,r) €U forallm=k mod 2.

Proof. The proof is analogous to the proof of Proposition 7.12 with j re-
placed by /,r . C

Theorem 7.15. The maps Ig;, and Iy, coincide.

Proof. We will show that Zg;,(U) = 4 (U) for all U € B(]n[,d — 1). Be-
cause B(Jn[,d — 1) has a unique minimal element & we can proceed by
induction on #U.

The proof for U = & is a simple computation. Therefore we assume that
the claim is true for some inversion set U and we will show that then the
claim is also true for all consistent U’ := U U {I}.

The following points are to check:

1. If 24 (U') # Zgir(U) then there exist 1 <! < iy and iy < r < n such

that (1,1,7) is an increasing flip in Zgip(U) = Z4(U), and

2. if the (d+2)-set (1,1, r) is an increasing flip in Zg;p(U) = T (U) then

Ti:(U') = flip; T (U).
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From Proposition 7.12 it follows that the assertions 1 and 2 are correct as
far as the central sets of U or U’, resp., are concerned.

From Proposition 7.14 and the corresponding definitions in 7.9 we get
that in the situations of both 1 and 2 the left and right boundary functions
are constant on the sets I\ iy with 1 <k <d-1, 1€, there exist / and r
with 1 < [ < ij and iy_; < r < n such that

}\,Ug\ik)Il, pU(I\ik)zr.
Moreover, it follows that

. i1 ford odd, .
KU(I\”):{ 1l for d even, pU(I\ll):r’

Ay(I\ig-1) =1, pu(I\ig-1) =i4-1-

After having added I to the inversion set U we have

@i ={ L o pur I\ i) =

Ay (I\iy) =1, pu(I\ir) =r,

Ay (I\ig-1) =1, pyr(I\ig-1) =r.
With this the proof of Theorem 7.15 is complete. (]

Corollary 7.16. The map
T:= rZaip = %ir
is well-defined and order-preserving. O

We finish the paper by stating — as a bonus track without a proof — the
following connections between the constructions of this paper.

Proposition 7.17. (Functorial Relations)

A o~
L0

T(0) = (T(V))
TW\n—1) = T(U)\n,
T(8U) = ST(U).

The analogous property for the link does not hold in general! O
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