Searching for lower bounds in
computational geometry.
A survey on methods

T. Recio
Universidad de Cantabria*

1 Models of computation and reduction to
a membership problem

Computational geometry provides algorithms to solving some problems deal-
ing with geometric entities. When the algorithms are described in a concrete
model of computation one can estimate the “complexity” of the algorithm,
as a rough measure of how efficient it will be in practice. Problems usually
depend on some parameters (such as the number of points in Convex Hul-
1 algorithms or the number of vertices in the problem of testing if a point
belongs to a given polyhedra). The estimated size of the algorithm is, thus,
regarded as a function of the parameters. One is obviously interested in
finding algorithms that are efficient for large values of the parameters; there-
fore, some effort is devoted in finding suitable algorithms whose complexity
is assymptotically low, as a function of the parameter size. But it can turn
out that, after extensive search, all known algorithms for one specific prob-
lem have a size greater than some given function. One could then wonder
if this function is an intrinsic lower bound on the efficiency for solving the
given problem (implying, therefore, that there is no sense in continuing the
search for improvements if some known algorithm has assymptotically the
same complexity as the lower bound).

Thus, finding lower bounds is a task that depends on the problem itself,
and not on the methods for solving it. It provides, some times, an accuarate



evidence for determining that we have already an optimal algorithm; some
other times, it just gives an idea of how difficult, at least, will be the prob-
lem. When we have a gap between estimated lower bounds and complexity
of known algorithms, it could happen that the lower bounds are not sharp
enough, or it could be the case that there is still room for improving algo-
rithms solving the problem. The nicest situation is the one in which one
knows exactly the complexity of the problem (i.e. where one can construct
algorithms running in the best possible time to solve a problem and a proof
that this time is the best one).

Strange as it might seem, in the most common model of computation there
is a theoretical method to finding out exactly for every fixed parameter size
(for instance, for computing the convex hull of any fixed number of points)
and for every computational geometry problem, a best time algorithm. This
result uses Model Theoretic methods, but it is unpractical for several reasons:
we can hardly ever find the performing algorithm in concrete instances, and
moreover, it does not provide precise information about what will be the best
algorithms for solving the problem when we consider different and sufficiently
large values of the parameters. In some other models of computation, even for
this restricted version (fixed parameter value) of the best complexity finding
problem, it is unknown if the complexity can be exactly determined: that is
why we remark here this theoretical result.

The most popular and complete model of computation in Computational
Geometry is, probably, the real Algebraic Computation Tree (ACT) model
(see the paper of Ben-Or for a description, “Lower bounds for algebraic
computation trees”, Proc. 15th Ann. ACM Symp. Theory Comput. (1986),
80-86). It is a non-uniform model, in the sense that for any given instance of a
problem, eg. for a number n of points, an ACT depending on n will model the
behaviour of the algorithms solving it: for different instances we could have
different ACT’s. It is assumed that the geometric operations performed by
any algorithm have always an algebraic counterpart with the coordinates of
the geometric objects given as input. The ACT allows elementary arithmetic
operations with the input coordinates and with the result of such operations;
plus sign test comparisons and branching, accordingly. Operations with (real)
constants are also allowed. The final output of a ACT computation will be a

series of leaves, including the expected output in terms of coordinates of the
input.



The natural uniformization of this model (i.e. a model able to han-
dle simultaneously all instances of a given problem) has been discussed in
Cucker-Montafia-Pardo: “Time Bounded Computations over the Reals”, In-
ternational Journal of Algebra and Computation, vol.2, no.4 (1992), 395-408,
analyzing the Blum-Shub-Smale model (cf. ”On a theory of computation and
complexity over the real numbers”. Bull. Amer. Math. Soc. (1) 21, (1989),
1-46).

It is also standard that the search for lower bounds is made just on some
weaker version of the same geometric problems: namely, the decisional ver-
sion (see the book of Preparata-Shamos for a discussion on this point: ”Com-
putational Geometry: an introduction”, Springer-Verlag, Texts and Mono-
graphs in Computer Science, 1985). For instance, instead of looking for the
complexity of constructing the Convex Hull of a finite family of n points,
we consider the problem of deciding if a collection of n points is the set of
extreme points (vertices) of the Convex Hull of the given family. The ACT
for such decision problem has the advantage that its leaves are just labeled
with a Yes/No label, according to the case where the computation that leads
to one of such leaves gives the correct Yes/No answer to the decision prob-
lem. Of course, if we have an algorithm (an ACT) for solving the Convex
Hull problem, then it will be easy to solve also the decision version of the
same problem: namely, we just add some tests to check whether the given
points verify some of the outputs and thus to verfy that they are the extreme
points. Therefore, lower bounds for Computational Geometry problems can
be attacked by finding lower bounds for decision problems (but it could be
the case that the converse does not hold). Anyhow, most of what is known
about lower bounds in Computational Geometry happens to behave as if
always the decision version has the same complexity as the one of the truly
proposed problem.

For decision problems, we can link the Computational Geometry prob-
lem with a Membership Problem to a specific (i.e. related to the problem)
Semialgebraic Set: if one wants to decide if a family of n points in the plane
is the set of extreme points of its own convex hull, one can construct the
subset S of points (z1,y1,%2,y2,...,ZTn,ys) in real affine 2n-space, such that
the set of planar points {(z1,¥1), (z2,¥2),---,(Zn,¥s)} is made of pairwise
different poins and such that it is the set of vertices of the convex hull of
{(z1,91),(22,%2), ..., (Tn,yn)}- It is clear, but rather cumbersome to detail,
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that such subset is in fact a semialgebraic set in 2n-space. Now the decision-
al version of Convex Hull is in fact equivalent to the problem of testing if a
point (z1,y1,Z2,Y2,--.,Zn, Yn) belongs to S or not (Membership to the set S
problem).

Clearly, in the example above, whatever algorithm is used to solve the
Convex Hull decisional version, could be also used to solve the membership
problem for S; and conversely. Thus a lower bound for testing membership
to S will be also a lower bound for the Convex Hull problem. In fact, almost
by definition, all problems in Computational Geometry that can be solved by
algorithmic methods, modeled in an ACT, can be related to a semialgebraic
set, since the result of operating throught an ACT gives just polynomials
and sign tests...and this is the definition of semialgebraic set. In general,
one reduces the search of lower bounds in Computational Geometry to the
search of lower bounds in the membership problem to the corresponding
semialgebraic sets.

As commented above, the problem of estimating the exact complexity of
a semialgebraic set under the ACT model is decidable (cf. Montafia-Pardo-
Recio, " The complexity of semialgebraic sets” Tech. Report 3/90, Universi-
dad de Cantabria, 1990) : given the semialgebraic set, we can easily construct
one ACT that solves the membership problem to this set. Then we consider
all possible ACT’s with smaller height as a kind of finite parametrized object
and we can decide the existence of ACT’s of height k solving the membership
problem to the given set by means of Quantifier Elimination techniques. Of
course this procedure in not efficient, so we can not, in practice, find the
complexity of a given problem. Thus some indirect methods are required to
obtain hints about the complexity. Most of the methods work following this
philosophy: first it is stated that sets defined by means of ACT’s of complex-
ity h, have a certain geometric feature that can be numerically quantified
by a number p that is bounded by a function of h, p < f(h). Thus, if the
semialgebraic set has a large p, it implies that A must be larger than some
function of p, f —1(p) < h. On the other hand, in order to obtain the bound
p < f(h), one must “relate” h with some more mathematical objects, such
as the number of polynomials and their degree, that are involved in an ACT
of height h: the purely mathematical question of bounding p in terms of
these objects is then subject of research. Unfortunately, the final product is
usually not a very sharp bound, but it can be still useful in many instances.
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There are other ways of defining the complexity of a semialgebraic set,
see the book by Benedetti-Risler: ”"Real algebraic and semialgebraic sets”.
Hermann 1990. If instead of counting all required arithmetic operations we
only consider the number of additions, we can have a variant of ACT, with
the so called “additive” complexity. The interest of using weaker complex-
ity measures is that there is usually a big gap, for the stronger measures,
between bounds and practical instances: it is enough, for example, to know
something related to the additive complexity of one polynomial (number of
monomials) in order to estimate the number of its real roots (this is the clas-
sical Descartes lemma). One could add, perhaps, some comment on one of
the major differences between “number of monomials” and “additive com-
plexity”, namely, the fact that the latter behaves well under linear change of
variables (as does the degree of one polynomial) while number of monomials
does not (see 4.3.6 and 4.6.6 in Benedetti-Risler book). It could seem that
this disgression is far from applications to Computational Geometry, but in
Ngoc-Minh Le, ”On Voronoi diagrams in the L, metric in higher dimension”,
STACS 94, Lecture Notes Computer Science 775, Springer-Verlag, 1994, 711-
722, upper bounds on the number of Lp-spheres passing through D+1 points
in general position in D-space and on the sum of Betti numbers of the inter-
section of bisectors in the L,-metric, where p is an even positive integer, are
established by these means. It is shown that the bounds do not depend on p,
but only on D (for the first result) and on D and on the number of bisectors
(for the second result). He states both problems as a set of equations whose
number of solutions provides the required bound and shows that the additive
complexity of such system is bounded just in terms of D (and the number
of bisectors for the second result). The fact that the additive complexity
bounds the number of solutions is then used to obtain the results.

It is unknown weather additive complexity is decidable; also if the col-
lection of semialgebraic sets with bounded additive complexity has a finite
number of topological types (something important if we want to connect
topology and complexity, as it will be done in the next sections): see the
partial results for dimension 3 of F. Schurmann: ”Gradunabhangigen Sk-
tanken fur die Topologie Semi-Algebraischer Mengen” Ph. D. Dissertation,
Munster Universitat, (1988). Both claims are true for the total or usual com-
plexity on ACT (Montafia-Pardo-Recio, loc.cit.). One could also mention in
this respect the recent paper of Grigoriev-Karpinsiki: ” Computability of the
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additive complexity of algebraic circuits with root extracting” (I just have a
draft copy courtesy from the authors). Their notion of generalized additive
complexity is computable. They also show that there are polynomials of ar-
bitrarily high additive complexity but of low and fixed generalized additive
complexity. Quantifier elimination on the theory of differentially closed fields
is involved in order to obtain bounds on the generalized additive complexi-
ty: the fact that to explicit these bounds one relies on bounds of Hilbert’s
Idealbasissatz is a remarkable connection with another research field.

There are other, useful but weaker models of computation (therefore mod-
els which in principle could allow solving the same problems but with less
complexity), such as variants of the ACT model in which one takes some
linear operations for free (see Montafia-Pardo-Recio: " The non-scalar model
of complexity in computational semialgebraic geometry”, Proc. MEGA 90,
Progress in Mathematics 94, Birkhauser (1991), 346-362), or models in which
all arithmetic operations are given free and it is only counted the number of
sign tests of some fixed degree d polynomials (Algebraic Decision Trees of
degree d=d-ADT, see J.M. Steele, A. C-C. Yao: ”Lower bounds for Algebraic
Decision Trees”, J. Algorithms 3, (1982) 1-8). The special case when d = 1
(linear decision trees modelling the so called linear search algorithms) is one
where most lower bounds for Computational Geometry problems have been
first searched and proved.

One could even ask, as does F. Yao (cf. F. Yao: ”Computational Geom-
etry”, in the Handbook of Theoretical Computer Science: Algorithms and
Complexity, Vol. A., edited by J. Van Leeuwen, Elsevier, 1990) for a model
of Algebraic Decision Tree with no degree bound. In this respect we must
remark that under such model the complexity of any semialgebraic set of
dimension p is bounded by some effective functions of p: if no bounds on
degrees are set, we can always describe an open (with respect to its Zariski
closure) semialgebraic set of dimension p by some s(p) x t(p) polynomials
(where S and t are some functions usually called Brocker’s invariants, cf.
L. Brocker "Minimale Erzeungung von Positivberich”, Geom. Dedicata 16,
(1984), 335-350). Then every semialgebraic set can be written as a union of
an open set plus a semialgebraic set of smaller dimension, and we can use
induction to end the proof. This indicates that such model of computation
has some essential “a priori” limitations, since it is quite clear that there exist
plenty of semialgebraic sets of fixed dimension but arbitrary high complexity
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(think of a collection of points in the real line), cf. Montafia-Pardo-Recio:
” A note on Rabin’s width of a complete proof”, Comp. Complex. vol.4, no.1,
1994, pp12-36,. Another consequence of our remark is that, in turn, there
can be no bound on the degree of the polynomials described by Brocker for
every dimension p: if it would exist, then the also the model of computation
d-ADT for all sufficiently large degrees d would have a limited complexity,
but we will see below that this is not the case (we can establish arbitrarily
high lower bounds in this model). We have a personal communication of P.
Vélez-Melon for different proof of this fact, inspired by an observation of A.
Prestel.

Curiously, lower bounds obtained with different models are the same in
many instances, reinforcing the idea that even under strong assumptions
many well known algorithms are optimal: it seems that relaxing the counting
of steps in the algorithm does not have an essential effect in the complexity of
many problems. Another instance of this phenomenon appears when consid-
ering different d’s for ADT’s: if a problem can be solved with a linear (d = 1)
tree and the complexity of such problem is estimated for such model, it seems
that allowing larger values of d in d-ADT’s does not improve efficiency, i.e.
the complexity of the problem remains the same. It is an open problem
whether this conjecture holds in general (see P. Ramanan:” Obtaining lower
bounds using articial components” Information Processing Letters 24 (1987),
243-246); now it is just an experimental evidence, true for the known exam-
ples.

2 Lower bounds by estimating connected com-
ponents and Bettli numbers

The now classical way of establishing lower bounds is by counting the num-
ber of connected components of the associated semialgebraic set S (see D.
Dobkin-R. Lipton: "On the complexity of computations under varying sets
of primitives” in Automata Theory and Formal Languages (H. Brandhage,
ed.) Lec. Notes in Comput. Sci. vol. 333, Springer-Verlag, (1975), 110-117).
The essential idea is that if a set S has many components, then it can not
be described with few equalites, inequalites or sign tests, with few variables
...and of low degree ...Putting it in the other way around, if a set is de-



scribed by few polynomials and with small degree, the number of connected
components will be also low. For instance, everybody is aware that conics
(planar sets described by one polynomial equality and of degree two) have
at most two connected components (the hyperbola case): thus if a planar
curve has more than two components we deduce that it must be necessarily
described by higher degree polynomials.

Technically speaking we have two steps: one is to bound the topology
of semialgebraic sets from the number of involved polynomials, sign tests,
number of variables and maximum of polynomial degrees. The result is the
so called Milnor-Thom (see the above quoted technical report of Montafia-
Pardo-Recio for references and different versions of this result) bound, that
estimates the sum of the Betti numbers of a basic semialgebraic set as being
less than d(2d —1)"*9~1, when the set is defined by at most q polynomials, of
degree less than d, with n variables. In particular the number of connected
components is bounded by the same quantity. The second technical tool is
to interpret such bound in the ACT model of computation. This is Ben-Or
result in the mentioned above paper, which implies that the height of a tree
computing a semialgebraic set in n-dimensional space with C components, is
bounded from below by Q[log(C) — n]. The idea is to produce, from a given
tree, a description of the semialgebraic set with a number of polynomials and
maximum degree which is bounded by the height of the tree. Thus, in the
formula of Milnor-Thom, the height will appear in the exponent, and taking
logarithms we obtain the reverse bound. We remark that this formula applies
only to connected components, since an ACT gives in fact a finite union of
basic semialgebraic sets, and it is easy to bound from above the number of
connected components of a union of sets, if we have a bound for each set—but
this is not longer true for the sum of Betti numbers: glueing together sets
with small Betti numbers we can produce large ones (independently of the
number of sets).

This procedure has been applied succesfully for almost 10 years now to
solve many Computational Geometry problems (cf. the book of Preparata-
Shamos or the more recent survey by F. Yao, loc. cit.). It is widely known,
but still is worth to make a few comments on some aspects.

First of all we have the surprising fact that the term “-n” in the above
bound can be dropped; and thus the bound is actually Q(log(C)); of course,
involving perhaps different constants, hidden in the assymptotic estimation.
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This simplification is achieved in J. L. Montaifia, ” Cotas inferiores en teoria
de la complejidad algebraica”, Dissertation, Universidad de Cantabria, 1992;
and published in F. Cucker, J.L. Montafia and L.M. Pardo, ” Time bounded
computations over the reals”, International Journal of Algebra and Compu-
tation, vol.2, no 4, 1992, pp.395,408. The idea is to bound also the number
of involved variables by considering the height of the tree . The same result
applies to give lower bounds for the uniform model of computation (time-
bounded machines) discussed by the authors in the latter paper, extending
Ben-Or‘s bound.

A second remark comes from the fact that roughly the same lower bound
holds (see Ben-Or’s paper) for weaker models of computation (therefore mod-
els which in principle could allow solving the same problems but with less
complexity), such as models in which one takes some linear operations for
free, or models in which all arithmetic operations are given free and it is
only counted the number of sign tests of some fixed degree d polynomial-
s (Algebraic Decision Trees of degree d=d-ADT). The same thing happens
(roughly) for computing the membership problem under restrictions of the
input to points in the rational or integer affine space (cf. A.C-C . Yao:
"Lower bounds for algebraic computation trees with integer inputs”. Proc-
cedings 49th Ann. Symp. on Fundamentals of Computer Science, (1989)
308-313; also M. Hirsch: "Lower bounds for the non-linear complexity of
algebraic computation trees with integer inputs”, preprint, 1990; and Pardo-
Recio: ”Arboles Algebraicos: un modelo de computacién en Geometria”, en
Contribuciones Cientificas (en honor del profesor E. Villar), Universidad de
Cantabria, (1988), 241-249). The interest of these restricted models of com-
putation appears in some problems of Computational Geometry where the
inputs are also restricted, for instance, to vertices of a simple polygon (see
the paper of A. C-C. Yao mentioned above).

As mentioned above, it has been difficult to estimate how higher Bet-
ti numbers of semialgebraic sets contribute to the complexity of the set.
A. Bjorner-L. Lovasz-A. Yao (”Linear decision trees: volume estimates and
topological bounds” Proc. A.C.M. 24th Symp. on Theory of Comp., (1992),
170-177) and A. Bjorner and L. Lovasz (”Linear decision trees, subspace ar-
rangements and Moebius fuctions”. J. of the A.M.S. 7, no3 (1994), 677-705)
showed that the Euler characteristic (respectively, the sum of all Betti num-
bers) provides lower bounds for the restricted class of linear decision trees. It



was shown essentially that the number of Yes (respec. No) leaves in a linear
decision tree computing a closed polyhedron is bounded from below by either
the Euler characteristic (alternate sum of Betti numbers) or the sum itself.
These techniques were applied to a variety of combinatorial problems, includ-
ing a lower bound nlog(2n/k) for the k-equal problem (given n real numbers,
decide if some k of them are equal). A. Yao extended the Euler characteristic
lower bound for general algebraic decision trees and algebraic computation
trees (” Algebraic decision trees and Euler characteristic”, in Proc. 33rd. An-
nual IEEE Sympos. on Foundations of Computer Science, (1992), 269-277),
showing that the logarithm of the Euler characteristic is a lower bound for
the complexity of the membership to a compact semialgebraic set. Finally,
in ("Decision Trees and Betti numbers”, Proc. A.C.M. Symp. Theory of
Computing STOC 94, 1994, 615-624), A. Yao showed that the the log of
each Betti number gives a lower bound for compact semialgebraic sets under
the fixed degree algebraic decison tree model or the ACT model. The true
possibilities of these new techniques in Computational Geometry problems
are still unexplored.

Finally let us comment the work done on topological bounds for a dif-
ferent model of computation, the arithmetic networks model (see von zur
Gathen, ”Parallel arithmetic computations: a survey” Proc. 13rd Symp. on
Mathematical Foundations of Computer Science, (1986), 93-112). It is the
parallel counterpart of algebraic decision trees, so we can say that a problem
is well parallelizable if if goes from a polynomial complexity in the sequen-
tial model to a polylogarithmic complexity in the parallel model. Now the
results of Montafia-Pardo ("Lower bounds for arithmetic networks”, Jour-
nal of A, AE.C.C. 4, (1993), 1-24) show that some problems, such as the
knapsack problem, are not well parallelizable. In fact, they extend Ben-Or
result, showing that |/log(b)/n, where b is the number of connected compo-
nents and n is the number of variables, is a lower bound for an arithmetic
network accepting a semialgebraic set. Thus they get a \/n lower bound for
the knapsack problem, and therefore it is not well parallelizable. A simi-
lar result 4/log(3" b)/n has been recently obtained, where " b is the sum of
Betti numbers ( Montafia-Morais-Pardo, Proc. 10th European Conference
on Computational Geometry, Santander, March 1994, extended version in
”Lower bounds for arithmetic networks II: sum of Betti numbers”, Journal
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of A.A.E.C.C., to appear). It is conjectured that the square root relation
holds always between bounds in the sequential/parallel case, at least when
they regard topological quantities.

3 Lower bounds by introducing artificial com-
ponents

This technique is essentially a trick to allow the use of other lower bound
methods in difficult cases. One considers a semialgebraic set, perhaps with
few connected components, and then realizes that it will have many such com-
ponents if intersected with another semialgebraic set. The point is that the
complexity of the given set plus the complexity of the artificially introduced
set is bigger than the complexity of the resulting intersection. Therefore, the
complexity of the given set is bigger than the difference of the complexities
of the artificial component and the intersection. Thus, if the artificial com-
ponent has low complexity and the intersection is very complex, we obtain
good lower bounds for the given set. This technique is a natural generaliza-
tion of the classical degree of an algebraic variety method (counting the points
in common with a suitable generic linear variety) for Algebraic Complexity
problems.

For instance, let us consider a regular n-polygon , inscribed in a circle.
The polygon is topologically trivial, but intersected with the circle yields n
connected components. Thus the complexity of the polygon will be at least
log(n) (using Ben-Or bound) minus the complexity of the circle.. . which is
constant. A similar but simpler argument shows that the number of polyno-
mials appearing in any quantifier free formula defining a regular n-polygon
must be bigger than n (V. Weispfenning, personal communication).

This method has been succesfully applied by Ramanan (for the algebraic
decision tree of fixed degree, loc. cit.) and Montaiia-Pardo-Recio (The non-
scalar model ...loc.cit.) for the more general algebraic computation tree
model, showing for the first time the solution to a series of Computation-
al Geometry problems such as Regular and Star-shaped polygon Inclusion,
Largest Empty Circle, Maximum Gap, Even Distribution and Path Test-
ing. In the case of considering the algebraic computation tree model, some
technical points must be managed, since usually the artificial component has
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fixed degree and thus constant complexity under the decision tree model,
but not under the stronger, algebraic computation model. A detour to non-
scalar complexity is therefore required to lower the complexity of the artificial
component to the limits of interest for the considered problem-in the above
examples, to less than nlog(n)-since, for instance, a degree two polynomial of
n variables can require an order of n2 total operations, but just n non-scalar
ones: this is the classical result on diagonalization of quadratic forms.

Variants of this approach considering singular points of the boundary of a
semialgebraic planar set S, and showing that log(# singular points) is a lower
bound for the membership problem under the algebraic computation mod-
el, are due to Grigoriev-Karpinski (”Lower bounds for complexity of testing
membership to a polygon for algebraic and randomized computation trees”,
TR-93-042, august 1993. ICSI, Berkeley). As an application they get the
already known log(n) estimation for the Polygon Inclusion problem. Further
extensions (considering sharp points of semialgebraic sets) of these methods
are being applied to the open problem of estimating the exact complexity
of polyhedra (see Grigoriev-Karpinski-Vorobjov ”Lower Bounds on Testing
Membership to a Polyhedron by Algebraic Decision Trees”, Proc. ACM Sym-
p- Theory of Computing, 1994, 635-644 and their improvement submitted
to STOC 95).

4 Lower bounds by local methods

It was probably M.O. Rabin the one that first introduced the technique of re-
duction to a membership problem for finding lower bounds in Computational
Geometry problems. In its seminal paper ("Proving simultaneous positivity
of linear forms”, J. Computer and System Sciences 6 (1972), 639-650), he
also proposes a method for establishing lower bounds for some problems in-
volving linearly defined sets (such as finding the maximun or the minimun
of a collection of real points). The rough idea is that a set defined by the
simultaneous positivity of m linear forms {l; > 0, /dots,l,, > 0} that are
“sign independent” (i.e. such that for any choice of signs: ? can be any of =,
i» i» there are points verifying the inequalities /,?0,...,[,?0) can not be de-
scribed by a collection of sets of inequalities with less than m polynomials in
each set. For instance, in n-dimensional space, the set {z; > 0,...,z, > 0}
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with m < n, which is obviously sign idependent, can not be written as a
finite union of sets of the kind {f1 > 0,..., ft > 0} with ¢ < m. The idea
of Rabin is, then, that an algebraic decision tree computing the convex set
{lh, 20,...,1,, > 0} gives a description of the same as a union of sets with &
polynomial inequalities in each, where h is the complexity of the tree. Thus
if the convex set is sign independent, & must be bigger than m.

Let us see how this works over linear decision trees, following a simplified
argument by R. Fleischer (Decision trees: old and new results, Proc. A.C.M.
25th Symp. Theory of Comp. 1993, 468-477). It is quite straightforward
that the “sign independence” condition is equivalent to the simpler fact “di-
mension of the affine variety {I{1 = 0,...,Im = 0} = n — m” i.e. to the
independence of the involved linear forms. Thus the convex set defined by
m sign independent forms is a kind of mth-orthant, having a “corner point”
with m faces such as {z; > 0,...,z,, > 0}. Next we observe that in a lin-
ear decision tree, every path arriving at a YES leave describes a convex set
containing a linear variety of dimension at least n-size of path (the equality
holds only when all the involved polynomials are independent and the sign
tests are always equalities). Therefore n —m > n — h, where A is the height
of the tree, i.e. h > m.

This technique provides estimates for some problems that, having an
associated semialgebraic set with very simple topology, can not be bounded
by the topological methods described above. Anyhow this procedure is 10
years older than the latter ones; and it is one of the first systematic attempts
to find lower bounds. It is a local method, since the obstruction to have a
simpler complexity comes, as we will see below, from the behaviour of the
semialgebraic or semilinear set around one point (the corner). It is clear that
it can not yield but linear lower bounds in most situations, since m is usually
less than the dimension of the ambient space, but it shows at least why some
basic problems can not be solved in constant time.

Unfortunately there was a substantial error in Rabin’s proof and in the
subsequent paper by J.W. Jaromczyk (”Lower bounds for problems defined
by polynomial inequalities”, Symposium on Foundations of Computing Theo-
ry, Lect. Notes in Computer Sci. 117, Springer-Verlag, 1981, 165-172) where
this technique was extended to problems defined by polynomials of higher
degree. A first correct proof for all cases was given in Pardo-Recio ("Rabin’s
width of a complete proof and the width of a semialgebraic set”. Proc. EU-
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ROCAL’87, Lec. Notes in Comp. Sci. 378, Springer-Verlag, 1989, 456-463),
and also in Fleischer, loc. cit. (1993), but the latter just valid for linear
target sets. In the more recent paper by Montafia-Pardo-Recio (in Comp.
Complex. loc. cit) a deep analysis of the method is provided, showing that
it can be extended to different situations, such as semialgebraic sets having
a point Nash-diffeomorphic to a corner. As an application, it is shown that
the Directed-Oriented Convex Hull problem for n points in the plane (decid-
ing that they are the oriented convex hull of themselves) has complexity at
least n. We must remark that this problem is not solvable by linear decision
trees (cf. A. Yao, R. Rivest "On the polyhedral decision problem” SIAM J.
of Comp. 9, (1980), 343-347, also in D. Avis ”Comments on a lower bound
for convex hull determination”, Inf. Proc. Letters 11 (1980), 126, and J.
Jaromczyk ”Linear decision trees are too weak for convex hull problem” Inf.
Proc. Letters). Another application shows that any quantifier free formula
expressing the existence of real root for a degree d polynomial must involve
at least d/2 polynomials. There is also a solution to a question of Yao, about
computing the largest k elements of a set of given n real numbers (cf. A.
Yao, ”On selecting the k largest with median tests” Algorithmica 4/2 (1989),
293-300) that must be solved in general decision trees (and not only linear
as in Yao’s paper) with at least n — k+ Y log(n —i+1),for 1 <i < (k—1)
steps (cf. Fleischer, loc. cit. and the previously commented extensions of
Rabin’s method).

We comment finally that it is still a conjecture to know if, in the general
case, the exact definition of width introduced by Rabin is a lower bound for
the complexity —most of the above commented results are based on showing
that a weaker concept of width (the generic width) is a lower bound and
that, in the particular case of the hypothesis of Rabin’s theorem, the width
and the generic width coincide.

5 Miscellanea

A collection of specific real geometry methods has been developed by Lickteig
and Burgisser for testing membership to algebraic sets (not to semi-algebraic
sets). This is relevant for Algebraic Complexity problems, but no appli-
cations are known for Computational Geometry, since most problems here
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have strictly semialgebraic associated sets. See the forthcoming book by
Burgisser-Clausen-Shokrollahi ” Algebraic Complexity Theory”, chapter 11,
for a detailed exposition of these methods, including also basic facts and
proofs of many results that we have described up to now.

On the other hand there is a kind of “stand alone” method, based on
volume estimation, that has been used by Bjorner-Lovasz-Yao (loc. cit.)
to show the nlog(n/k) lower bound for the k-equal problem in the linear
decision tree model. The interesting idea is the following: given a linearly
defined set P, the number of of possible Yes leaves is bounded from below
by Vol(P)/V where Vol is the volume and V is the maximum volume of
any subset of P defined by a path in a computation tree (thus for a convex
subset of P). Then some computations are made, finding estimates for the
different volumes. The idea of using metric properties of semialgebraic sets
for finding lower bounds seems both very attractive and difficult.

Santander, March 20, 1995
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