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1. Introduction

The aim of this project is to illustrate how the framework of polynomial
rings and computational methods designed for them can be of help in proving
(plane) geometry theorems. The idea is not original and there are already,
even for the beginner, excellent references concerning this topic. In coherence
with the “tapas” style of this book, we will recall just a few, tasty ones: for
instance, the recent book by the founder of the modern approach to automatic
geometry theorem proving, Wu Wen Tsun [Wu]; the textbook of Cox-Little-
O’Shea [Cox-Little-O’Sheal, that integrates one section on this material in
a commutative algebra/algebraic geometry course, and the book of Chou
[Chou], including an impressive collection of computed examples.

The primary motivation for our own contribution to this chapter has
been the preparation of undergraduate classroom material for computer-
aided commutative algebra courses that have been offered, since the middle
eighties, in the University of Cantabria and, more recently, in the Univer-
sity Complutense of Madrid. Thus, the following pages should be regarded
as a (thoroughly) elaborated version of teaching notes. The rationale of our
didactical approach is that algebraic geometry examples improve students
understanding of commutative algebra concepts and conversely. This fruitful
relation can be further advanced if students are required to handle concrete
problems to which both algebra and algebraic geometry apply.

Automatic Geometry Theorem Proving provides an interesting framework
to accomplish this, since an elementary geometry problem has to be modeled
into a commutative algebra statement, which will be. in turn, regarded as a
property of an algebraic variety. In this way students develop the commuta-
tive algebra computational skills to “read”, in terms of the geometry of affine
varieties, the fate of elementary geometry statements. The didactical rele-
vance is that. in the context of elementary geometry theorems, students have
their own “a priori” intuition (although it can be wrong) about what is or
what is not likely to happen. Confronting intuition with the actual behaviour
of mathematical objects seems the key to significant learning.

On the other hand, given the complexity of current algorithms for ideal
manipulation (see Arjeh’s chapter? [{make a better reference!!]) and the lim-
ited resources usually available in undergraduate mathematics laboratories,
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it is not straightforward to identify a collection of examples which can be
successfully manipulated with scientific freeware, such as CoCoAl, running
over small machines. We hope that this chapter also shows how Automatic
Geonmetry Theorem Proving satisfies this requirement.

As a consequence of the didactical origin of the chapter, our classroom
presentation of the topic turned out to converge towards [Cox-Little-O’Shea]
style, several years before its publication. This coincidence responds to the
obvious fact that Grébner basis are very likely to be introduced in most
computationally oriented commutative algebra courses) and it is also due to
a common explotation of Kapur's [Kapur] formulation. We thank the au-
thors of the book [Cox-Little-O’Shea] for sending us an earlier draft of their
manuscript. Some results below are directly taken from them, but we take
full responsability for many deviations and interpretations. Besides, we have
enlarged their presentation to include an amusing introduction to automatic
discovery of theorems. In other words, we proclaim automatization not only
for proving some given statement, but even for inventing such one!

2. Approaches to Automatic Geometry Theorem
Proving

Although there are several possible approaches to Automatic Geometry The-
oreni Proving, the main steps are always similar:

1) Algebraic formulation: the translation of a geometry statement into alge-
braic equations.

2) Proof: the use of some decision procedure, in the model we are working
with, to determine the validity of the theorem.

3) Searching conditions: the search for extra conditions if the theorem, as it
was formulated originally, is false.

This project is organized around these three items; it is a tour along
classical results from geometry, with an illustration of the peculiarities that
may arise.

3. Algebraic Geometry Formulation

Let K be a field of characteristic 0, for instance the field of rational numbers
. and let L be an algebraically closed field containing K, for instance the
field of complex numbers €. We will restrict our attention to theorems which
can be phrased in terms of polynomial equalities.

b CoCoA is scientific software, produced and freely distributed by Robbiano-Niesi-
Capani, Universita di Genoa, cocoa@dima.unige.it
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Start by choosing an appropriate coordinate system. Variables x =
(z1,...,2q4), used to describe coordinates of points or geometric magnitudes
(distances, radius, ...) that can be chosen arbitrarily, are called independent
variables®; variables y = (y1,....y,), used to describe points which satisfy
certain equations in the independent ones because of the construction proce-
dure, are called dependent variables. In this manner, various geometric state-
ments such as incidence, parallelism, perpendicularity, distance, etc... can be
turned into polynomial equations in the variables (x,y) with coeflicients in
K.

Example 3.1. ab L cd translates into
(b — al)(dl —c1)+ (ba— a2)(d2 —¢2) =0,

where a = (a1, as) etc.
The midpoint of ab is described by the two equations

2u; = a1 + by and 2uy = a9 + be.
Here uy, us are dependent variables.

Exercise 3.1. Express the following conditions as polynomial equations.

. The point a lies on a circle with center m and radius r.
. The point a lies on the line bc through points b and c.
. Lines ab and cd are parallel.

. Points a, b and ¢ are collinear, i.e. on one line.

IV N

Therefore, after adopting a coordinate system, the hypotheses of a theorem
can be expressed as a set of polynomial equations, h1(x,y) =0,..., hp(x,y) =
0, and the thesis can also be expressed as a polynomial equation, t(x,y) = 0,
where hy,...,hy,t € K{x.y]. Then a geometry theorem 7 is translated into

[\/(x, y) € L™, hi(x,y) =0,...,hp(x,y) =0 = t(x,y) =0 (3.1)

In terms of algebraic geometry, this is phrased as: the algebraic variety
defined by {h1 = 0,....hp, = 0} C L™ must be contained in the variety
{t = 0}. At this point we need to introduce some notation from algebraic
geometry.

Given fi,..., f; € K[x,y] we denote by Z(f1,..., f;) C L™ the algebraic
variety defined by fi,..., f; in L™. Given an algebraic variety Z C L™ we
denote by J(Z) the ideal defined by Z in K|x,y].

Definition 3.1. Given a geometry theorem T, we define the hypotheses va-
riety H as the algebraic set Z(hy,...,hy) and the thesis variety T as the
algebraic set Z(t).

2 This is a subtle point to which we will come back in section 4.
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Definition 3.2. A theorem T is geometrically true if the hypotheses variety
H is contained in the thesis variety T.

The notion of being geometrically true is related to the ideal membership
problemn in the following way.

Theorem 3.1. The following statements are equivalent:

(a) Theorem T is geometrically true.

(o)t e /i hy).

(¢c)1€ (hy,....,hy,tz=1)K[x,y,z].

Exercise 3.2. Show that (b) and (c) are always equivalent, i.e. do not
need the assumption that L be algebraically closed. Indicate where you use
Hilbert’s Nullstellensatz for proving the above theorem.

Item (c) of the theorem is suitable for the use of a computer algebra
system, such as CoCoA. In CoCoA, NormalForm(f, (f1,...,fq)) computes
the normal form of the polynomial f with respect to a Grobner basis of the
ideal generated by {fi,....fq}. Of course we have to select an ordering of
the variables, but since we are only interested in deciding if the normal form
is or is not 0 — and this is independent of the ordering — it makes sense to
choose an ordering such as DegRevlLex, which has the reputation of allowing
taster computations. In conclusion, we have

=0 7T is geometrically true

NormalForm(L, (fx; .+ hp. £z = 1)) { #0 7 is not geometrically true

It is important to remark that there is no unique algebraic formulation for
a given geometric statement. When we talk about proving a theorem 7, we
implicitly refer to the selected algebraic translation. In particular, it is often
useful to choose formulations that reduce the number of variables appearing
in the statement. Since most geometric properties are invariant under similar-
ities, one can translate a given theorem to an equivalent statement in which
one or several points are assigned numerical coordinates. Here is a simple but
illustrative example.

Example 8.2. The angle subtended by a diameter of a circle from any point
on the circumference is a right angle.

b
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This statement concerns any circle and any point on it. But it is obvious
that the theorem is true in general if and only if it is true for one concrete
circle (since any two circles are similar and similarities preserve right angles).
Thus we can fix (totally or partially) the given circle. Let us fix the center
but not the radius. Take points o = (0,0), a = (2[,0) and b = (u,v) such
that the segment between o and a is a diameter of a circle and b belongs to
this circle. Observe that {l,u,v} are the variables, {{,u} can be considered
as independent and v can be considered as dependent on {/,u} as it must
satisfy the equation of the circle.

Hypothesis: b is on the circle centered at (I,0) with radius { translates into
h=h({lu)=(u-0)*+v2-1>=0.
Thesis: the angle oba is a right angle, i.e. ba L bo,
t=t(l,u,v) = ulu — 20) + v2.
Thus we must check whether NormalForm(1, (h,tz—1)) = 0, which is easily

verified in CoCoa. Therefore, we have a theorem which is geometrically true.
(Of course, the computation in this example is trivial, even by hand.)

Exercise 3.3. Describe hypotheses and theses in the following cases and
show that the two statements are geometrically true.

1. In a right triangle oba with right angle at b, let p be the projection of b
on oa. Then

loa]  |ob]

lob]  Jop|
2. Same situation as before. Then

lopl _ [bol

lbp|  [pal

It seems that we have found a nice way to prove geometry theorems.
Unfortunately, there are well-known theorems which seem “false” using this
method. For instance, Thales’ Theorem turns out to be not geometrically
true, according to this procedure, as the following example shows.

Erample 3.3. (Thales’ Theorem) Given two secant lines r and r’, the trian-
gles obtained by intersecting any two parallel lines m and m’ with the two

secants are similar.
!
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Cousider the z-axis as one of the secant lines and the line joining points
o = (0,0) and ¢ = (p, ) as the other one. Take points a = (/,0) and b = (s,0)
on the z-axis and draw the line ac. Let d = (u, v) be the intersection of oc
and the line parallel to ac passing through b.
Hypotheses: d € oc: hi(l,s,p,quv)=qu—pv =20
ac|| bd: ha(l,s,p,q,u,v) =qlu—s)—vip—1)=0

Thesis: the ratios of the lengths of the corresponding sides of the two triangles
oac and obd are equal, i.e.

loa] _ loc| _ fac]
job|  Jod]  |bd]

This is expressed by the following equations: t, := (u?+v?)[®—s%(p?+4°%) = 0,
tyi=((s —u)2 + )P -2 ((p - D%+ ¢*) =0

We must check that the hypotheses variety {h, = 0, hy = 0} is contained
in the zeroes of t; (resp. the zeroes of t2). CoCoA’s answer for thesis t; is
negative:

Ring ( "ring name:” R ; "characteristic:” 0 ;
Vvariables:” zuvpgsl ; "weights:” 1,1,1,1,1,1,1
"ordering:” DEGREVLEX );

NormalForm(1, Ideal(—up + uq, —vp + ug — qs + vl,
— zp?s? — 2q%s% + zu?? 4+ 20?1 - 1));

Therefore, the first thesis of this theorem is not geometrically true. Simi-
larly, the second thesis is found to be not geometrically true.

This last example makes clear that our procedure to prove geometry the-
orems is not complete: if the answer is YES we can guarantee the statement’s
validity, but if the answer is NO the theorem can still be “true”. This can
happen because our algebraic formulation sometimes does not represent cor-
rectly the geometric construction we have in mind. Think for a moment how
you would prove by hand Thales’ theorem (Example 3.3): at a certain step
it would be necessary to discard that some variables are equal to zero. Geo-
metrically, this is equivalent to avoiding degenerate cases (for instance, in the
above example, when point ¢ is on the z-axis; or, in general, when a triangle
reduces to a point or to a line, etc...). Nevertheless, these degenerate cases
satisfy the algebraic hypotheses, but the theorem does not hold for all these
cases. Let us deal with this problem.

Let 7 be a geometry theorem and suppose that it is not geometrically
true. In the language of algebraic geometry this means that the thesis variety
T does not contain the hypotheses variety H. But the validity of the theorem
can be thought of as a generic matter in the following sense: it can happen
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that for some polynomial ¢ € K[x,y]. the set H \ {g = 0} is contained in
T. That is, it can happen that, upon removing some degenerate cases from
the hypotheses variety, the thesis holds over the remaining configurations.
Therefore, we propose a little change in formulation (3.1):

LV(x,y) € L™ hi(x,y) =0,.... hp(x,y) =0,9(x.y) #0 = t(x,y) = (ﬂ (3.2)

Definition 3.3. Let hy....,h,,9,t € K|x,y] as above. We define the hypo-
theses+condition variety Hy as the algebraic set Z(hy, ..., hp, gk—1) in L™+
where k is a new indeterminate.

Definition 3.4. Let hy....,hy,g,t € K[x,y]. 4 theorem formulated as in
(3.2) 4s geometrically true under the condition g # 0 if the variety of
hypotheses+condition Hy is contained in the thesis variety T = Z(t) C L**1.

Exercise 3.4. Show that the validity of a theorem under the condition g % 0
is equivalent to

te \/(hl,...,hp,gk'— 1).
Prove that this last condition holds if and only if
| Le (hy...,hy gk — 1.tz = 1)K[x,7,k, 2],
where z is a new indeterminate.
Now let us go back to Example 3.3.

Exercise 3.5. (Thales’ Theorem revisited) We proved above that, with-
out any extra condition, Thales’ Theorem is not geometrically true. Let us
impose the first nondegeneracy condition that arises by considering the hy-
pothesis: the line oc must be different from the z-axis (i.e. ¢ # 0). Check that
with this extra condition the theorem is true.

In the next paragraph we show how to look for such nondegeneracy con-
ditions.

4. Searching for conditions

Notations remain as in the previous paragraph, i.e. hq,.. ., hp describe the
hypotheses and ¢ the thesis for a geometry theorem.

Definition 4.1. A non-degeneracy condition for a geometry theorem is a
polynomial g € K(x,y] such that the theorem is geometrically true under the
condition g # 0.
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Exercise 4.1. Prove that a polynomial ¢ € K[x,y] is a condition for a ge-
ometry theorem if and only if

g € (h1,....hptz = 1) N K[x,y]
for some [ > 0.

Remark 4.1. From the computational point of view, it is easier to search for
conditions among the elements of the ideal

(hi,..., hp,tz = 1) N Kx,y]

than in its radical. Radical computation is more difficult and less often im-
plemented in computer algebra packages. Nevertheless, this restricted (for
practical purposes) computation yields the same results from a geometric
point of view, because ¢ # 0 (over some point in affine space) if and only if

g' #0.
The last remark motivates the following
Definition 4.2. The ideal
(hiy.. o hp,tz—1)yN K{x,v]

will be called the ideal of non-degeneracy conditions for the given theorem T .

Definition 4.1 is too coarse and has some drawbacks. For example, note
that
(hi,... hy) C(hioo. by, gk — 1) N K[x,y].

Thus, any set of hypotheses jointly with any thesis could turn into a valid
ceometry theoremn just by finding a suitable condition g: it is enough to choose
g€ (..., hp); then

(h1,... hp, gk = 1) N K[x,y] = K[x,y]

and we have, by Exercise 3.4, the validity of any thesis under such condition
g#0.

Therefore. it is necessary to classify conditions in order to avoid patho-
logical or redundant situations.

Definition 4.3. Let g € kix,y] be a condition for a geometry theorem.

(i) g is a trivial condition if g € \/(h1,..., hp).

(ii) Otherwise, g is a nontrivial condition. Moreover, these can be split in
two further cases:
a) g is relevant if 1 & (hy, ..., hp, g).
b) g is trrelevant if 1 € (hy,..., "y, g).
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Remark 4.2. Geometrically, a trivial condition g means that {¢g = 0} contains
the hypotheses variety H. So the hypotheses+condition variety H,, is empty;
therefore, from a logical point of view, any thesis ¢ follows from H,.

On the other hand, if a nontrivial condition g is irrelevant, the variety
{g = 0} does not intersect the hypotheses variety H. Thus, H C {g # 0} and
this means that condition ¢ s 0 is already implicit in the hypotheses.

Although trivial or irrelevant conditions do not yield true conditions, they
are important because it can happen that relevant conditions arise as com-
binations of other conditions, including trivial and irrelevant ones (i.e. such
“odd” conditions could appear in a basis of the ideal of conditions (see Defi-
nition 4.3) or in a basis of its radical).

Exercise 4.2. Let 7 be a geometry theorem which is not geometrically true.
Prove the following statements:

1. If the hypotheses ideal 1/(hy, ..., hp) is prime, all conditions are trivial.

2. If there exist nontrivial conditions for 7. each nontrivial condition is
relevant.

3. There are relevant conditions for 7 if and only if there are relevant con-
ditions in any basis of the ideal of conditions of 7.

Remark 4.3. The computation of the ideal of conditions (see Definition 4.2)
with CoCoA is done using the command

Elim(z, Ideal(hy,..., Ny, tz — 1))

that yields a Grobner basis of (hy,..., hs,tz — 1) N K[x,y].
For each element of this basis we discard conditions g which are contained
in the hypotheses ideal (i.e. trivial conditions) computing

NormalForm(1, Ideal(hq,. .., hp, gk — 1))

in K[x,y,k]. If it is 0 the condition is trivial. For nontrivial conditions, again
using NormalForm, we detect relevant and irrelevant ones.

Exercise 4.3. This theorem appears in the proposal School Mathematics in
the 1990s (ed. Geoffrey Howson and Bryan Wilson, Cambridge University
Press, Cambridge, 1986) of the International Commission on Mathematical
Instruction, where the didactical impact of automatic theorem proving in el-
ementary geometry is already mentioned.

Let oabc be a square. Then the two lines connecting ¢ with the midpoints
of oa and ab, respectively, divide the diagonal ob into three segments of equal
length.
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(¢] a

1. Give a translation into a system of polynomial equations. Take o =
(0,0),a = (1,0),b=(,1),c=(0,])
2. Show that the theorem is not geometrically true.
3. Is the hypotheses ideal prime? If not, can you find a decomposition as
intersection of prime ideals?
4. Analyze trivial and non-trivial conditions in the basis of the ideal of
conditions.
. Find a nondegeneracy condition so that the theorem holds under this
extra condition.

o

It is quite obvious that sets of the kind H \ {g = 0} are Zariski open in
the hypotheses variety H, but there are open sets which are not so easily
described. Thus, our method for finding conditions yields specially simple
open sets where the thesis holds. But, could it happen that the theorem
holds over more complicated open sets and we could not tell just by finding
conditions? The next exercise asks you to show this is not possible.

Exercise 4.4. Show that there is a nonempty Zariski open set in H where
the thesis ¢ = 0 holds if and only if there exists a nontrivial condition g such
that

hiy=0,...,hpy=0,g#0=>1t=0

At this point we present the geometric interpretation of the ideal of all
conditions for a given thesis. Roughly speaking, the zero set of such an ideal
covers, quite tightly, the set of failures {t # 0} N H.

Exercise 4.5. Let {g1,...,gs} be a basis of the ideal
(h1,o.. hyp, tz — 1) N Kx,y].

1. Prove that the algebraic set Z(g1, ..., gs) is the Zariski closure of {t # 0}
in H.
2. Prove that, therefore, Z(g;,...,gs) does not contain a nonempty Zariski
open of H contained in Z(t).
3. Show that there is a proper algebraic set (possibly empty) W on H such
that
Z(g1,...,95)\W C {t#0}on H.
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For instance, in Exercise 4.3, the Zariski closure of {t # 0} N H is equal
to {{ = 0} N H, the set of degenerate squares. The meaning of Exercise 4.5.1
and 4.5.2, is that {{ = 0} is a necessary condition for the thesis to fail over
some point of H. On the other hand, Exercise 4.5.3, shows that it may not
be a sufficient condition: there could be some values of {I = 0} N H where
the thesis holds, but such values are contained in a proper Zariski-closed set
of H N {t = 0}. Intuitively speaking, we could think of the set Z(g1,...,7s)
as the collection of truly degenerate cases; perhaps, a few of these cases still
satisty the theorem.

Exercise 4.6. Find, in Exercise 4.3, the set of points in {{ = 0} N H that
satisfy the thesis.

But, as you can see in the next example, sometimes Z(g1, ..., gs) contains
all the “usual” cases.

Ezample 4.1. Suppose we want to prove the following statement: The center
of a parallelogram is on one of its edges.

Consider the parallelogram with vertices o = (0,0}, a = (,0), b = (r, 3)
and ¢ = (p,¢). Let d = (u,v) be the center of this parallelogram, i.e. the
intersection of the diagonals. Here [, 7, s are the independent variables.

Hypotheses: oa || bc: hy =1l(s—¢q) =0
ob || ac: ha =qr—s(p=1)=0
d€oc: hy:=uq—vp=0
de€ab: hy:=s{(u—0)—v(r—-10=0

Thesis: de€ oa: t:=lv=0

Ring ( "ring name:” R ; "characteristic:” 0 ;
?variables:” yzuvpqrsl ; "weights:” 1,1,1,1,1,1,1,1,1
"ordering:” DEGREVLEX );
NormalForm(1, Ideal{l{(s — q),qr — s(p — 1), ug — vp, s(u — ) — v(r - 1),
(lv)z —1));
1

The theorem is not geometrically true. Let us look for some conditions.
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Elim(z, ldeal(l{(s — q).qr — s(p — 1), uqg —vp,s(u — 1) —v(r = 1),
(lv)z =1));
fdeal(uvp — 1/2rs — 1/2sl,vr — 1/2rs —wl+ 1/2sl,q — s,ps — rs — sl,
pr—12—pl+ 12, p* —r2 —2pl + 1%, up — 1/2r> — pl + 1/212,
vs —1/28% us = 1/2rs — 1/2sl,ur — 1/2r% — ul -+ 1/21%);

We choose the condition ps — rs — sl, which is nontrivial:

NormalForm(1.ldeal(l(s — q), qr — s(p — 1), ug — vp, s(u — I) — v(r = 1),
(ps—rs—sl)z~1));
1

And we verify that the theorem is valid under this condition:

NermalForm(1, Ideal({(s — q),qr — s(p — 1}, ug —vp, s(u — 1) — v(r — 1),
(ps —rs —sl)z — 1), (vl)y — 1};
0

What is the geometric meaning of this condition?
sfp—r—-10)#0 & s#0andp-r—-[#0

Now s # 0 savs that the parallelogram is not degenerated (i.e., it is not a
point). But p — [ # r gives the condition:

the length of the projection of the segment ob onto oa is different
from the length of the projection of the segment ac onto oa.

Obviously, this condition holds only on “unusual” parallelograms. Our method
requires further analysis, since we have proved a (false) “theorem” that holds
over an open set of the variety of parallelograms!.

True non—degeneracy conditions

The last example shows that, in order to bridge the gap between a geometry
theorem and standard geometric intuition, we need a finer analysis of the
conditions yielding “degenerate cases”. Note that when we first established
the algebraic formulation of a geometry statement, we identified some vari-
ables as being independent. Now, we emphasize this fact by naming such
variables geometrically independent, because they correspond to coordinates
of points which can be freely chosen to draw a geometric sketch representing
our statement. For instance, when drawing a parallelogram, three points can
be thought as independent, but the fourth one is then totally determined.
Again, for parallelograms having fixed vertices at (0, 0), (1,0), only the two
coordinates of a third vertex should be considered as independent. And if we
deal with parallelograms having one vertex at (0,0) and another one over the
z-axis (see Example 4.1), say, (I, 0), then [ plus the coordinates of a third ver-
tex should be considered as independent. Thus the concept of geometrically
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independent variables is linked to the precise formulation we are considering
tor a given geometry theorem: for Example 4.1 the number of such variables
could be 6, if we choose to deal with a general parallelogram; or 2, if we follow
the simplest formulation with three fixed vertices (bearing in mind that our
statement is invariant by similarities).

It seems natural to carry over the hypotheses variety the idea of geomet-
rically independent variables. Namely, it “should” mean that no polynomial
in these variables vanishes over the variety. Unfortunately, it can happen that
a polynomial, only in the geometrically independent variables, vanishes over
an open subset of the hypotheses variety: in that case, this subset consists
of points corresponding to degenerate cases of our geometric statement. For
instance the reader can check, working over Exercise 4.3, that points where
! = 0 form an irreducible component of the hypotheses variety. Although [ is,
from the point of view of the geometric construction, the only independent
variable, there is an open set of points with { = 0, namely, the comple-
nment of the remaining irreducible (hence closed) components of the same
variety. Moreover, one can show that the hypotheses variety of Example 4.1
decomposes® as the union of the following irreducible algebraic sets:

Z(l,qr — sp, —su +vr, —uq +vp) U Z(p, —r + [, s, q}U
Z(5,q)UZ(s—qp—1—r,—2u+1l+7rs—2v).

Since the geometrically independent variables are [, 7, s, we see that only the
last component includes non degenerated parallelograms. But the condition
we have found s(p — 7 — 1) # 0 holds only only over an open set of the first
algebraic component, which is degenerated. Since we do not want to estab-
lish theorems that are true just in degenerate cases, finding non-degeneracy
conditions should focus on exhibiting an open set of points in the hypotheses
variety where the geometrically independent variables remain algebraically
independent, i.e. such that no polynomial in these variables vanishes over
the open set. Therefore, the method to find non degeneracy conditions of the
precedent section needs to be improved.

First of all, in the framework of commutative algebra, we have the follow-
ing concept of independence:

Definition 4.4. Let I be an ideal of the polynomial ring K{xy,...,x,]. The
variables x;,,...,x;, € {1,...,1,} are independent modulo the ideal I if
INK[xy,... zy,) = (0).

The dimension of an algebraic set H C L™ (and of the ideal J(H)) is the
number

d

fl

dim(H) = dim(J (H))
= max{r : there are  independent variables modulo J(H)}.

3 Using CASA, a computer algebra package running on top of MAPLE, developed
by Risc-Linz.
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Note that the dimension of an ideal coincides with the dimension of its radical:

Lemma 4.1. Let I be an ideal of K[zy,....z,). Denote by x' the variables
(Tigsswiy). Then, IN K[x'] = (0) if and only if VI N K[x'] = (0).

Proof. The only if part is trivial, because I ¢ /1. Conversely, it suffices to
prove that there is a prime ideal p containing I such that p N K[x'] = (0),
because each prime ideal p O I contains \/(I-)

Consider the set ' = {A D Iideal : AN K[x'] = (0)}. The set X is
not empty (I € X) and it is inductive; therefore Zorn’s lemma implies there
is a maximal element p in X. Let us prove that p is prime: take a,b such
that ab € p and a,b ¢ p; then, as p is maximal, p + (a) N K[x'] # (0) and
p + (b) N K[x'] # (0). But, then p N K[x'] # (0), because ab € p, which is
impossible. Therefore, p is prime.

Exercise 4.7. 1. Prove that a set x’ of variables is independent modulo an
ideal if and only if there is an isolated prime p of this ideal such that x’
is independent modulo p.
2. Prove that the dimension of an ideal agrees with the maximum dimension
of its associated primes.

The following simple exercise shows that the concept of independent vari-
ables is quite tricky, at least when the ideal is not prime.

Exercise 4.8. Show that {x} and {y, z} are two maximal sets (with different
cardinality) of independent variables modulo the ideal (zy,zz). Find the
dimension of Z(zy, xz).

The connection between these algebraic results and the discussion at the
beginning of this section is provided by the following easy:

Proposition 4.1. Let x' be a set of variables, I an ideal of K[zy,...,z,].
The following statements are equivalent:

(a) The set x' is independent modulo I,

(b) There is an open subset I' of some irreducible component of the variety
Z(I) such that no polynomial in the variables x’ vanishes over every point
of I'

(c) There is an open subset 2 of the variety Z(I) such that no polynomial
in the variables x' vanishes over every point of 2.

Proof. Assume %’ is independent modulo I. Then x’ is also independent mod-
ulo an isolated prime ideal of I. Since the irreducible components of Z(I) are
the zeroes of the isolated primes of I, it is enough to remark that a poly-
nomial vanishes over an open set of an irreducible variety if and only if it
vanishes over the whole variety. This yields (b). Now assume (b) holds. Then
I" is open in some irreducible component and is not, in general, open in Z([).
But since all open on irreducible varieties are Zariski dense, I" contains a non
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empty open set {2 of Z(I) (intersecting I" with the complement of the union
of the remaining components). The implication (¢) = (a) is trivial.

Remark 4.4. There is a brute force way, using CoCoA, to check if some vari-
ables are independent (and therefore to find a set with maximum cardinal
of independent variables). It is enough (but rather tiring!) to use repeatedly
the CoCoA command Elim. There is also a direct way to find the dimension
of an ideal, using Dim.

It goes without saying that the variables we choose as geometrically inde-
pendent in the formulation of the geometry theorem should actually be a set
of independent variables of K([x,y] modulo the hypotheses ideal J(H), in or-
der to guarantee that at least we have an open set of non degenerate cases in
the hypotheses variety. Then we conclude that there are also some irreducible
components of the variety enjoying this property. We will like, at least, that
the thesis holds over an open set of these particular irreducible components
and we do not care much about what happens with the other components,
which are filled with degenerate cases. This motivates the following definition
and proposition.

Definition 4.5. 4 non zero polynomial g € K|x,y] is a true non—degeneracy
condition for a geometry theorem T if g € Klx|, where x = (x1,...,14) 15 @
set of geometrically independent variables over the hypotheses variety, and T
is geometrically true under the condition g # 0.

Notice that such conditions are always non trivial, since they belong neither
to the ideal of the hypotheses variety (by definition of independent variables),
hence (by Lemma 4.1 ) nor to its radical.

Proposition 4.2. Using the same notations as in Definition 4.5. The fol-
lowing statements are equivalent:

(a) There is a true nondegeneracy condition for a geometry theorem T .

(b) There is g € K[x| such that g-t € \/(h1,..., hp).

(¢c) I = (hq,... . hp,tz — 1) N K[x] # (0)

(d) t vanishes on all irreducible components of H where x is a geometrically
independent set of variables.

In this case, we say that the theorem is generically true.

Proof. We leave to the reader to show (a), (b) and (c) are equivalent.

Now let us assume (b) and let H; be an irreducible component of H
where x is an independent set of variables. As there is g € K{[x] such that
g-t€ \/(h,...,hp) =T(H), then g-t € J(H;). And since J(H;) is prime,
g or t are in J(H;). But g € J(H,), because {z1,...,z4} are independent
modulo J(H;). Then t € J(H;).

Conversely, let be H = H1U.. .UH, UH{U...UH} the decomposition of H
in irreducible components, labeled so that x is a set of independent variables
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over each H; and it is not independent over each H*. As {zy,..., 24} are
dependent modulo J(H7), for each j = 1,...,] there is g; € K(x] such that
g, vanishes on HY. Take g = g, --- g; (if | = 0 choose g = 1), then g-t vanishes
on H.

Remark 4.5. By 4.1, non—degeneracy conditions for a statement 7 are to be
found in the elimination ideal (or, rather, in its radical, but we follow here
the same simplification as in 3.1)

Io= (h1,....hptz = 1) N Kz, ...,24)
Using CoCoA we can obtain a Grébner basis of I, by
Elim(yy..yr, Ideal(hy, ... hp. tz — 1))
Then,

1) If I, = (0), by 4.2, we say that theorem 7 is not generically true. In terms
of algebraic geometry this means that {¢ # 0} holds over some “geo-
metrically relevant” component of H. In most cases it also means that
{t # 0} N H has the same dimension as H (since degenerate components

~ “should™ have smaller dimension), but see Exercise 4.3.

2) If I. = (g1,-..,9s) # (0), then

hi=0,...,hp=0and (g1 #0,0r g2 #0,...,0r g; #0) = t =0

We leave to the reader the task of finding, as in Exercises 4.4 and 4.5,
the geometrical interpretation of the zero set Z(gy,...,gs).

This analysis implies that Example 4.1 is not generically true since there
are not conditions in the independent variables [, r, s.

FEzample 4.2. In any right triangle the circle passing through the midpoints
of the sides also contains the feet of the three altitudes.
b

Consider the triangle of vertices o = (0,0), a = (2r,0) and b = (0, 2s).
Let be d = (0,s), e = (r,0) and f = (r, s). Denote by ¢ = (p, ¢) the center of
the circle passing by the points d, e and f. Let be g = (u,v) the feet of the
altitude from o. Remark that r, s are the geometrically independent variables.
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Hypotheses: |cd| = |ce| hi=0@—-p2+¢>-p>—-(g—5)?%=0
ledf =lcfl s ho=(r=p)?+(s-@)°-p*—(g=-9)7=0
geab: hy =7r(v—2s)+su=0
og L ab: hg=ru—sv=0

Thesis: led] =lcgl: t=(u—p)?+@w-q)?-p*—(g—35)*=0

Ring ( "ring name:” R ; "characteristic:” 0 ;
"variables:” zuvpqrs ; "weights:” 1,1,1,1,1,1,1
Yordering:” DEGREVLEX );

NormalForm(1. Ideal((r — p)? + ¢ — p* = (¢ — s)?,7(v — 25) + su,
(r—p)2+(s—q)?—p?—(qg—s).ru—sv,
(u=p)+(v=9?=p* = (g—8))z~ 1))

1

The theorem is not geometrically true. Thus, we look for true non—degeneracy
conditions:

Elim(z..q,ldeal((r — p)2 + ¢* = p* — (¢ — 8)%, (r = p)* + (s = @)* = p* — (g — )%,
r(v —2s) + su,ru — sv,
((w=p)+@—-q?-p> = (g-5)%)z-1));
Ideal(s, 7);

Therefore this theorem is generically true. It fails only for degenerate
triangles, i.e. when s =»r =0.

Exercise 4.9 (Simson’s Theorem). The pedal points (feet) of the alti-
tudes drawn from an arbitrary point on a triangle’s circumscribed circle to
the three edges are collinear.

1. Let C be the circle with center ¢ = (p,q) which is circumscribed in the
triangle with vertices o = (0,0), a = ({,0) and b = (r, s). Set up equations
describing hypotheses and thesis for the theorem.

. Show that Simson’s Theorem is generically true and derive a true non
degeneracy condition for its validity. Phrase this as a condition on the
sides of the triangle.

SV

5. Searching for extra hypotheses

So far our method identifies a theorem’s validity in nondegenerate cases. It
discovers, essentially, statements that hold over open sets of the hypotheses
variety. But unless one is very lucky (or clever) most properties that one
states “at random” about a certain geometric setting will not be generally
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true. For instance, we could make a statement which is not true for general
triangles, but does hold for a special kind of triangles. Therefore, for these
theorems that are not generically true. our method has nothing to say (except
that they are not true). Our next task is to find, if possible, extra hypotheses
so that the resulting statement will be generically true over the new set of
liypotheses (see [Recio-Velez] for a detailed account of this method).

As above we suppose that x = (x1,...,z4) is a distinguished set of ge-
ometrically independent variables on some hypotheses variety. The proof of
the following statement is omitted, since it is very similar to 4.2.

Proposition 5.1. The following statements are equivalent:

a) (hi,... hy t) N Kx] # (0).
b) t vanishes on none of the irreducible components of the hypotheses variety
H where the variables x are independent.

In this case we say that the theorem is generically false.

Let us assume that a given thesis is generically false. Then, we simply add
the thesis to the collection of hypotheses. Obviously, the thesis itself now con-
tains the new hypothesis variety: the best hypothesis for a theorem is always
its thesis!! Seriously speaking, this is too crude, since we do want only to allow
new hypotheses which are expressible in terms of the independent geometric
variables. Therefore, we eliminate the remaining variables from the new ideal
of hypotheses, i.e. (hypotheses,thesis). The vanishing of every element k'
in the elimination ideal (hypotheses. thesis) N K[independent variables] is a
necessary condition for the theorem to hold. If the elimination ideal is not
zero, we are sure that it is not contained in the radical of the old hypotheses
ideal, since it would imply that the geometrically independent variables are
not independent over any point of the variety, contradicting 4.1. Thus, in
this case we end up with some strictly smaller hypotheses variety, that must
now be analyzed via the standard procedure, searching for non-degeneracy
conditions and so on. No guarantee that the new collection of hypotheses will
yield a generically true theorem, but we can try...!

Ezxample 5.1. In any parallelogram, the diagonals intersect at a right angle.

b/ c/

. /s

Consider a parallelogram as in example 4.1, of vertices o = (0,0), a =
(1,0), b = (r,s) and ¢ = (p,q). Remark that the independent variables are
r, s, 1.
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Hypotheses: oa || be: hy:=ls~-q)=0
ob || ac: ho=qr—s(p—-0)=0

Thesis: oc Lab: t:=p(r—1[)+¢gs=0

Ring ( "ring name:” R : “characteristic:” 0 ;
"variables:” zpqrsl ; "weights:” 1,1,1,1,1 .1
"ordering:” DEGREVLEX );
NormalForm(1, Ideal({(s — q),qr — s(p = 1), (p(r = 1) + ¢s)z — 1)};
1

Elim(z..q,1deal(i(s — q).rqg — s(p = 1), (p(r = 1) + g5)z — 1));
Ideal(0);

Elim(z..q, |deal({(s — q).rq — s(p — 1), p(r — 1) + ¢3));
Ideal(r?sl + s31 — sl?):

NormalForm(1, Ideal(I(s — q),7q — s(p — 1),72sl + 831 — sI3, (p(r — 1) + gqs)z — 1))):
1

Elim(z..q, ldeal(I(s — q).7q — s(p — 1), 728l + 831 — 13, (p(r = 1) + ¢s)z — 1)));
tdeal(sl);

Thus, this theorem is generically false, but we have found a new hypothesis
(in the third output above)

g =18l + s —sl®> =sl(r? + 5% — %)

which makes the theorem generically true (remark that adding this hypothesis
implies a change in the set of independent variables: now they are just s,!).
More specifically, we discover that the theorem is true if the sides of the
parallelogram are equal, namely, if 72 + s® =12 (i.e. when it is a square or a
rhomboide) and it is not degenerated: sl # 0.

The next example shows how to discover the converse of Simson’s theo-
reni.

Ezample 5.2. We consider a triangle, and without loss of generality we as-
sume the vertices have coordinates o = (0,0),a = ({,0),b = (r,s); and let
d = (m,n) be an arbitrary point in the plane. Next we give coordinates to
the feet of the perpendiculars traced from d to the three sides of the triangle:
let them be e = (v,w),f = (¢,u),d" = (m,0). We conjecture that these three
points are collinear.
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o]

: — 3
d/
This construction yields the following equations:
Hypotheses: e € ob: sv—rw =20

obLde: r(m—uv)+s(n—uw)=0

feab: st~ —u(r-0)=0

ab L df : (t=m)r—=0)+s(u—n)=0

Next we conjecture, in this situation, that points e, f, d’ are collinear
(perhaps because thev look like lying in a line, in the above figure); i.e.
(w—=u)(m—t) +u(v -t) =0. Obviously, it turns out that

NormalForm(1, Ideal(s(t — 1) — u(r — D, (t=m)(r —1) + s(u—n), s — rw,
r(m —v) + s(n —w), z(w(t — m) —u(v—m)) —1)) = 1

s0 the conjecture is not geometrically true. But it also happens that elimi-
nating the slack variable z:

Elim(z, Ideal(s(t — 1) — u(r — 1), (t — m)(r —1) + s(u ~ n), sv — rw,
r(m —wv) +s(n — w), z(w(t — m) - u(v —m)) ~ 1))

yields an ideal not contained in the radical of the hypotheses ideal
Ideal(s(t — 1) —u(r —1), (t —m)(r - ) +s(u—n), sv—rw,r(m-— v)+s(n—w))

so the conjecture holds over an open set of the hypotheses variety! Some
extra computations confirm that such open set lies entirely in a degenerate
locus of the hypotheses variety (namely, it is contained in the subset where
s == 0). This is possible, as remarked above, because this hypotheses variety
has components of dimension 6, while there are only 5 independent variables
mnrsi, from a geometric point of view. On the other hand, if we eliminate
the slack variable z plus the geometrically dependent variables v, w,t,u, we
get the zero ideal, so the conjecture is not generically true over an open set
of non-degenerate cases:

Elim(z..u, Ideal(s(t — 1) — u(r — 1), (t — m)(r —1) + s(u — n), sv — rw,
r(m =) +s(n — w), 2(w(t — m) ~ u(v —m)) —1));
Ideai(0);

Now we start again, this time eliminating just all the geometrically depen-
dent variables; i.e., from v to u in the set vwtunmrsl, on the ideal generated
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by the hypotheses plus the thesis:

Elim(v..u. deal(s(t — 1) —u(r — 1), (t = m)(r — 1) + s(u — n), sv — rw,
r(m =v) +s(n—w), ((w—u)(m —t) +ulv — t))));
Ideal(nr2s°l = m2s31 — n25%1 + nstl — nrs?l? + ms312);

This yields an extra hypothesis:
nr?s?l — m2s31 — 2531 + nstl — nes?i? +ms3? =0

Now we observe that sl is a common factor, and its vanishing clearly corre-
sponds to degenerate cases of “flat” triangles. After removing this factor, the
equation: nr?s — m2s? — n2s? + ns® — nrsl + ms2l = 0 remains. Since for a
given triangle the values of Irs will be fixed, the above equation should be
only regarded on the mn variables. Then it is the equation of a circle, passing
through the three vertices of the triangle. Thus our conjectural statement is
not true in general, but it could be true either if the triangle degenerates or
the given point d is not arbitrary, but lies on the circle determined by the
vertices of the triangle. Over non—degenerated triangles the last condition is
therefore necessary. It is easy to check that this condition is also sufficient
(with some non degeneracy conditions). Indeed, as explained above, we add
one extra variable z, and proceed to eliminate, in the ideal generated by all
the hypotheses (old ones plus the newly discovered) and the thesis (multiplied
by z and subtracting 1), all non-independent variables from zvwtunmsrsi:

Elim(z..n, Ideal(s(t — 1) —u(r — 1), (t = m)(r — 1) + s(u — n), sv — rw,
r(m —v) 4+ s(n —w),nr?s — m?s% — n2s2 4 ns® — nrsl + ms?,
((w—wu)(m —t)+ulv~1))z—1))

Ideal(r? + 21252 4 g% — 273] — 2p52] 422 ¢ s21%)

Now this non-degeneracy condition is (r2 + s2)((r ~ )2 + s2) # 0, which
means —over the reals- that the triangle can not have coincident vertices.
Thus we have. so to speak, rediscovered Simson’s Theorem starting from a
wrong assumption.

We finish with a couple of exercises on this technique of automatic dis-
covery of theorems.

Exercise 5.1. In a triangle a = (b,0), b= (0,a), c = (1,0) consider a point
d = (¢, d) on the line ab, and the following lengths: the distance from d to ac
(= z), the distance from d to bc (= y) and the length of the altitude from b
to the opposite side (= z). Then, the algebraic sum of two of these lengths is
equal to the third one.

1. Denote by e = (u,v) the intersection point of bc with its perpendicular
from d and let f = (c,0). Set up equations describing hypotheses and
thesis (you must assign some signs to the lengths according to the position
of d in ab.
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2. Show that the theorem is generically false; add a new hypothesis. Can
you describe the meaning of it?

Exercise 5.2. In a triangle, the orthocenter (intersection of heights), the
baricenter (intersection of medians), the circumcenter and the incenter (cen-
ter of the circle circumscribing, resp. inscribed in, the triangle) lie on a line.

1. Consider the triangle of vertices a = (—1,0), b = (1,0), ¢ = (a,b). First
prove that the following statement is generically true: the orthocenter
d = (p,q), the circumcenter e = (u,v) and the baricenter f = (I,r) lie on
a line.

2. Let us investigate now the statement: the incenter g = (s, w), the circum-

center e = (u,v) and the baricenter f = (I,7) lie in a line. The incenter

g = (s, w) satisfies the property that it is the center of a circle of radius

w: (x~ 5)* + (y — w)? — w? = 0 which is tangent to the edges of the

triangle. Find the equations of this point by eliminating variables z,y

in the equations of the circle of center (s,w) and radius w and in the

equations giving the perpendicularity from a radius of the circle to ac

(resp. be): b(z +1) — (a + 1)y (resp. b(z — 1) — (a — Dy).

Is the new theorem generically true or generically false?

4. Introduce an extra hypothesis expressing that the triangle be isosceles.
Is the new theorem generically true or generically false?
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