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TRIANGULATIONS OF CYCLIC POLYTOPES
AND HIGHER BRUHAT ORDERS

To- KOZY JORG|RAMBAU

Abstract. Recently Edelman and Reiner suggested two poset structures
Si(n,d) and % (n, d) on the set of all triangulations of the cyclic d-polytope
C(n, d) with n vertices. Both posets are generalizations of the well-studied
Tamari lattice. While % (n, d) is bounded by definition, the same is not obvi-
ous for & (n, d). In the paper by Edelman and Reiner the bounds of %5 (n, d)
were also confirmed for & (n, d) whenever d<5, leaving the general case as a
conjecture.

In this paper their conjecture is answered in the affirmative for all d, using
several new functorial constructions. Moreover, a structure theorem is
presented, stating that the elements of & (n, d+1) are in one-to-one corre-
spondence to certain equivalence classes of maximal chains of & (n,d). By
similar methods it is proved that all triangulations of cyclic polytopes are
shellable. In order to clarify the connection between &, (n, d) and the higher
Bruhat order #(n—2,d—1) of Manin and Schechtman, we define an order-
preserving map from #(n—2,d—1) to % (n, d), thereby concretizing a result
by Kapranov and Voevodsky in the theory of ordered n-categories.

§1. Introduction. 1In this paper we examine the structure of the first higher
Stasheff-Tamari order ¥ (n,d) on the set of all triangulations of the cyclic
polytope C(n, d) (definitions below), introduced by Edelman and Reiner {7].
It turns out that it is similarly structured as the higher Bruhat order
#(n—2,d—1) of Manin and Schechtman [15]; in particular it is bounded.

Given a triangulation of the convex hull of a finite point configuration in
Euclidean d-space that is not satisfying a certain quality measure, can one
find a better, or even the best triangulation (with respect to this measure) by
performing a finite sequence of (computationally cheap) local transformations?
A necessary condition for the latter case is that any possible triangulation is
accessible by this kind of transformation. In particular, a repeatedly posed
question in combinatorial and computational geometry (see for example

Billera, Kapranov and Sturmfels [4], Edelsbrunner {8, Open Problem 8], and

Joe [11, Conjecture 1]) is whether or not any two triangulations of (the convex
hull of) a given finite point configuration in Euclidean space of dimension d
can be connected by a sequence of bistellar operations.

For d=2 the answer is affirmative, as is for the restriction to regular triangul-
ations (by the work of Gelfand, Kapranov and Zelevinsky [9]). For d>3 and
general triangulations, however, the problem is open in spite of many attacks
in this direction.
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Similar problems attained attention in several fields of pure mathematics,
thereby leading to remarkable new concepts, such as the secondary polytope
defined by Gelfand, Kapranov and Zelevinsky [9], further studied by Billera,
Filliman and Sturmfels [2] and Billera, Gelfand and Sturmfels [3]. The theor-
etical question behind this all is the following: Has the set of all triangulations
of a point configuration a well-behaved global structure with respect to local
transformations? A far-reaching generalization of this question to restricted
polyhedral subdivisions was recently answered in the negative by Rambau and
Ziegler [16].

The cyclic d-polytope C(n, d) with n vertices appears on the scene as a
combinatorially well-understood natural generalization of (convex) n-gons to
higher dimensions. The triangulations of an n-gon form the extensively studied
Tamari lattice—which one is definitely willing to consider as a good-natured
structure in this context. (For a historical background on Tamari lattices and
their different combinatorial interpretations we refer to the paper by Edelman
and Reiner [7] and references given there.) The natural question now is which
properties of the Tamari lattices survive in higher dimensions.

Since in general dimensions there are many non-regular triangulations of
cyclic polytopes (see Billera, Gelfand and Sturmfels [3] and de Loera, Hosten,
Santos and Sturmfels [14]) it is not @ priori clear that the set of all triangulations
of the cyclic polytope C(n, d) is well-behaved. In the paper by Edelman and
Reiner [7] two poset structures & (n, d) and % (n, d) are defined on this set,
both generalizing the Tamari lattice and hence quite interesting from a purely
combinatorial point of view. In the following we sketch their definitions.

The triangulations of the cyclic polytope C(n, d) are in one-to-one corre-
spondence to the piecewise linear sections from C(n, d) into C(n, d+ 1), accord-
ing to the projection from C(n,d+1) onto C(n,d) that deletes the last
coordinate. Edelman and Reiner [7] suggest two partial orders on all piecewise
linear sections, and hence on the set of all triangulations of C(n, d).

The first higher Stasheff-Tamari order %, (n,d) is defined by a covering
relation between two sections if exactly one (d+ 1)-simplex fits between them
in C(n, d+1); the section that contains the upper facets of this simplex is
defined to be greater than the other one. This corresponds to an increasing
bistellar flip that replaces the lower facets of the (d+ 1)-simplex by the upper
facets. Thus we get a purely combinatorial description of this poset in terms
of local transformations. The second higher Stasheff-Tamari order %> (n, d) is
defined geometrically via pointwise comparison of the heights of the sections.

While % (n, d) has a unique minimal element F'(n, d+ 1) (the set of lower
facets of C(n, d+1)) and a unique maximal element % “(n, d+ 1) (the set of
upper facets of C(n, d+ 1)), the same is not obvious for & (n, d). On the other
hand, the local structure of .%, (n, d) is clear by definition while the covering
relations in % (n, d) are a priori unknown.

This motivated the following conjectures and results by Edelman and
Reiner.

For even d, both % (n, d) and % (n, d) are self-dual [7, Prop. 2.11, true in
general].

S (n, d) coincides with & (n, d) [7, Conj. 2.6, true for d<3].
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F'(n,d+1) is the unique minimal element of % (n, d) [7, Conj. 2.7a, true
for d<5].
F “(n, d+1) is the unique maximal element of & (n, d) [7, Conj. 2.7b, true
for d<4].

Any two triangulations of C(n, d) are connected by a sequence of bistellar
operations {7, Conj. 2.8, true for d<5].

S (n, d) respectively % (n, d) is a lattice [7, Conj. 2.13, true for d<3].

In any interval of % (n, d) respectively % (n, d) distinct subsets of coatoms
have different meets [7, Conj. 2.14, true for d<3].

Our main Theorem answers their Conjectures 2.7a, 2.7b and 2.8 affirm-
atively and points out the connections between the triangulation posets in
different dimensions. Its proof is completed in Section 5 and Section 6, using
the functorial constructions in Section 3, which we consider as interesting in
their own right.

THEOREM 1.1 (Main Result).

(i) For all n and all d<n the first higher Stasheff-Tamari order &, (n, d)
is bounded. The unique minimal element is the set ' (n, d+ 1) of lower
facets, the unique maximal element is the set F “(n, d+ 1) of upper facets
of C(n,d+1).

(ii) The elements of & (n, d+ 1) are in one-to-one correspondence with the
equivalence classes of maximal chains in % (n, d) under the following
equivalence relation: Two maximal chains are equivalent if they differ
only by a permutation of their increasing bistellar operations.

(iii) Two maximal chains in %\ (n, d) are equivalent if, and only if, they differ
by a sequence of interchanges of consecutive bistellar operations that
correspond to non-adjacent (d+ 1)-simplices in C(n, d+1).

(iv) All triangulations of cyclic polytopes without new vertices are shellable.

The following list of implications demonstrates the quantitative consequen-
ces of the main Theorem and the constructions provided in Section 3.

CorOLLARY 1.2.  For all n and all d<n the following hold.
(1) For odd d, %,(n, d) is u ranked poset with rank function

HTY=#F (n,d+ 1)~ #T  for all Te%(nd).

(ii) The number of simplices in a triangulation of C(n, d) lies between the
number ("~[3)7") of upper facets and the number ("~ |531)/3]) of lower
facets of C(n,d+1). In particular, for even d all triangulations of
C(n, d) consist of ("~ 437") simplices. (That the latter fact is actually
true for all weakly neighbourly polytopes, was proved by Bayer [1]).

(i) The length of a maximal chain in % (n,d) lies between the number
("1 of upper facets and the number (" J40") of lower facets
of C(n,d+2). In particular, for odd d the length of any maximal chain
in % (n, d) equals ("SINEY).

(iv) For even d the diameter of the Hasse-diagram of % (n, d) is between

(""937?) and twice this value. For odd d it is equal to ("~ 4T 13™")
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Theorem 1.1 points out a similarity to the structure of the higher Bruhat
order #(n—2, d—1), a certain generalization of the weak Bruhat order on the
symmetric group, defined by Manin and Schechtman [15] (see also Ziegler
[17]). Previously, Kapranov and Voevodsky [12] reported the existence of an
order-preserving surjection from %#(n—2,d— 1) onto a poset structure on the
set of all triangulations of C(n, d) that is inherited by a certain ordered n-
category. Unfortunately, it is not clear whether their poset structure is equiva-
lent to & (n, d). This led us to the investigations in Section 8 where we present
an explicit order-preserving map 7 from #(n—2,d—1) to & (n, d) that should
help to get a more concrete idea of the connections between higher Bruhat
orders and higher Stasheff-Tamari orders. Furthermore, we relate some of the
functorial constructions for higher Bruhat orders to similar constructions for
higher Stasheff-Tamart orders.

In Section 7 we will recall the main definitions and results in the frame-
work of higher Bruhat orders. Additionally, we answer a question posed by
Ziegler [17] on the existence of an order-preserving embedding of #(n, k) into
HA(n+1, k+1) affirmatively.

The following three problems concerning the higher Stasheff-Tamari orders
remain open.

Is % (n, d) equal to S (n, d)?

Is #(n,d) or #5(n,d) a lattice?

Is J surjective; in particular is 7 the map suggested by Kapranov and
Voevodsky?

Throughout this paper the following notation is used.

For a set L and “<,” a linear order on L, we denote by L., the set L
linearly ordered with <",

Numbers in brackets (i, ..., i,) denote the set {4, ..., i, }« which is
linearly ordered with i/, <i,., forv=1,...,n—1.

Let L be a set. For a subset S=L let CS=C,S be the complement L\S
of Sin L.

For a set L and two sets K and K’ of subsets of L such that S~ S’ = ¢ for
all SeKand S’eK’let K+« K'={SuUS'": SeK, S'eK’} be the join of K and
K’

For a set K of subsets of L and SyeK the deletion of Sy from K is the
set K\Sy={SeK: S Sy=}, and the contraction of Sy in K is the set
K/S0= {S\S(] : SGK, S_D_S() }

For integers ¢ <b the interval [a, b] is the set {a,a+1,...,b—1,b} and
la, b[ is the set {a+1,...,b—1},

[#] denotes the interval [1, n], and ]#n[ is the interval ]1, »[.

§2. A combinatorial framework for triangulations. In this section we
present a combinatorial concept of triangulations that is similar to that of de
Loera [6]. Dealing with vertex labels when investigating triangulations is
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formally justified by the following considerations that are closely related to the
theory of abstract simplicial complexes.

Definition 2.1. Let ¥ be a finite set, the label set. A combinatorial d-
simplex in & is a (d+ 1)-element-subset S of £. Its (k+ 1)-subsets are called
k-faces of S, and its d-subsets facets of S.

If I: #—R" is an injective function with /(¥)=.«/, and Sc .# is a combi-
natorial d-simplex corresponding to affinely independent points then the convex
hull o=conv [(S) of I(S) is the geometric d-simplex with vertex set vert =
1(S) and label set lab (o) =S with respect to [, the labelling function.

A combinatorial simplicial complex in & is a set K of combinatorial simplices
in .. Its k-simplices are the k-faces of its elements. (That is, we identify the
usual abstract simplicial complexes with their sets of inclusion-maximal faces.)
A set A of geometric simplices o with the property that the set {lab (5): c€A}
of label sets is a combinatorial simplicial complex, and that

conv(vertonNnvert 1)=onNr for all o, t€eA,

is a geometric simplicial complex.

A combinatorial simplicial complex K’ is a combinatorial subcomplex of K
if all simplices of K’ are faces of simplices in K. A geometric subcomplex is
defined analogously.

For a combinatorial simplicial complex K in . and a combinatorial simplex
So in & the combinatorial link of Sy in ¥ is defined as

lkx (So)={S\So: Sek, SocS};
the combinatorial star of S, in K is defined by
sty (So)={SeK: Sp=S},
and the combinatorial antistar of Sy in K is the complex
astx (Sp)={SeK: SN So=F}.

If K is a combinatorial simplicial complex in .¥ and S, is a combinatorial
simplex in ¢’ where ¥ and ¢’ are disjoint then the combinatorial join of K
and S, is the complex

K * S():{SUS()ZSEK}.

The convex hull conv .« of & is a d-polytope if the affine hull of & is R.
For o/’ .o/ the polytope conv &/’ is a facet of conv ./, if conv ./’ is the (d—1)-
dimensional intersection of .7 with a hyperplane H such that one closed half-
space defined by H contains conv /. In this case the label set lab (/') is a
combinatorial facet of I. Note that the set of facets of a simplicial polytope (all
facets are simplices) forms a simplicial complex.

If Z=(Z",Z"7) is a pair of disjoint inclusion minimal subsets Z* and Z~
of .Z with the property

convIl(Z)nconvl(ZT)#
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then Z is called a minimal combinatorial dependence in I, or—for short—a circuit
of I. The set supp (Z)=Z" U Z" is the support of Z.

The triple ()= (%, #,, Z)), where Z, denotes the set of all circuits of /,
and & is the set of all combinatorial facets of /, is the combinatorial polytope
of L.

If A a geometric simplicial complex with vertices in .o/ such that conv .o/ =
Usea o then A is called a triangulation of <. In this case the set T of label
sets of the simplices in A is a combinatorial triangulation of 2(l).

We will sometimes call the geometric objects geometric interpretations of
the corresponding combinatorial ones, which themselves are said to be combi-
natorial models for their geometric counterparts.

A combinatorial, label-based handling of triangulations is made possible
by the following proposition. We present a complete elementary proof because
this characterization is fundamental for this paper.

PROPOSITION 2.2. Let ¥ be a finite set and let |1 £ R’ be injective with
(&)= of. Furthermore, let P(I)=(L, F1, Z) be the combinatorial polytope
of I. A non-empty subset T of the (d+ 1)-subsets of ¥ is a combinatorial triangul-
ation of 1 if, and only if,

(UP) for all SeT and all facets F of S either F is contained in some F'e
F,, or there is another simplex S'eT such that S' > F (Union-Prop-
erty), and

(IP) there is no circuit Ze %, with Z* =S and Z~ =S’ for combinatorial
simplices S, S'eT (Intersection-Property).

Proof. Wefirst prove that (UP) and (IP) are necessary. Let 7 be a combi-
natorial triangulation with respect to some geometric triangulation A of the
point set o/ given by /: £—R’. Assume there is a combinatorial facet F of
some combinatorial d-simplex S in T that is not contained in some F' in %,
such that there is no other combinatorial d-simplex in T containing F. Then
the corresponding (d—1)-simplex 7=conv/(F) is contained in only one
simplex o =conv /(S) of A,

Let H be a supporting hyperplane of 7 such that its closed positive half-
space H " contains o. Let g, be the barycentre of 7. Because 7 is not a facet
of P=conv (<) there is a point x; in P lying in the open negative halfspace
relint (H~). Connect ¢, and xo by a segment /. This segment is completely
contained in P since P is convex.

A is a triangulation. Hence, there must be at least one d-simplex o, that
contains x,. Either o,, contains g, or not. If it does then o,, must contain
the complete (d— 1)-simplex 7 as a facet since ¢, lies in the relative interior of
t and the intersection of 7 and o, must be a face of both. But this is a
contradiction.

If o,, does not contain ¢, then the segment 7 intersects the boundary of
G, in a point g,,. Consider the mid-point x; of ¢, and g,, on I. This point is
neither contained in 7 nor in o,,. Since 7 lies completely in P there must be a
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new d-simplex o, in A containing x,. This procedure shows either a contradic-
tion as above or an infinite sequence of d-simplices in A, which is a contradic-
tion, too. Hence, Property (UP) is necessary.

For the necessity of Property (IP) assume that there are combinatorial d-
simplices S and S’ in T and a circuit Z=(Z", Z7) in Z(n, d) such that Z" is
contained in S and Z~ is contained in S'. Then by the definition of circuits

conv (ZYnconv (Z™)# L,

and their minimality implies that there are geometric simplices in A, namely
conv /(Z") and conv /(Z ™) the relative interiors of which intersect, a contra-
diction. Hence, Property (IP) is necessary as well.

Let T be a collection of (d+ 1)-subsets of & (that is, T<(,%,)) satisfying
(UP) and (IP). Then T gives rise to a set of geometric simplices A=
{conv /(S): SeT}. We must show that every point in P lies in at least one d-
simpiex o in A and that for every pair of simplices ¢ and ¢’ we have
conv (vert o nverto'y=ocnao’.

Let x be an arbitrary point in P. Since T is non-empty we find a combina-
torial d-simplex Sy in 7. Hence there is a simplex o¢=/(Sp) in A. Consider a
segment / from an inner point x, of gy to x that does not meet any (d—2)-
simplex of A. Such a line exists because of the concept of general position.
This segment is completely contained in P and meets exactly one facet 7 of oy
unless xerel int (o). If this intersection point ¢, equals x then we are done.
Otherwise this facet is not a facet of P because then ¢, is an interior point of
I and I is contained in P. Hence the label set F of 7 is not contained in any
element of %, and we find another combinatorial d-simplex S, in T containing
F corresponding to a geometric d-simplex o, containing 7. The segment /
meets the interior of o, because of the general position property of /. Choose
an arbitrary point x, in / nrel int (¢,). Note that the distance between x, and
x is strictly smaller than the distance between x, and x. Therefore, by repeating
this procedure we will reach a d-simplex o, lying in A and containing x.

Now assume that there are geometric d-simplices ¢ and o’ in A with label
sets S respectively S’ in T and conv (vertoc nvert g’)cono’. Since
o220 n o' and 6’20 N o’ there are inclusion-minimal faces 7 of ¢ and 7’ of
o’ with conv (vert T nvert 7')20 N ¢’. From the minimality assumption we
get rel int (7) nrelint (7') # &, hence by Radon’s Theorem there are minimal,
vertex-disjoint faces p of 7 and p’ of 1’ with relint (p) nrelint (p’)# . Set
Z"=lab(p) and Z =lab(p’). Then Z* and Z~ are disjoint and
conv ({(Z7))nconv (I{Z7))# . Hence (Z*, Z") lies in &, and Z" is con-
tained in S and Z " is contained in S’, but this contradicts the assumption that
T has Property (IP).

Pairs of simplices with property (IP) are called admissible.

§83. Cyclic polytopes. 1In this section we recall the basic definitions and
theorems related to cyclic polytopes in a combinatorial language.
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Definition 3.1.  Let % be a linearly ordered set, and let 1: £ —R, i+ ¢; be
a strictly monotone function.

The d-dimensional cyclic polytope C(¥, d, t) labelled by &, parametrized by
t is the convex hull of the points v,(¢;), ..., vi(t,) with

va(x)=(x,x ..., xyeR?.

For simplicity we set C(n, d, t)=C(|n], d, 1).

The main reason for the fact that triangulations of cyclic polytopes can be
treated effectively in a purely combinatorial way are the following well-known
properties that follow from the special structure of Vandermonde-determinants.

The first one—Gale’s famous Evenness Criterion—characterizes the set
#,,.. of all combinatorial facets of C(#, d, t). The following notion allows
us to state thai criterion in a compact way.

Definition 3.2. Let L be a linearly ordered set and S a subset of L. An
element soeCS is an even gap in S if #{seS:s>s,} is even, otherwise it is an
odd gap.

THeOREM 3.3 (Gale’s Evenness Criterion [10]). An ordered subset F of
the vertex set of the cyclic polytope C(¥, d, t) is a facet if, and only if, between
any two vertices not in F there is an even number of vertices in F. Equivalently,
Fis a facet of C( ¥, d, 1) if, and only if, either all gaps in F are even or all gaps
in F are odd.

The second one describes the form of those sets of vertices of C(¥,d, t)
the convex hulls of which intersect in the relative interior of both. Hence this
determines % ,, .

THEOREM 3.4. [5]. The circuits of C(¥, d, t) are the alternating (d+ 2)-
subsets of ¥, i.e., the pairs (Z°, Z°) and (Z°, Z°), where Z° is the set of odd
elements (z,, z3, zs, .. .), and Z° is the set of even elements (z,, z4, Zs, . . .) Of
Z=(zy,...,2Z4+2).

The combinatorial polytopes #(v, - t) are identical for all ¢+ because the
strictly monotone function ¢ does not affect the assertions of these criteria. This
means that the combinatorial study of triangulations of cyclic polytopes with
any parametrization is equivalent to the investigation of combinatorial triangul-
ations of the combinatorial polytopes (v, f).

Definition 3.5. The combinatorial polytope C(¥,d)=2P(v, o t) of v ot:
¥R s called the cyclic d-polytope with vertices labelled by . The set of its
combinatorial facets is denoted by % (&, d), the set of its circuits is written as
Z(¥,d). Those combinatorial facets with only odd gaps are the upper facets
the set of which is denoted by & “(.¥, d), those with only even gaps are the
lower facets of C(¥, d), denoted by #'( &, d).
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@ .

Figure 1. The canonical projection p: C(5, 3) — C(S, 2) and sections corresponding to triangul-
ations of C(5, 2).

The set of circuits Z with maximal element z,., in Z* is denoted by
%" (n, d), the set of circuits having their maximal element in Z~ is written as
% "(n,d). The cyclic polytope labelled by [#] is denoted by C(n, 4).

Note that in odd dimensions there are polytopes that have the same face
lattice as C(n, d, t) but a different circuit structure (see [5]); this leads to
completely different triangulations.

Remark 3.6 (Geometric Meaning, see Fig. 1). Consider for some strictly
monotone ¢: [n]—R the projection

Cln,d+1,1) - C(n, d, 1),

P=l7(n,d)3{
(xls-~~9x(/9xd+l) — (xl’---axd)'

Moreover, consider for some geometric triangulation A of C(n, d, ¢) the unique
piecewise linear section (linear on each simplex oeA)

linear

{C(n, dt) - Cn,d+1,1),
SA .
o — conv (Vg4 ° t(lab (0))), VoeA.

Then any triangulation A of C(n, d, t) can be recovered from its characteristic
section su.

The upper facets # “(n, d+1) of C(n, d+1) are the sets of those facets of
C(n,d+1,t) that can be seen from a point in R‘*' with very large positive
(d+ 1)-st coordinate (geometric upper facets of C(n, d+ 1, 1)), the lower facets
F “(n, d+ 1) label the sets of those facets of C(n, d+ 1, t) that can be seen from
a point in R?*" with very large negative (d+ 1)-st coordinate (geometric lower
facets of C(n, d+ 1, 1)). The geometric upper (respectively lower) facets project
down to C(n, d, t) without overlapping. Therefore their projections define geo-
metric triangulations of C(n, d, t).

The support supp (Z) of any circuit Z=(Z", Z~) in C(n, d) corresponds
to the label set of a unique (d+ 1)-simplex in C(n,d+ 1, t) where its set of
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geometric upper facets belongs to the elements of the star of the positive part A
in supp (Z), and its set of geometric lower facets corresponds to the elements of
the star of the negative part Z~ in supp (Z).

Lemma 3.7 (Elementary Facts).
(i) #'(n,d+1) and F“(n,d+1) are combinatorial triangulations of the

cyclic polytope C(n, d).

(ii) Every facet in ¥ “(n, d) contains n.

(iii) If a pair of simplices S\ and S, is not admissible then there exists a
circuit in #(n, d) with maximal element z,,,=max (5, v 52).

(iv) If a (d—1)-simplex F is the common facet of the admissible pair (S, S2)
then S\ \F lies in an odd gap of F and S,\F lies in an even gap of F, or
vice versa.

Remark 3.8. The circuits of C(n, d) can be visualized in a table that con-
sists of columns numbered from 1 to n and rows corresponding to Z" and Z~,
where a star “*” in column i and row Z° means that ieZ%, ge{+, —}. The
stars can then be connected by a zig-zag-path with (d+2) nodes. For example,
ifn=6,d=3,and Z=((1, 3, 5), (2, 4)) we get the table

zZ* * * *

zZ" * *

If the rows are filled with stars corresponding to two simplices then these
two simplices are admissible if, and only if, each zig-zag-path connects at most
(d+1) stars. Forinstanceifn=6,d=3,5=(1,3,4,5),and S'=(2, 3, 4, 6) the
table looks as follows.

S |l % * | k| x

S’ * | % | * *

The reader will easily find a zig-zag-path connecting even 6>d+2 stars,
showing that S, S’ is not an admissible pair.

Obviously all C(&, d) with #.% =n are isomorphic to C(n, d). From now
on we are exclusively dealing with combinatorial triangulations of C(n, d), and
we will leave out the “‘combinatorial” attribute whenever this is not confusing.

The following Propositions—consequences of Theorems 3.3 and 3.4—relate

cyclic polytopes with different parameters. We use the notation F=
(fis..., fq) for FeEF(n,d)and Z=(z,, ..., z4+2) for ZeZ(n,d).
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ProrposiTion 3.9 (Functorial Facet Properties).
Fi'n+1,d+1)=F'(n,d) * {n+1},
Flin+1,d+1)=F"“n,d)* {n+1}
U{F\nu{jjt1}: FeF“(n, d),je fu-1,nl},
F'n—1,d—1)=lkz/na (n),
Fln—1,d=1)=kzvna (1),
Frn—1,d)=astuz "= 1) {n—1},

ol

f’(n - 1’ d) = aSt.f’(n,d)(n)-

ProposiTioN 3.10 (Functorial Circuit Properties).
Frn+1,d+)={Z v {},Z):(Z".Z)eZ (n,d),j>2as2},
F (n+1,d+)Y={(Z",Z o {j}):(Z",Z7)eZ (n,d),j>Za+2},
F(n=1,d=1)={(Z", Z \za+2): (Z*, Z7)eZ ~(n,d)},
F(n—1,d-1)={(Z"\2442, Z7):(Z",Z7)eZ " (n,d)},

F(n—1,dy={(Z",Z )eZ " (n,d): né¢supp (Z)},
¥ (n—1,d)y={(Z",Z")eZ (n,d): n¢supp (Z)}.

The following proposition is the combinatorial description for the geometric
connection provided by the projection p(n, d) between (d+1)-simplices in
C(n, d, t) and the minimal affine dependences in C(n, d, ).

ProrosiTIiON 3.11 (Functorial Circuit-Facet-Relations). For Ze % *(n,d)
and supp (Z) considered as a simplicial complex we have
Stapp () (Z7)=F “(supp (Z),d+ 1),
Stoupp (7 (Z ) =F (supp (Z), d+1).

§4. Special triangulations of cyclic polytopes. In this section we show nice
functorial constructions of triangulations of cyclic polytopes.
Definition 4.1. For a set T of (d+ 1)-subsets of [n] define
T=Tx {n+1} U {S\syr1 v {j,j+1}:
S=(s1,...,84+1)€T, je 154, Sa+1[}{extension)
T/n=kr(n), (contraction)

T\n=astr (n) Uasty, ¢ (n—1) * {n—1}. (deletion)
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THeOREM 4.2. Let TeS(n,d). Then the following hold:
(i) T is a triangulation of C(n+1,d+1);

(1) T/n is a triangulation of C(n—1,d—1);

(iil) T\n is a triangulation of C(n—1, d).

Proof. For each assertion we verify the Union-Property (UP) and the
Intersection-Property (IP) of Proposition 2.2. Recall that we have to show—
roughly speaking—that

all simplices are pairwise admissible, and that

each facet of a simplex is either a facet of the cyclic polytope or appears in
at least one other simplex.

The reader may get a picture from the proof by inspecting the tables sug-
gested in Remark 3.8, using that circuits correspond to zig-zag-paths and facets
to sets with only even or only odd gaps.

Part (ii) is true because the link of a triangulation of any polytope at some
vertex triangulates the corresponding vertex figure, and for cyclic polytopes
this vertex figure is cyclic with the correct parameters. This follows from Pro-
positions 3.9 and 3.10 and well-known properties of vertex figures (see, e.g.,
Griinbaum [10]).

The proof of (UP) (i). The following abbreviations are used:

A=Tx {n+1},
B={S\sd+l o {j’j+l}:SETsjE]sd’sd+l[}'

Let F=(f\,...,fs+1) be a facet of a simplex S in A\F(n+1,d+1).

The case f,+,=n+1. By Proposition 3.9, F\n+ 1¢% (n, d) because other-
wise (FA\n+1)u {n+1} is a facet of C(n+1,d+1). Since T has the Union-
Property there must be a simplex F'eT with FA\n+1cF' and F'#F. Hence

FcF un+leT.
[V ——
#5
since F'# F
The case FeT, f,..—f,>1. Then
Fc F\ fysi U{fd+|_1,f¢/+|}€f

#.S8
sincen+ 1§

The case FeT, f;.\—fs=1. By Proposition 3.9, F\ f,¢ % (n, d) because
either f,, is an inner singleton in F\ f, or f,.,=n with the consequence that
(F\f))\nu {n—1,n}=Fis a facet of C(n+1,d+1). The Union-Property in

T leads to the existence of a simplex F'=(f",..., fu+1)in T with F\ f,cF’
and F’# F. The Intersection-Property in 7" implies either
Savr=Jfas1, Sa—1=1fa (%)
or that
Sas1>fas, fa-v=fa-r. (%)

(Compare Lemma 3.7(iv).)
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Table 1. The expansion of F'in T.

FO=F [ S Lo ln o
ETRE I RN N
v [ il I [ Ao 4D
FU) = Ft [ | o T o

In the first case (x) we get

Fcf"\fﬁu»lU{fdﬂ_l,fdu}Ei

#S
sincen+leS

In the second case (*x) we know that F'\ f,¢# (n, d). Performing the same
steps for F'\ f yields a finite sequence F'=F", F® .. . F"”=F" (where
FW=(f®, . .., f4) for pe{l,...,r}) of simplices in T with
Sa =f51r+_1”>ler+_12)>- > fae,
Fa=f9Z == =furr<fi=fr1—1,

where at step (r) we end up in case (*) because case (**) can occur at most
n—f4+, times. This leads to

FeF\ fis0{fie1=1, fur1}eT.

#S
sincen+1eS

For further use we refer to this sequence as the expansion of F'.
Now let F=(f,, ..., fu+) be a facet of the simplex S=G\gy+1 v {j,j+ 1}
in B, such that Fis not a facet of C(n+1,d+1), with G=(g,,...,g4+1)in T.
The case F=S\j+1,j=f;.\>fs+1=g,+1. Then

FCG\g(/+|U{j_1,j}ET.

#S
since j+1€8§

The case F=S\j+1,j=f4,.1=f;+1=g,+1. Then we proceed as follows,
G\ g, is not in #(n, d). Hence there is another simplex G'= (g}, ..., gy+1) in
T with G\g,= G'. Consider the expansion G'=G", G?, ..., G"=G" of G
We have

gi+12fus1s gi=Ja 1 <fu=fur1—1,
and therefore

FeG'\gioy 0 { furr—1, furr }eT.

#S
since j+1€S,j+ 1> f44)
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Table 2. The compression of H' in T.

r | A e J e e n
HO=H || ... | Ky | e By | | Ky
2 2
PR T 50 [ [ | e
_ -1 -1 1)
e . e Pl
o mar ||y | W R L

The case F=S\j,j+1<gy+:. Then
FoG\gyr1 v {j+1,j+2} eT.

#S
since jeS, j> gy

The case F=S\j,j+1=g,+1. Then
F=GcGu{n+1}eT.
Nrerarmasm— o tinan—

#S
sincen+ 1¢S
The case F=S\g;, 1<i<d. In this case G\g; is not in % (n, d) because
otherwise (G\g:)\gs+1 U {j,j+1}=Fis a facet of C(n+1,d+1) by Proposi-
tion 3.9. Hence we find a simplex H=(h,, ..., hy+;) in T with G\g;e H and
H#G.
(*) If h,1+ 17 8d+1 and hd<j then

FeH\hg o {j,j+1)eT.

. #*S
since H# Gy 1=8d 1 |

(%%) If hye1=gy+1 and h,=j then either h,,,=j+1 and thus F=H, or
hy+1>j+ 1, whence

F=HcHU{n+1}eT in the first case,

#S
sincen+ 1¢S5

FC\H\hd+|u{j+l,j+2}67A' in the second case.

ER)
since j+2¢8

(##%) If hyy =g+ and h,>j then h,>g,+1 and hence hy—hy— > gyt
1 —g,=1. Therefore H\h,., is not in & (n, d) because A, is an inner singleton.
This implies that there is a simplex H'=(h\,...,h41) in T with
H\h,. 1< H'. The Intersection-Property in T leads to

hovi=ha>j,  hy<ha.

Performing the above step with H' instead of H induces a finite sequence (the
compression of H') H'=H'", H®, ..., H"”=H" where for H" case () or
case (**) must occur because the d-th element decreases monotonely. Then

Hi<j<hf™V=Hpy,
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and the constructions in (x) and (**) work with H” instead of H as well.

(exxx) If hy. >g . then H\h, is not a facet of C(n, d), i.e., we find a
simplex H' = (hy, ..., W4+ ) in T with H\h,c H' and H' # H, and we can finish
the proof by using the expansion of H’.

The proof of (IP) (i). We must show that any pair of simplices (R, S)
with R=(r\,...,rye2)and S=(s1, ..., s4+2) in T is admissible. Without loss
of generality max (Ru S)eR. There are three different cases:

The case ReA, SeA. It is well-known that a pyramid over a simplicial
complex is again a simplicial complex, i.e., it has the Intersection-Property.

The case ReB,SeB. There exist R'=(r},...,r4+) and S'=
(s%,...,84+2) in T such that

R=R'\rye O {j,j+1},  ra<j<rys,
S=8"\s4s1 U {k, k+1}, Sy<k<Sye.
Without loss of generality, j>k. Assume (R, S) is not admissible. Then,

by Lemma 3.7, there exists a circuit ZeZ (n+1,d+1) with supp (Z)=
(Z], PR Zd+3) and

Z <R, Z cS, Zag+3=rg+2=j+ 1.

From Proposition 3.10 it follows that Z'=(Z"\z4.3, Z") is a circuit in
& (n, d) with

(Z) eR\{j+1}, (Z) S,  Zpa<k+1<sy0.
Hence z,.<j and z,<k. Therefore
(Z)" <R/, (Z) \zyr20 sy S’
But then

Z"=((Z) . (Z) \zuv29S0+1)

<R’ IS

is a circuit in Z ~(n, d) showing that (R’, S’) is not admissible and yielding a
contradiction.

The case ReA, SeB. There exist R'=(r|,...,r>) and S'=
(81, ...,8+2) in T with
R=R'U{n+1},

S=SI\S;1+|U{k,k+1}, S:[<k<S:/+|.

Assume again that (R, S) is not admissible. Let ZeZ*(n+1,d+1) be a
circuit with supp (Z)=(z,, ..., z4+3) such that

Z <R, Z <S8,  zg3=ree=n+l.
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Then
Z'=(Z*"\n+1,Z \z4+29USu+1)

<R’ cS’

is a circuit in & ~(n, d) showing that (R’, S’) is not admissible and giving a
contradiction.
The proof of (UP) (iii). In order to simplify notation we set

A=astr (n),
B=ast|kr(,,) (n— 1) * {n— 1}

We bring some known facts into a useful form.

(a) Let F be a facet of C(n—1,d—1) that does not contain n—1. Then
(F,n—1) is a facet of C(n—1, d).

(b) Let F be a facet of C(n, d) that does not contain n then F is a facet of
Cn—1,4d).

(c) str(n)vasr(n)=T, stp(n)nasty(n)=Ilkr(n).

Because of (c) all boundary facets of 4 are contained in lkr (n) or are facets
of C(n, d) that do not contain n. Then by (b) all boundary facets of 4 that
are not facets of C(n—1, d) are contained in lky (#). Now let F be an element
of Ik (n) but not a facet of C(n—1,d). If n—1¢F then (F,n—1)eT\n. If
n—1eF then by (a) we know that F\(n— 1) is not a facet of C(n, d)/n. Hence
there is a simplex S in asty,, (n—1) that contains F\(n—1) and therefore
Fc(S,n—1)eT\n.

Now let F be a facet in B that is not in #(n—1,d). If n—1¢F, then Fis
contained in asty (., (n — 1) and there must be a simplex in 4 containing F since
there is such a simplex for all elements of 1k (n) by (¢). If n—1€eF, then—by
(a)—F\(n—1) is not a facet of Ik (n). Hence there must be a simplex S in
astyn(n— 1) containing F\(n— 1) and therefore the simplex (S,n—1) isin B
and contains F, which completes the proof.

The proof of (IP) (iii). The simplices in 4 are pairwise admissible because
they are part of T, the simplices in B are pairwise admissible because B is a
pyramid over a set of admissible simplices. Therefore assume there are S,€4
and S,e B and a circuit Z with Z'< S, and Z~ =5,, where n— 1¢S5, by defini-
tion. If n—1¢Z~ then S5=S,\(n—1)un and S, are not admissible either,
contradiction because S; and S5 are in T. But if we replace n—1 by nin Z
then we get a circuit Z’ that again shows that S, and S; are not admissible.

COROLLARY 4.3.  Any triangulation of the cyclic d-polytope C(n, d) with n
vertices induces:

a canonical triangulation T of C(n+1, d+ 1) containing T as the link of n+1;
a canonical triangulation T/n of C(n—1,d—1) which is the link of n;

a canonical triangulation T\n of C(n—1, d) containing the antistar of n as
a subcomplex; and

a canonical triangulation 8T defined as f’\n+1 of C(n,d+1) containing T
as a subcomplex.
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Remark 4.4. All these constructions—except for the link—are specific for
cyclic polytopes and are incorrect for some more general polytopes.

In order to demonstrate that triangulating cyclic polytopes is nevertheless
non-trivial, we provide an example showing that they are not greedily
triangulable.

Example 4.5. Let n=8, d=5 and

SI =(35 4’ 59 6a 7’ 8)’
S2:(1927 35 6’ 7! 8)5
S3=(192’ 3’ 4’ 5, 6)

Every pair of these simpli. zs is admissible.

However, consider the facet F=(1,3,6,7,8) of S,: it is not a facet of
C(8, 5). Hence, in any triangulation 7 of C(8, 5) that contains S}, S, and S;
there must be a simplex S’ containing F. But all three possibilities for such a
simplex produce non-admissible pairs. Therefore there is no such triangulation.
Hence, one can get stuck while triangulating a cyclic polytope.

§5. The higher Stasheff-Tamari orders. In this section we describe the
notion of increasing bistellar flips (as suggested by Edelman and Reiner [7])
in terms of our set-up. This leads to a combinatorial definition of the first
higher Stasheff-Tamari order &, (n, d). In contrast to this, the geometric defini-
tion of the second higher Stasheff-Tamari order %,(n, d, t) is related to a
geometric interpretation ., (n, d, 1) of & (n,d). Specific properties of cyclic
polytopes lead to a simple proof of Theorem 1.1.

The set of all triangulations of C(n, d), respectively C(n, d, t), is denoted
by S(n, d), respectively S(n, d, t).

_ Definition 5.1.  An increasing (bistellar) flip set in TeS(n, d) is a simplex
Se (%) with the property that the set of simplices # ' (S, d+1) is a subset of
T.

For all (d+2)-subsets S of [n] we have the increasing Aip function of §

S(n,d) —» S(n, d),
flips : _ T\F'(S,d+1)uF“S,d+1) ifF'(§,d+1)cT
T otherwise.

Remark 5.2. By Proposition 3.11 this definition is equivalent to the notion
of directed bistellar operations in Edelman and Reiner [7].
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Remark 5.3 (Geometric Meaning, see Fig. 2). Let z: [#]—>R be strictly
monotone. Let A be a geometric triangulation of C(n, d, t) labelled by T, and
A’ geometric triangulation of C(n, d, t) defined by the labels of flips (T') for
some increasing flip § in TeS(n, d). Then the geometric lower facets of the
(d+1)-simplex &=v,. o t(8) in C(n, d+1, 1) defined by S are contained in
the piecewise linear section s,, the geometric upper facets lie in sa-, and else-
where the sections coincide.

Definition 5.4 (Edelman and Reiner [7]). The first higher Stasheff-Tamari
order on S(n, d) is defined via

T|<| T2 <> T2=ﬂip§,‘0 Ce s 0ﬂip§| (T])

for some sequence (S, . .., S,)in (,'L). The set of all triangulations of C(n, d)
with this partial order is denoted by % (n, d).
The second higher Stasheff-Tamari order on S(n, d, t) is defined via

A< A = 5a ()1 <84, (X) a1 for all xeC(n, d, 1),

that is, s, lifts C(n, d) weakly lower than sa,. It is written as %5 (n, d, ).

Remark 5.5.  The triangulation %' (n, d+ 1) is locally minimal, the triangu-
lation % “(n, d+ 1) is locally maximal in ¥ (n, d, 1).

Moreover, &' (n, d+ 1) represents the unique (hence global) minimal ele-
ment, and & “(n, d+ 1) to the unique maximal element of % (n, d, t) for all
strictly monotone ¢: [n]>R.

Edelman and Reiner {7, Conjecture 2.6] conjectured that % (n, d) is the
correct combinatorial model for %(n, d), that is, % (n, d, t) coincides with
S (n, d, t) for all strictly monotone ¢: [n]»R. Theorem 1.1 shows that, at least
the maximal and minimal elements of both partial orders coincide.

In order to prove this, we introduce in the following for all T in S(n, d) a
partial order on the set of their simplices. In this context the notion of the
parity of “gaps” in linearly ordered sets of Definition 3.2 is again useful.

Figure 2. Increasing flips in #,(6, 1) respectively % (5, 2).
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DEFINITION 5.6.  To each Se(,/)) we assign a unique string by

( [n]> n
(d+1 —>{0, *,e}

S, o, Ve,
e ifi¢Sand #{jeS:j>i} even,
with y;=<* ifieS,
\ o ifi¢Sand #{jeS:j>i} odd.

(Here the letter “¢” denotes an even gap, the letter “0” an odd gap in S, while
“x” corresponds to an element of S.)
Let “< (o) be the lexicographic order on (/) induced by T and the

linear order of letters “0< () * <(oue) €.

F:<

Definition 5.7. For S, and S, in TeS(n, d) with #(S, U S,)=d+2 define
the relation

$1<S; < §inSeF S, d)nF'(S,,d).

Moving from one simplex of a triangulation to an adjacent one can either
be considered as moving an element or moving a gap of the support.

LeEMMA 5.8. Let TGS(H, d) and S] B SzETWith S|<S2. Set S|2=S| (@) Sz,
Si\S12=1i;, and S$;\S12=1>.
(1) If i> is an even gap in S\ then i, is an even gap in S, and i, <i,, that is,
“ <" moves even gaps to the left.
(2) If i, is an odd gap in S| then i, is an odd gap in S, and i,>i,, that is,
“<” moves odd gaps to the right.
(3) A4 gap changes parity if, and only if, it lies between i\ and i».

Proof. The assumptions imply that S, is obtained from S, by deleting an
odd element /; from S, and adding an even gap i,¢S, to S),, or equivalently,
the gap i, moves to position i, .

If iy <i> then i, is an even gap in S|, and /, is an even gap in S,, i.e., the
even gap at /> moves to the left. If i, <i then i, is an odd gap in S|, and i, is
an odd gap in S, i.e., the odd gap at i, moves to the right.

The third assertion is true because for any label i¢{;, i, } not between i
and i, the number of elements to the right stays constant.

COROLLARY 5.9. The transitive closure of “< is a partial order on the
set of all d-simplices in ([1)). A d-simplex S is minimal if, and only if, all of its
lower facets are contained in F'(n,d); it is maximal if, and only if, all of its
upper facets are in F “(n, d).

Proof. By Lemma 5.8 we have that

S$1<82 = 51< (s S

Hence “<” is acyclic, thus defining a partial order.
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Remark 5.10 (Geometric Meaning). Let A be a triangulation of C(n, d, 1).
Corollary 5.9 tells us that the repeated transition from one simplex g €A to an
adjacent one docking from below does not create any cycles.

One cannot expect a similar property for triangulations of general poly-
topes, as is shown by the strongly non-regular triangulation of the twisted
capped prism in Lee [13].

Now the following proposition can be proved by combining combinatorial
and geometric facts.

PropoSITION 5.11. Let TeS(n, d)\F“(n,d+1) and TeS(n,d+1) such
that T is a subcomplex of T. Then there is a (d+1)-simplex SeT that defines
an increasing flip in T.

Similarly, if TeS(n, d)\F'(n,d+1) there is a (d+1)-simplex that defines
a decreasing flip in T.

Proof. Choose a simplex S in T\(# "“(n,d+1)nT). Since S is not an
upper facet of C(n, d+1), condition (UP) for T implies that there must be a
simplex S in T containing S as a lower facet. (Elther S is a lower facet of
C(n, d), and hence a lower facet of a simplex in T, or S lies in two different
simplices of T, and not both of them can simultaneously contain S as an upper
facet because of (IP).)

We now choose a geometric interpretation by fixing ¢: [n] - R, strictly mono-
tone. This gives rise to geometric interpretations C(n,d,t) of C(n, d),
Cn,d+1,1) of C(n,d+1), A of T, A of T, and & of S. Because T is a sub-
complex of T we know that its piecewise linear section s, is a subcomplex of
A. But then & lies weakly above the section s, because at least one of its lower
facets, namely sp(o), is contained in sa.

If there exists a lower facet Fie# ’(S d+1) of S that is not contained in
T then either F, is a lower facet of C(n, d+ 1)—which is impossible because
between the geometric interpretation ¢’ of F, and the lower facets of
C(n, d+1, 1) lies the section s,— or there is a simplex §’e T with F,c S’ and
§'<S, the geometric intepretation of which is still lying weakly above the
section. By continuing this process we will—by Corollary 5.9—end up with a
simplex S”e T with #(S", d+1) =T (see Fig. 3). The decreasing flip can be
found analogously.

We know that all geometric interpretations have the same combinatorial
ctructure, thus the proof is complete.

Figure 3. Finding an increasing flip in % (8, 1).
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The special form of the increasing (decreasing) flips in Proposition 5.11
leads to the following result.

COROLLARY 5.12. Let T be a triangulation of C(n,d+1). Then every
linear extension ““<,” of <" on T defines a maximal chain in %, (n, d) via

5 5, S . S,
Flnd+)=To< T\)< ... <'T,_ | <T,=F“(n,d+1),

where

~
re

T={S|,52,---,§r}, 8§<,8:<,...<,8

Proof of Theorem 1.1. In order to prove (i) we show that any triangulation
of C(n, d) is on a chain from # ' (n, d+ 1) to % “(n, d+1). Let Tbe an arbitrary
triangulation of C(n,d). Then, by Theorem 4.3, 6T is a triangulation of
C(n, d+ 1) containing T as a subcomplex. Thus, by Proposition 5.11 and induc-
tion, we can connect 7 to & “(n, d+ 1) by a sequence of increasing flips (com-
pare Fig. 3), and to #'(n,d+1) by a sequence of decreasing flips, which
implies the assertion.

For the proof of (ii) observe that, by the definition of increasing bistellar
flips, any chain

3 S,
o Fl(nd+ 1)< .. LFn d+1)
from # ' (n,d+1) to F“(n, d+ 1) defines a triangulation T, of C(n, d+ 1) via
n'z{S’l, R 5}'}9

hence factoring out the order of ¢. For the converse, let 7 be an arbitrary
triangulation of C(n, d+1). Then, by Corollary 5.12,

cr= T<(u*u)
is a chain in % (n, d) from ' (n,d+1) to F“(n, d+1).

Part (iii) follows directly from Corollary 5.12.

The central roles of the triangulations T, T/n, T\n, 5(T) are underlined by
the following additional results.

LEMMA 5.13 (Functorial Flip Properties). If § is an increasing flip from
T to T' then
(S.)Q/: {§\§¢[+2 (¥ {ja.}+ 1} . §(l+ 1 <j<§d+2 }</
is a decreasing flip sequence from TtoT,

(8\{n}),  ifneS,

() otherwise,

(S/n)= {



TRIANGULATIONS OF CYCLIC POLYTOPES 183

is an increasing flip from T/n to T’ /n,

(% if néS,
S\ ={(S\{n}u{n—1})  ifneS,n—1¢§,
() otherwise,

is a decreasing flip sequence from T\n to T'\n, where *‘<,” is any linear extension

Of “<",

ProrposiTioN 5.14 (Functorial Order Properties).
(i) The map
A, {% (n’ d) - ‘% (n+ 1, d+ 1)$
' T f’,
is order-reversing.
(1) The map

_{yl(n, d) > #(n—1,d-1),
' T T/n,

is order-reversing.
(iii) The map

\n: {Vl(n, d) » S (n—1,4d),
' T+ T\n,

is order-preserving.
(iv) The map

5. {y. (n,d) = F(n,d+1),
' T— 8(T),

is order-reversing.

COROLLARY 5.15.  Every chain in %, (n, d) corresponding to a flip sequence
(TY=(S,,...,8,) gives rise to flip sequences
(i) ()2, in Fi(n+1,d+1),
(i) (T/n)<, in Fi(n—1,d—1),
(iii) (T\n)<, in & (n—1,d), and
(iv) 8(T), in F (n,d+1).

86. All triangulations of cyclic polytopes are shellable. In this section we
present another application of the partial order property of the simplices in a
triangulation of a cyclic polytope, namely that all triangulations (without new
vertices) of a cyclic polytope are shellable. This fact is far from trivial because
there exists for example a non-shellable triangulation of a convex polytope
with all vertices in convex position, namely a perturbed version of Rudin’s
non-shellable tetrahedron (see [18]).
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THEOREM 6.1. All Te % (n,d) are shellable. A shelling order on the sim-
plices of T is given by first shelling the star of n in T corresponding to a shelling
order on the link of n in T, and then shelling the rest of T according to a reversed
linear extension of ““<,” for example > ,ue).”

The rest of this section is devoted to the proof of Theorem 6.1, which
implies Theorem 1.1(iv). We start with some lemmata that are intuitively
plausible at once when one considers the geometric interpretations of the objects
under consideration. With the results of Section 3, however, we have tools at
hand that provide more security.

LEMMA 6.2. Let S be a d-simplex in ("), G is the intersection of lower
Jacets of S if, and only if, S is of the form

S=(Gus\6)5 S#5:Gy» - - - » G2, 52, Gi, 51),
N N~
odd odd
G=G| U G2 (O G#(S\(;), S1:825 ..., S#(S\G)ES\G.

G is the intersection of upper facets of S if, and only if, S is of the form

S=(Gus\61» S#5.0)> Gas16)-15 - - - 582, Gi, 51, Go ),
(A a—" [ [
odd odd odd
G=GO v G] U... v G#(S‘\G)’ S1,82, ..., S#(S\(;)GS\G.

Proof. 1If there were two elements in S\G separated by an even number
of elements in G then leaving them out separately in S would produce gaps of
different parity. From this the claim follows.

LEMMA 6.3. Let Se( /7 ). If G is the intersection of lower (resp. upper)
Jacets of S then G is not contained in any upper (resp. lower) facet of C(n, d).

Proof. If d=1, everything is clear. Let G be the intersection of lower
facets F"', ..., F"” of S=(s, ..., ss+1). Then all F*” contain only even gaps,
in particular they contain s,<s,,,<n. Assume G is contained in some upper
facet F=(f\,....fs) of C(n,d). Then F contains s, and n. Consider F’'=
F\{n}, a lower facet of C(n—1,d—1), and the (d— 1)-simplex S'=S\{84+1}.
The sets

Fm\{ffli)—l,ffli)}U{S,/}, i=1,...,r,

are upper facets of S’, and their intersection is contained in F’ (because s, F'),
contradiction by the following paragraph with d replaced by d—1 and
induction.

If G is the intersection of upper facets F*", ..., F” of S=(s,,...,54+1)
then all F* contain only odd gaps, in particular they contain s,.,. Assume
G is contained in some lower facet F=(f;, ..., f;) of C(n, d). Then F contains
Sq+1 as well, so f; =54+ ,. Therefore we may assume, without loss of generality,
that n=/f,. Since F contains only even gaps we have f,_,=f,—1. Consider
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F'=F\{fs=1, fa} @ {n—1}=F\n which is an upper facet of C(n—1,d—1).
The sets

F\{sse1}, i=1,....,n,

are lower facets of the (d— 1)-simplex S'=S\{ss+ }, and their intersection is
contained in F’' (because n=s,.1), contradiction by the previous paragraph
with d replaced by d—1 and induction.

LEMMA 6.4. Let Te S (n,d) and S\ # S,€T. If S\ N S is not contained in
any upper (resp. lower) facet of S\, i.e., is the intersection of lower (resp. upper)
facets of Sy, then it is contained in some upper (resp. lower) facet of S,.

Proof. Assume S| n .S, is the intersection of lower (resp. upper) facets of
S| and also the intersection of lower (resp. upper) facets of S,. We show by
induction that S)u S, contains the support of a circuit Z in Z(n, d) with
Si1=Z" and S,=Z~. If d=1 everything is clear.

Both S| and S; are of the form given in Lemma 6.2, in particular we may
set S1=(S1,s,) and S,=(S3, 5») with s,>s5 for all s3€S; and s,>s) for all
s51eSy. If S7=3S; then s, #s; and (5], s1, 52) supports a circuit Z in Z(n, d)
with $=Z" and S,=Z ", showing that (S, S,) is not admissible, contradic-
tion. If §7#S; then S;n.S; is the intersection of upper or the intersection of
lower facets of S}, and the same for §;, by Lemma 6.2. Hence by the induction
hypothesis, S} v S; contains the support of a circuit Z' in Z(n—1,d—1) with
Z'<S{ and Z <85. Without loss of generality, z,+, =max (Sju S3)eS].
Then Z=(Z%,Z u{s,}) is a circuit (recall that s,>s) for all 5;€S/) in
Z(n, d) proving that (S, S,) is not admissible giving a contradiction.

Definition 6.5. Let Te% (n,d) and T'=T. An upper (resp. lower) facet
F of a simplex SeT"’ is a free upper (resp. lower) facet of T’ if F is neither a
facet of C(n, d) nor a facet of some other simplex in 7.

ProPOSITION 6.6. Let Te % (n, d) and T' =T such that T’ contains no free
upper facet. Then the intersection of T' with any simplex Se T\T' having all
upper facets in T' equals the union of the upper facets of S.

Proof. Assume that GESn T’ is not contained in any upper facet of S.
Let S’ be a simplex in 7" with G= S’ that is maximal with respect to “<.” By
Lemma 6.4, G is contained in some upper facet F’ of S’ that is not a facet of
C(n,d) by Lemma 6.3. Thus there is a simplex S” with §”# S’ and F'=S".
But then S”>S’, a contradiction to the maximality of S'.

LEMMA 6.7. Let Te % (n,d). Then str(n) contains no free upper facets.

Proof. Every simplex in st7 (1) contains n, thus any upper facet in sty (n)
contains n, so it cannot be contained in a simplex outside sty (n).

Proof of Theorem 6.1. A triangulation of C(n, 1) is just a dissection of an
interval, thus shellable. Let d>1 and Te%, (n, d). Assume all triangulations
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of C(n—1,d—1) are proven to be shellable. Then we know that
lkr(n)e & (n—1,d—1) is shellable. Let (lkr(n))<,. , denote a shelling order of
Ikr (n). Then (str(n))<,., is a canonical shelling order of sty (n).

Now pick any linear extension “>,” of “>.”” We claim that

(astr (n))s,=(S", ..., 8")
completes (str(n))«, , to a shelling order on 7. Let T =st,(n) and
TO=st;(m)uSVu...uS?, i=1,...,r

We know by Lemma 6.7 that there is no free upper facet in T =str (n). Since
“>,” extends *“>,” all upper facets of S are contained in T9~" for all i=

1,..., r. Hence, there are no free upper facetsin 7 forall i=1, ..., r. Thus,
by Proposition 6.6, the intersection of S and 79" is indeed the union of
these upper facets, in particular pure of dimension d—1 for all i=1,...,r,

which proves the Theorem by induction.

§7. Higher Bruhat orders. In this section we recall the basic definitions
and theorems in the framework of higher Bruhat orders and answer a question
of Ziegler [17]. Let % be a linearly ordered finite set. The reader may consider
& as the set [n], without loss of generality.

Definition 7.1 (Manin and Schechtman [15], Ziegler [17]).
For some (k+1)-subset P=(p,, ..., pi+1) of & the set of its k-subsets

is a k-packet of &¥. It is naturally ordered by P\p,<P\p, <= u<v, the
lexicographic order.

An ordering a of ({') is admissible if the elements of any (k + 1)-packet
appear in lexicographic or in reverse-lexicographic order. Two orderings
a and a’ are equivalent if they differ by a sequence of interchanges of two
neighbours that do not lie in 2 common packet.

The inversion set inv (@) of an admissible ordering « is the set of all (k+ 1)-
subsets of .# the k-subsets of which appear in reverse-lexicographic order
in a.

A set U of (k+1)-subsets of & is consistent if its intersection with any
(k+ 1)-packet Z of .# is a beginning or an ending segment of 2 with respect
to the lexicographic order on 2.

The set of all equivalence classes of admissible orders of (%) partially
ordered by single-step-inclusion of inversion sets—that is, [a] <[a’] if, and
only if,

inv(a)=U,clU,c...cUg=inv (a’),

with Z2U,\U, -, =1 and all U, are admissible—is the higher Bruhat order
B(Z, k), where #(n, k) denotes #([n], k).
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For an inversion set Ue #(%, k) define

&£ , X
6U—{IG<k+2> I\l|¢U, I\lk+2€U}.

The structure of #(%, k) does of course only depend on the cardinality of
£, but the general setting leads to some advantages in the notation of functorial
constructions. For simplicity, however, we switch now to %(n, k).

THEOREM 7.2 (Manin and Schechtman [15], Ziegler [17]). The higher
Bruhat order #(n, k) is a ranked poset with rank function r(U) = #U. Moreover,
it has a unique minimal element 0,,,= & and a unique maximal element 1, ;=

().

The following Theorem gives a more geometric insight into the structure
of higher Bruhat orders.

THEOREM 7.3 (Ziegler [17]).  The higher Bruhat order B(n, k) is isomorphic

to

(1) the set of all consistent sets U of (k+ 1)-subsets of [n] with single-step-
inclusion-order,

(2) the set of (equivalence classes of ) extensions of the cyclic hyperplane
arrangement X"" "%~ by a new pseudo-hyperplane in general position,
partially ordered by single-step-inclusion of the sets of vertices on ‘“‘the
negative side”, and to

(3) the set of maximal chains of inversion sets in #(n, k — 1)—corresponding
to orders of k-sets—modulo equivalence of admissible orders.

The following notations for deletion and contraction in #(n, k) provide
intuition via the corresponding notions in X ™"~ *~",
Definition 7.4. For Ue%(n, k) define
U/n={I\n:nel, IeU}, (contraction)
U\n={IeU:n¢l}. (deletion)
In order to construct inversion sets in #(n+ 1, k+1) from inversion sets in

A(n, k) and in #(n, k+1) the following Theorem is useful.

THEOREM 7.5 (Ziegler [171). Let U be an inversion set in #(n, k) and V
be an inversion set in B(n, k+1). Then U'=V u U * (n+1) is consistent if, and
only if,

oucsV and oCUc=CYV.
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COROLLARY 7.6. The following maps from B(n, k) to B(n+1,k+1) are
injective:
U—U=Uxn+1)udl, (extension)
U U=Ux(n+1)us(U)=Ux(n+1)u(U\n)", (expansion)

where 6(U) is defined as

s(U) ={Ie (;fi]z)‘ Iigsse€ U}.

The extension is not order-preserving in general. But the following defini-
tion yields a canonical single-step-inclusion order for the expansion of U from
an arbitrary single-step-inclusion order of U.

Definition 7.7. For some Ue%(n, k) with a giAven single-step-inclusion-
order Q(U)=(Q(U"), I) define the following order Q. For n=+k+ 1 start with

Q({[n1}")=(n+1])

corresponding to Q({[n]})=([n]) in #(n, k). If n>k+1 and O(U') is already
constructed then define

O(U)=(Q(U"), oI, Tu {n+1}, QS1\D)),

where the orders on 81 and 6I\dI are given recursively by restriction of
QUU\m").

ProrposiTioN 7.8.  For all Ue #(n, k) and all single-step-inclusion orders Q
of U the order Q is a single-step-inclusion order of the expansion U of U in
Bn+1,k).

Proof. The following properties make sure that no cycles are produced:
8(U)\n=6(U\n),
o(U)\n=0(U\n).

At each single-step-inclusion step all packets in #(n, k+1) are consistent by
induction. From the remaining packets only those containing /v {n+1} are
involved.

If n¢1 then the order increases just by /v {n} which is consistent because
Q is a single-step-inclusion order of U and U’ is already ordered consistently.

Let n be in 1. For all packets 2 containing /U {n+1} either Z/n+1 is
completely contained in U or only / meets U, In the first case the only element
P\@ of #\n+1 comes before /U {n+1} in €, in the second case JuU {n+1}
is positioned after P\n+1 in € both cases lead to consistent orders on 2.

From this we derive the promised result.
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THEOREM 7.9. The expansion

_A_{@(n,k)—»ga(nﬂ,kﬂ),
) U U,

is an order-preserving embedding that maps O 10 041441 and 1,4 to Tosiker.

§8. The connection between #(n—2,d—1) and ¥ (n,d). In this section
we present an order-preserving map from the higher Bruhat order
B(On[,d—1)=B(n—2,d—1) to the poset ¥ (n,d) of all triangulations of
C(n, d). This map is obtained by two different constructions, each of them
providing complementary parts of the properties claimed. It is not quite clear
whether this map coincides with the map suggested by Kapranov and Voe-
vodsky [12].

We start with some additional specific properties of triangulations of cyclic
polytopes.

LeMMA 8.1. Let Te% (n,d). Then for each (d—1)-subset (sa,...,Ss)
there is at most one simplex Se€T with S= (51, $2, . . ., Sus Sa+1) for some 5, <s,
and some S 41> 8,.

Proof. Assume there were S#S'eT and

S=(S|,S2,...,S¢/,S‘j+]),
SI:(s,laSZ»' . ’stlas:l+l)~

Either s, #s] or 5,41 #8y+1. If 51 <s) then define

_{(s,,s’,,...,sl,,sﬁlﬂ) if d even,
(81,81, .oy 8qy Sav1) if d odd.

Inanycase Z'=Sand Z <S§'.
The cases 1> 57, Sg+1<Sy+i, and s,+ > s+, are analogous.

Definition8.2. For S=(s,,...,s4+1)eTeSL (n,d)let Xs=(s3,...,54) be
the central set of S. The number Is=s, is called the left boundary, the number
rs=Sy+1 the right boundary of Xsin T.

Since there are no multiple central sets in triangulations of cyclic polytopes
we have the following simple representation.

CoROLLARY 8.3.  Any triangulation T of C(n, d) is determined by its set of
central sets and their boundaries.

LemMma 8.4. In every triangulation T of C(n, d) every interval of length
(d—1) in [2,n—1] appears as a central set of some simplex SeT.
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Proof. Here is a proof for d odd. Let T be in & (n, d) and I an interval
of length d—1. From Gale’s evenness criterion it follows that 7 is contained
in exactly two facets of C(n, d), namely (1, I') and (I, n). Therefore, there must
be a simplex S in the triangulation 7 containing (1, 7).

If S, =(1, I, r) we are done. Otherwise S;=(1,/,,I). Because (/,, I) is not
a facet of C(n, d) there must be another simplex S,eT with (/,,I)=S,. If
S>=(l,1,r) we are done. Otherwise proceed as above. Because of Lemma
8.1 at each step /;</;.;. Hence there must be a k and an r such that the simplex
Si=Uk-1,L,r)isin T,

The case d even is analogous where the corresponding facets of C(n, d) are
(ii—1,71) and (1, i;+ 1) and the sequence of the J; is decreasing.

We start now to construct a map by defining a natural family of functions
on #(n,d).

Definition 8.5. For an element I=(iy, ..., i;)e(*}) define the map

S(n,d) - S(n d),
flip, : T {ﬂip(,,,‘,)(T), if (/, I, r) is an increasing flip,
—
T, otherwise.

For an inversion set Ue#(Jn[,d—1) let Q(lK])=(I,-),-=1 ,,,,, #u be a single-
step-inclusion-order of the elements of U, i.e., U,-:, I; is consistent for all K=
1,...,#U. The flip-map Ty is now defined as follows:

G .
:/ﬁip.

{.@(]n[, d—1) - %(n, d),
U flip,,, o. . .o flip, (F'(n, d)).

Remark 8.6. At this point it is not obvious that this definition is indepen-
dent of the special order Q(U)=(1,);=.. v of U. Up to now we only know
that Jgi, maps each pair (U, Q(U)) to a triangulation in %(n, d), where
UeZ(Inl, d—1) and Q(U) is a single-step inclusion order of its elements. It is
order-preserving in the sense that if U< U’ and Q(U), Q(U’) are corresponding
single-step inclusion orders with the property that Q(U) is an initial segment
of Q(U"), then T4, (U, QU )) < Tqip (U', QU")).

Definition 8.7. For icle(¥) define the index of iinlas

ind,(i)=k if I=(i1,...,i=ik,...,id).
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Definition 8.8. For an inversion set Ue #(n[, d— 1) define the central set
of U as

(X=(x1,....,xa-)e(M)): XujeU Vjeln]\X: \
X1 <Jj<Xg-1,
d—indy,; (j) even,

XvjeU Vje[n]\X:

X <J<X4-1,
d—indy., (j) odd. )

Yum!

Definition 8.9. For an inversion set Ue #(]n[, d— 1) define the left bound-
ary function of U as

XU nd [n], .
Au: {max {eln]: (1, X)¢ U} for d odd,
H
max {e[n]: (I, X)e U} for d even,

and the right boundary function of U as
. {XU - [n],
| X+ min {re[n]: (X, )¢ U},
with the additional notation

min (J)=n and max (J)=1.

Definition 8.10. Now define the direct map 4, as

7 _{%(]n[,d—l) - % (n,d),
s U {(Ag(X), X, pu(X)): XeXy).

Remark 8.11.  Here it is neither obvious that 7;,(U) is indeed a triangula-
tion nor that the map is order-preserving, but it is uniquely defined.

ProprosiTiON 8.12. Let U and U'=Uu{l} be inversion sets in
B(nl, d—1). Define the following two properties for some irel, 1 <k <d—1.

Property A: I\ire Xy but I\ix¢X .
Property B: I\ix¢ Xy but I\ixeX .

Then the following hold:
(i) If ix has Property A then all i,,eI with m=k mod 2 have Property A as
well,

(ii) If ix has Property B then all i,,eI with m=k mod 2 have Property B as
well.
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Proof. From Definition 8.8 we know that

ir has Property A if, and only if, d—k is odd and i, has Property C, namely
ind;\;, ; () is even for all j¢ I with i) <j<i,_, and I\i uje U, and
indp;, o (J) is odd for all j¢I with i, <j<i,_; and I\i; U j¢ U,

ir has Property B if, and only if, d—k is even and i, has Property C.

In the sequel we will show that Property C for i, induces Property C for all
i€l

Assume i€l has Property C. Let jé¢l, iy <j<i, be arbitrary. (If there is
no such j the proof is finished.) Consider the inversion J=(/uj)\i. From
Property C we know that J has Property D, namely

JC{U if ind, (j) even,
U if ind,(j) odd.

Now we investigate the d-packet P=IuJ. Because both U and U’ are
consistent, the complete segment that starts at a neighbour of /=P\; and
contains J= P\j; must have property D as well as J, and the complementary
segment must have exactly the contrapositive property D. That means by
parsing the packet P from one end to the other “having property D’ switches
at I=P\}j.

In other words, I\i,, uje U if, and only if, I\i, U je U for all i, lying on the
same side of j as i in P and I\i,ujeU if, and only if, I\i, uj¢ U for all i,
lying on the opposite side of j as i;.

Additionally, if m is congruent k modulo 2 then ind,;\;,.; (j) is congruent
to ind,.;, ., (j) modulo 2 if, and only if, i, lies on the same side of j as i, in P,
but—since j was arbitrary—this means that i, has Property C.

Remark 8.13. The above Proposition roughly states that for I\i, “being
contained in the central set of U™ for all possible m only depends on whether
I'is in U—not on whether some inversion I\, wj is in U—whenever this is
correct for one m.

ProrosiTION 8.14.  Let U and U’ be as above. Then the following hold for
all 1<il<iyand i, <r<n:
(L,INN)eU <= (I, I\i,,)eU Sor all m=kmod 2,
(INie,r)elU <= (INi,,,r)elU  for all m=kmod?2.

Proof. The proof is analogous to the proof of Proposition 8.12 with j
replaced by /, r.

THEOREM 8.15.  The maps Tw, and T4, coincide.

Proof. We will show that T (U)=TJ4i(U) for all Ue®B(n[,d—1).
Because %(Jn[,d—1) has a unique minimal element ¢ we can proceed by
induction on #U.
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The proof for U= is a simple computation. Therefore we assume that
the claim is true for some inversion set U and we will show that then the claim
is also true for all consistent U'= Uy {I}.

It remains to check the following points.

(1) If T4(U")# T4 (U) then there exist 1</<i; and iy<r<n such that

([, I, r) is an increasing flip in J4,(U) =T 4i(U), and
(2) if the (d+2)-set (/, 1, r) is an increasing flip in J4ip(U) =T 4ir(U) then
Tl U')=tlip; T i U).

From Proposition 8.12 it follows that the assertions (1) and (2) are correct
as far as the central sets of U or U’, resp., are concerned.

From Proposition 8.14 and the corresponding definitions in 8.9 we get that
in the situations of both (1) and (2) the left and right boundary functions are
constant on the sets /\i; with 1 <k <d—1, i.e., there exist / and r with 1 </<i,
and i, <r<n such that

A'U(I\ik)=l’ pU(I\ik)=r.

Moreover, it follows that

iy for d odd, .
Au(I\iy) ={ ' pu(INi)=r,
[ for d even,
Av(INig-1) =1, pu(I\iy-1)=ig-1.
After having added I to the inversion set U we have
. ! for d odd, .
iu'(l\lk)={, pu-(I\iR)=r,
iy for d even,
Av-(INiv) =1, pu(I\iv)=r,
AU’(I\itl—l )Zl, PU'(’\I.‘IH):".

With this the proof of Theorem 8.15 is complete.

CoOROLLARY 8.16. The map
<7 = fﬂip = tg—dir

is well-defined and order-preserving.

We finish the paper by stating—as a bonus track without a proof—the
following connections between the constructions of this paper.
ProposiTiON 8.17 (Functorial Relations).
T =(T(U)",
T(U\n—=1)=7(U)\n,
T(U)=67(U).

The analogous property for the link does not hold in general!
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