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Abstract

We present a method for computing Voronoi Diagrams for a relevant class of metric surfaces, namely all
Euclidean and spherical two orbifolds. Since these surfaces are quotients of the Euclidean plane (sphere) by a
discrete group of motions, the computation of Voronoi Diagram is reduced to the computation of this diagram
for periodic sets of points on the Euclidean plane (sphere). This is accomplished by further reduction to the
standard case of a finite set of points.
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1. Introduction

Given a collection of sites S = {F;: 1 < i < n} in the Euclidean plane E?, the set of points closer
to a point P; € S than to any other point of S is a convex polygonal region V (z) called the Voronoi
region associated to P;. The entire collection of Voronoi regions V (¢) for 1 < ¢ < n gives a partition
of the plane that is named the Voronoi diagram Vorg:(S) of S.

The Voronoi Diagram is a fundamental data structure in Computational Geometry, useful to solve
many proximity problems. The problem of computing the Voronoi Diagram, initially considered for
finite collections of sites in the Euclidean plane E?, has been generalized in many directions that
include, among others, Voronoi Diagrams on metric surfaces [3,6,9,11,13] (see {1] for a survey).

Several optimal algorithms exist to compute Euclidean Voronoi Diagrams for finite collections of
sites on the plane [3,8,16], but only for some particular cases of curved surfaces embedded in the
Euclidean space E* the problem has been solved, namely:

— on the Riemann sphere 52 by Brown [3];
— on the surface of a cone, Dehne and Klein [6] generalize the planar sweepcircle technique of the
plane to working on a cone.
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In this paper we study both computational and theoretical aspects of Voronoi Diagrams for a relevant
class of metric surfaces that are the Euclidean and spherical two orbifolds. This class of surfaces
includes, among many others, all the locally-Euclidean and locally-spherical surfaces (i.e., cylinders,
Mobius bands, Klein bottles, flat toruses and projective planes) as they are all of them obtained as a
quotient by a discrete group of motions.

Our method of computing Voronoi Diagrams on such surfaces uses mainly the fact that all these
surfaces are isometrically covered by the Euclidean plane E? or the Riemann sphere S2. Finite sets
of points on the surface give rise to periodic point sets in the corresponding covering space which
can be finite (this is always the case on the sphere) or infinite, depending on the discrete group of
motions involved. Voronoi Diagrams for such periodic sets of points on the plane are proved to be
computable (Section 3) using the algorithms that work for finite sets of points on the plane. This
periodic Voronoi diagrams will be proved to be useful when computing the Voronoi diagrams on the
surfaces (Section 4).

The paper is organized as follows. In Section 2 standard facts about discrete groups and two-
orbifolds are introduced. In Section 3 we discuss an algorithm that computes Voronoi Diagrams for
periodic set of points on the Euclidean plane. In Section 4, we present an algorithm for computing
Voronoi Diagrams on the Euclidean and spherical two-orbifolds.

2. Discrete groups of motions and two orbifolds

Let M denote the Euclidean plane E? or the two-sphere S?, the latter with the Riemannian metric
inherited from E? (i.e., distance between two points P and @ is given as the infimum of the lenghts
of all the paths on the sphere joining P and Q). S? with this metric is known as the Riemann sphere.

A motion of M is any bijection f from M onto M that preserves distances (i.e., d(P,Q) =
d(f(P), f(Q)), YP,Q € M). Under the composition of motions, the set of all motions of M is a
group. Let Motions (M) be the full group of motions of M. A subgroup G of Motions (M) is called
discrete if VP € M, there exists a constant ¢(P) > 0 such that

Vg € G with gP # P, d(P,gP) > ¢(P),

where gP denotes the action of the motion g on point P and d(P, Q) is the distance in M between
points P and Q).

Note that the orbit of any point P under the action of a discrete group G, GP = {gP: g € G}, is a
closed and discrete subset of M. Any two points belonging to the same orbit will be called equivalent
points.

The quotient space M /G, whose points are the orbits of points of M under the action of G on M,
inherits a natural metric from the metric in M.

Definition 1. Distance d(p, q) between two orbits p and g in M/G is defined as the distance between
the sets p and g, that is, as the infimum (that is in fact the minimum) of the distances in M, between
points P € p and ) € q.

With this distance defined on M /G, it becomes a metric space [14].
In order to specify a point p € M /G we need only to know one point P € p in M, as the remaining
points in the orbit p are all of them of the form gP for some g € G. It is then useful, in order to
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handle the quotient space M /G, to determine some region in M which contains at least one point of
each orbit and is as small as possible.

First we consider the case M = E2.

A fundamental domain for a discrete group G of Euclidean motions is a convex and closed subset
D¢ of the Euclidean plane E? with nonempty interior and satisfying:

(1) D¢ contains at least one point of each orbit;
(2) If there are equivalent points in D¢, then they lie on its boundary.

The orbit space E?/G can be thought of as the surface T" obtained from a fundamental domain D¢
for G, by identifying or glueing together equivalent points in its boundary. This topological surface
T is in one-to-one correspondence with E2/G and the natural metric in this space defines, via the
bijection, a metric on the surface T, so we have a topological surface 7' with a metric, isometric to
the quotient space E?/G. These metric surfaces are all connected and are called the two dimensional
Euclidean orbifolds [14].

Example. Consider the group generated by a single translation of the plane. In Fig. 1 we have drawn
the orbits of two points P and (). Lenght of segment P(} gives the distance between the two orbits. A
fundamental domain for this group is, for instance, the shadowed region in Fig. 1. The corresponding
orbifold can be easily recognized as a cylinder.

There are as many of these surfaces as discrete groups of Euclidean motions exist. Because of this,
let us recall the possible types of discrete groups of Euclidean motions of the plane [5,10,15] (due to
a theorem of Bieberbach, this number is finite in any dimension [17]).

There are only a finite number of discrete groups of Euclidean motions, modulo conjugation in
the affine group of Euclidean transformations (i.e., two groups G and G’ are said to be conjugated if
and only if there exists an affine bijection v from the plane onto the plane s.t. G = .G'.4p~1). A
discrete group is finite if and only if it contains no translation. Leonardo’s Theorem [10] establishes
that the only discrete and finite groups of Euclidean motions are the groups C, and D,, for n any
natural number, defined as follows: the cyclic group C, of order n consists of all the rotations leaving
invariant a regular n-gon and the dihedral group D,, of order 2n, of all the motions leaving invariant
the same n-polygon.

If the group contains translations, then it is infinite. The groups that contain translations in only
one direction are commonly called two-dimensional frieze groups and there are seven [4,10], again
modulo conjugation in the affine group. The groups that contain translations in two linearly independent
directions are often termed two dimensional crystallographic groups and there are seventeen, modulo

P e

Fig. 1.
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conjugation in the affine group. The history of this classification dates back to the late nineteenth
century [4,5,10,15].

Among the surfaces obtained in this way from the plane, the most well-known are the cones (such
that, cuting and unfolding the cone creates a planar circular sector of angle 27 /n, G equals the
group C,), the cylinders (G is generated by one translation), the Mobius bands (G is generated by a
glide reflection), the flat toruses (G generated by two independent translations), the Klein bottles, the
pillows and the pillow-cases, all of them with the metric inherited from the Euclidean plane as stated
in Definition 1.

Next we consider the case M = S2.

The full group of motions of the Riemann sphere is the orthogonal group O(3), realized as the set of
all rotations (around one axis passing through the center of S?) and all rotary inversions (composition
of a rotation with the central inversion).

A subgroup G of O(3) is discrete if and only if it is finite and so the problem of classification of
the discrete subgroups of O(3) is the one of finding its finite subgroups. There are exactly fourteen of
such groups, except for conjugation in O(3) [4].

The definition of fundamental domain for a discrete group GG of motions of the Riemann sphere is
the same as for the plane case, replacing the condition of being convex by spherically convex [11].
From a fundamental domain D¢ for G, the corresponding surface is obtained, as before, by identifying
equivalent points in its boundary.

The resulting topological surface is in one to one correspondence with the metric space S?/G and
inherits its metric, via this bijection. Then they become metric surfaces that are known as the closed
spherical two-orbifolds.

Each of these surfaces is topologically a two-sphere, with two or three metrically singular points
(i.e., the surface is a Riemannian 2-manifold of constant curvature equal to one except at a finite (2
or 3) number of singular points [12].

Althought in what follows an infinite collection of points can be involved, we will use here the
following extended definition of Voronoi Diagram that applies to discrete collections of points in a
Riemannian manifold [7].

Definition 2. If a discrete subset S = {F;: i € I} of M is given, the Voronoi region Vs(P;) of
point P; with respect to the set S is defined as

Vs(P) ={Q € M: d(Q, P) <d(Q, Px), Vk € I, k #i}.
The following results will be used throughout the paper.

Proposition 1 (See [7,11] for a proof). Let M be the Fuclidean plane E? or the Riemann sphere 52,
G a discrete group of motions of M and P € M a point with trivial stabilizer (i.e., if gP = P then
g = e€) [2]. Consider the orbit of P, GP = {gP: g € G}. Then the topological closure in M of the
Voronoi region of P with respect to the discrete set GP, ClVgp(P), equals the set

{Q € M: d(Q, P) < d(Q,gP), Vg € G}

and is a fundamental domain for G.

These types of fundamental domains will be referred to as Dirichlet fundamentals domains.
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Given a discrete group G of motions of M, we define an edge E, of Vgp(P) as E, = {R € M:
d(R,P) = d(R,gP) < d(R,hP), Yh € G — {e,g}}, whenever E, is not empty.
Now it is well known [7] that the following result holds.

Proposition 2. If G is a discrete group of motions of M, P a point with trivial stabilizer and D¢g =
Vep(P) a Dirichlet fundamental domain, then the set of motions {g € G: E, is an edge of Vop(P)}
is a generator system for G.

3. The computation of Voronoi Diagrams for saturated sets of points in the plane

Given any finite collection S of points in E?, § = {P,,...,P,}, and any discrete group G of

Euclidean motions, let the set G.S be defined as the union of all orbits of points in S, that is
GS ={gP: g€ G, P,eS}.
This set GS is the saturation of S by the action of G.

The discrete group G can be given by a Dirichlet fundamental domain D¢ of the form Cl1Vgp(P)
for some point P with trivial stabilizer and so its set of edges provide us with a generator system
for G, according to Proposition 2.

Except for the cyclic or the dihedral groups, the rest of the discrete groups of Euclidean motions
of the plane are infinite and therefore, most of the time the set G.S is an infinite but discrete, subset
of the plane. Although the existing algorithms to compute Voronoi diagrams deal only with finite
collections of points, points in GS are regularly distributed and its Voronoi Diagram has then some
kind of regularity that allows us to compute it by computing only the Voronoi Diagram of a certain
finite subcollection of points in GS as stated by the following theorem.

Theorem 1. Let G be a discrete group of Euclidean motions given by some generator system for G.
Let Dg be a Dirichlet fundamental domain of the form ClVgp(P), for P a point in E? with trivial
stabilizer.

Suppose S = {Py,...,P,} is a subset of Dg and consider its saturation GS by the action of G.
Then, there exists a finite subset S* of GS such that S* contains S and

Vor(GS) = G(Vor(S*) N Dg).
The theorem is an easy conclusion of the following sequence of lemmas.

Lemma 1.

90Vas(Py) = Vas(9.P;) Vg, € G and VP; € S.
Lemma 2. There exists a finite subset G* = {gy = e,92,...,9m} of G such that for every point
X € D¢ and for every point Y € E* — U;n=1 9;Dg, there exists another point Y* € U;n:l 9;Dg such

that Y* is equivalent to Y by G and d(X,Y™*) < d(X,Y).
As a consequence it happens that

Vas(P;) C U 9;Da.
j=1
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Lemma 3.

m
Vas(Ps U VGS )ﬂDg) Vi=1,...,n.

Let S* be defined as GS N (U;’;l g;D¢). Then the following lemma holds.
Lemma 4. If () € 5™ then Vgs(Q) N Dg = Vs*(Q) N Dg.

Corollary.
Vor(GS) N D¢ = Vor(S*) N Dg.

Lemma 1 shows the regularity of Vor(GS): to compute Vor(GS) it is enough to compute only the
Voronoi regions in Vor(GS) corresponding to points in D¢, that is of points P; € S, because any of
the other regions is congruent with one of them, via an element g € G.

Lemma 2 proves that points in D¢ are metrically affected only by the points of GS lying in D¢ or
in a certain finite union of copies of D¢ around Dg. As a consequence, only a finite subset S* of GS
has to be considered in order to compute the Voronoi region Vi g(F;) of one of the points P; € Dg. In
fact, Lemma 3 allows to obtain each Voronoi region Vg (P;) from the Voronoi regions of this finite
set of points S* in GS, even when restricted to the portion of these Voronoi regions that lies in Dg.

But because of Lemma 4, Voronoi Diagrams Vor(GS) and Vor(S*) are equal when restricted to Dg.

Let us now show the proofs for the lemmas.

Proof of LLemma 1.
Let X be in Vgs(P;). This means that

d(X,P;) <d(X,X'), VX' €GS-{P}. (1)
As d(gX,gX') =d(X,X'), Vg € G, (1) is equivalent to
d(goX’ gon) < d(goX7 goX,)v VX' € GS - {P]} (1"

But {goX": X' € GS —{P;}} = {X": X" € GS — {goP;}} and therefore (1) can be rewritten as
d(go X, goP') < d(goX, X”) VX" e GS - {QOP‘}

meaning that g,X belongs to Vgs(goP;). And so, g,Vas(Pj) C Vas(goFP).
Conversely, if X is in Vgs(g,F;), then

d(X,9.P) < d(X,X"), VX' e€GS—{g.F;}. 2)
As before (2) is equivalent to
dlgy ' X, P;) < d(g;' X, 95" X'), VX' €GS—{g,P;}. 2)

But {g;'X": X' € GS — {g,P;}} = {X": X" € GS — {P;}} and (2') can be rewritten as
d(g,' X, P;) < d(g,' X, X"), VX" € GS—{P},

meaning that g, ! X belongs to Vzs(P;), and so X = g,.g, ' X belongs to g,Vzs(P;), proving finally
that VGS(QOP) C gOVGS(P) d
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Proof of Lemma 2.

Case a. G contains no translation.
In this case G is finite and lemma holds for G* = G.

Case b. G contains translations in two independent directions.

In this case the fundamental domain D¢ = ClVgp(P) is bounded. Let £ be its diameter. Distance
from P to the boundary Bd Vgp(P) of Vgp(P), considered as a function defined on Bd Vgp(P),
attains its maximum L, as it is a continuous function defined on the compact set Bd Vgp(P).

Let K be k+ L and let Cl B (P) denote the closed ball of radius K centered at P. As the covering
{gD¢: g € G} is locally finite, the compact Cl Bg (P) intersects gD¢g only for a finite number
G*={g =e,...,gm} of elements of G.

Now, if X belongs to Dg and Y is not contained in U;nzl 9;Dg, let Y* be equivalent to Y and
belonging to D¢ (it always exists, as D¢ is a fundamental domain). Then

d(X,Y*) < k <d(X,Y)

and the lemma holds.

Case c. G contains translations in only one direction.

Let t be a translation of G whose corresponding vector has minimal length. In this case Dg =
ClVgp(P) is unbounded, it extends to infinity in the perpendicular direction to ¢ and it can be
embedded in a closed band (i.e., a closed region between two parallel lines) of finite width, also
perpendicular to ¢. Choose the width of the closed band as small as possible but large enough to
contain —tD¢g, Dg and tD¢. Call it B. This band B intersects gD¢ only for a finite number G* =
{91 =e,92,...,9m} of elements of G.

Now if X belongs to Dg and Y is not contained in U;”:l 9; D¢, consider the set Ty of points
equivalent to Y by any translation in G (ie., {gY: ¢ € G and g is a translation}). It is easy to see
that the Voronoi diagram of such a set of points is an infinite collection of parallel and closed bands,
equal to each other. At least three points in 7y (one in —tDg, one in D¢ and one in tDg) belong
to B and because their corresponding Voronoi regions cover Dg, one of them, say Y*, satisfies that

d(X,Y*) < d(X,Y).

Without loss of generality, let us suppose that the set G* = {g1 = €, ¢92,...,9m} is saturated by the
operation of taking inverses. If it is not so, just add them. We still have a finite subset of G that we
call G* again, such that Lemma 2 holds for it. O

Proof of Lemma 3. Let us first prove that the Voronoi region Vigg(PF;), of P; with respect to G5, is
completely contained in the union U;”zl 9;Dg. As before we distinguish some cases.

Case a. G contains no translation.

In this case G is finite and G* = G. Therefore U;"zl g; D¢ is the whole plane and the lemma holds.

Case b. G contains translations in two independent directions.

Let Y be a point not contained in U;”zl g;Dc. Then Y will belong to a certain gDg, with g ¢
G* = {91 =€,92,--. 7gm}

Note that Y € gD¢ implies g~'Y € D¢ and so, both P; and g~'Y, belong to D¢. Therefore
distance between them does not exceed the diameter & of Dg. This diameter k, in turn, is strictly
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smaller than distance from any point of D¢, for instance P;, to any point outside U;"zl g;Dg, say Y.
This can be expressed as

d(gP;,Y) =d(P,g"'Y) <k <d(P,Y),
that means that Y does not belong to Vgs(F;).

Case c. G contains translations in only one direction.
Let Y be a point not belonging to UJ 1 9;Dc. Apply Lemma 2 (Case c) to P; € Dg and Y €

E? — U;"zl g;Dg, to find a point Y* = T,:Y, equivalent to Y by translation, and such that
d(P;, Y*) = d(P,, TntY) = d(T-nt P, Y) < d(Y, P;).

We conclude that Y cannot belong to Vgs(F;).
Recall that the more important consequence of Lemma 2 is that

m
Vas(P) < |J 95 Dc-
Now, using this fact and Lemma 1, proof of this lemma is straightforward:

m
Ves(P U Vas(Pi) Ng;Dg) = U 9i (g7 Vas(P) N Dg) = | J 9j(Vas(9; ' P;) N D). O
j=l1 3=1

Proof of Lemma 4. Let S* be defined as GS' N (U;’;l g;D¢) and let ) be a point in §*. As S* is a
subset of GS, Vs«(Q) contains Vgs(Q), implying that Vs-(Q) N D¢ contains Vas(Q) N Dg.
Conversely, let X be a point in Vg-(Q) N Dg. This means that

d(X’Q) < d(X7 Q/)a VQ, €85~ {Q}

Due to Lemma 2, for any other point Q' in GS — S*, there exists some Q* € S* equivalent to ' and
verifying

d(X,Q) < d(X, Q).
In conclusion we have that

d(X7Q) < d(Xa Ql)a VQI €GS — {Q}a

that means that X belongs to Vgs(Q) N D¢, proving that Vg« (Q) N Dg C Vas(Q) N Dg and equality
holds. O

Remark 1. From a quantitative point of view, it might be interesting to estimate bounds on the
cardinality of the subset S* as a function of the cardinality of the set S and the type of the group G.
In fact, the size of S* determines, after Theorem 1, the complexity of computing periodic Voronoi
Diagrams.

In Lemma 4, we have constructed a set S* whose cardinality is m times the cardinality of .S, where
m is a certain number of copies of the fundamental domain as required in Lemma 2.

Now, for every concrete realization of a discrete group (i.e., given the generator system and a
Dirichlet fundamental domain for it), it is an easy metric problem to bound m. A case analysis yields
that m = 37 is an upper bound for all possible realizations and all groups. This number is obtained
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Fig. 2.

considering all first and second order adjacent copies of the fundamental domain (first order means
adjacent to the fundamental domain; second order means adjacent to the adjacent ones). See Fig. 2.
Note that this bound for m needs not to be the sharpest one for some groups.

Remark 2. Theorem 1 is also true for discrete groups of motions of the sphere, but since any discrete
group on the sphere is finite, the set GS is always finite and the computation of Vor(GS) is not a
problem. Nevertheless, the result in Theorem 1 can be used to reduce the number of points involved
in the computation.

4. The computation of Voronoi Diagrams in the Euclidean and spherical 2-orbifolds

Now the general problem we want to solve can be stated as follows.

Problem. Given an Euclidean or spherical 2-orbifold M/G, where G is a discrete subgroup of the
group Motions (M) and M denotes E* or S2, and given a finite collection s of points in M/G,
s = {p;: 1 <i< n}, find the Voronoi Diagram Vors/(s) of s in M/G.

We can suppose G is given by means of a Dirichlet fundamental domain Dg whose corresponding
edges provide us with a generator system for G. Let S = {Pi,...,P,} C Dg be such that P; €
pi, Vi =1,...,n. In what follows, if z denotes a point (i.e., an orbit) in M/G, we will write X for
any point in M N D¢ such that GX is the orbit x.

The algorithm. The Voronoi Diagram Vorys/;(s) of s in M/G can be computed as follows.

Step 1. Compute Vorps(GS) (if G is infinite, use Theorem 1).

Step 2. Remove the edges and vertices of Vorps(GS) between regions of equivalent points and call
Vor},;(GS) the resulting partition of M.

Step 3. Intersect Vory,(GS) with Dg. Call it Vorp, (S).

Step 4. Identify equivalent points in Vory;(GS) N Dg.

Proof. Vory (s) is going to be computed from the periodic Voronoi diagram Vorps(GS). This is
possible due to the existing relation between the metric in M/G and the metric in M: distance d(p, q)
between two points (orbits) in M/G is the minimum of the distances between one point P € p and
any point @) € q.

What we are going to prove is that, when one point X € Dg belongs to the Voronoi region
Vis(gP;) € M for some g € G or when it belongs to an edge of Vorp(GS) between regions
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of two equivalent points ¢'P; and g"”P; or to a vertex of Vorp(GS) between regions of three or

more equivalent points, then the orbit z that this point X represents, considered as a point in M/G,

necessarily belongs to the Voronoi region V,(p;) C M/G.

And conversely, if z € M/G is such that z € Vi(p;), then its corresponding point X € Dg
will belong to Vgs(gP;), for some g € G, or it will be on an edge of Vorp(GS) between regions of
equivalent points or will be a vertex of Vorps(GS) between regions of three or more equivalent points.

We represent the surface by means of a Dirichlet fundamental domain D¢, with maybe some
identifications on its boundary (the orbifold M/G is in one-to-one correspondence with it) and give
a partition Vorp,, (S) of the fundamental domain such that, after identification, it corresponds exactly
with the Voronoi diagram Vory ().

Then all we have to prove is that the following two assertions are equivalent:

(@) z € Vi(pi);

(b) X € Vgs(q1P), for some g € G, or X belongs to an edge of Vorps(GS) between regions of
equivalent points, or X is a vertex of Vorp(GS) between regions of three or more equivalent
points.

(a) = (b). Suppose x € Vi(p;). This means that d(z,p;) < d(z,p;), Vi=1,...,n, j #i.

Consider a representative X € D¢ of z. Then, by definition of distance on M/G, there exist
elements g;, g» in G such that

d(z,p;) = min {d(X,gP;): g€ G} = d(X,01P) < d(X,gP) VYg€G, ?3)
d(z,p;) = min {d(X,gP;): g € G} =d(X,9P;) < d(X,gP;) VgeGi. 4)

Therefore we have that

d(z,p;)) =d(X,q1B;) <d(X,9P;) Vj#i, VgeG. *)
It can happen that in (3)

d(X,q1P) < d(X,gF), VYg€G—{g} 3
or that

d(X,q1P,) =d(X,d'P;) forsome g €G- {g1}. @"

If (3/) happens, (3') together with (*) means that X € Vas(g1F;).

If (4’) happens, (4') together with (*) means that X belongs to an edge (if only one g’) or is a
vertex (if more than one ¢) of Vorp(GS) between regions of equivalent points g, P; and ¢'P;; and
then (a) implies (b) is true.

(b) = (a). Conversely, suppose (b) holds and let X belong to 2N Dg. If X € Vigs(goF;), for some
go € G, then clearly d(z,p;) < d(z,p;), Vj # i and z € Vi(p;). If X belongs to an edge between
regions of equivalent points, then

d(X,¢'P) =d(X,q"F;) < d(X,Q)

for some ¢’ and ¢” in G and VQ € GS — {¢'P;, ¢" P;}.
Thus in particular

d(z,p;) = d(X,¢'P) = d(X,¢g"P,) < min {d(X,gP;): g€ G} =d(x,p;), Vj#1.

A similar argument for the case of vertices proves that (a) holds. O
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Fig. 3.

Remark 3. Note that Step 2 of the algorithm can produce bends, or vertices of degree two on the
boundary of a Voronoi region in M/G. See Fig. 3 for an example for the surface of a cylinder.

Remark 4. The procedure can be easily adapted to compute Voronoi diagrams on the surface of a
cone of arbitrarily angle « (defined as in Section 2), whenever 3 does not exceed 2.
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