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Abstract. We present here a further development of the well-known approach to automatic theo-
rem proving in elementary geometry via algorithmic commutative algebra and algebraic geometry.
Rather than confirming/refuting geometric - statements (automatic proving) or finding geometric for-
mulae holding among prescribed qeomemc magnitudes (automatic derivation), in this paper we
consider (following Kapur and Mundy) the problem of dealing automatically with arbitrary geo-
metric statements (i.e., theses that do not follow, in general, from the given hypotheses) aiming to
find complementary hypotheses for the statements to become true. First we introduce some standard

algebraic geometry notions in automatic proving, both for self-containment and in order to focus
our own contribution. Then we present a rather successful but noncomplete method for automatic
discovery that. roughly, proceeds adding the given conjectural thesis to the collection of hypotheses
and then derives some special consequences from this new set of conditions. Several examples are
discussed in detail.
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Introduction

We present here a further development of the automatic theorem proving method
proposed by Kapur (see (6, 10}]) after the dissemination of some foundational work
by Wu [16]. Such an approach follows a rather straightforward algebraic geome-
try argument to refute elementary geometry theorems, and its algorithmic core is
founded on Grobner basis computations. Drawbacks and limitations of this method
have been described in [1] and are taken into consideration here. The book [17]
contains a detailed account of the whole subject by one of 1ts founders, plus many
references.

Roughly, automatic proving deals with deciding the correctness of statements
of the kind H = T, where H, T are, respectively, some given sets of hypotheses
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2 T. RECIO AND M. P. VELEZ

and theses. The expected output is, essentially. a yes/no answer, although it can
happen that the method describes also some minor modifications of the hypotheses

" for the theses to hold (such as ruling out degenerate instances of the hypotheses).
On the other hand, different methods for automatic proving have been adapted to
the automatic derivation of geometric statements, where the goal is to find thesis
involving prescribed geometric magnitudes that hold for a set of given hypotheses
(such as deriving the expression of the area of a triangle in terms of the length of
the three sides; see [2] and the recent work of [15] or [9]). We will consider in
this paper a third issue, that of auromatic discovery, that is, the problem of dealing
automatically with arbitrary statements (i.e., statements that could be, in general,
false) aiming to find complementary hypotheses for the statements to become true,
for instance, stating that Brahmagupta’s (Ptolomeus’s) formula holds over arbitrary
ordered quadrilaterals and getting as output that the vertices should be co-cyclic,
an example taken from [15]. As has been already remarked, one application of
this approach could be in image understanding, for example, to deduce conditions
under which parallel lines on a scene remain parallel in its image (see [8]).

Automatic discovery is different from automatic proving in that the latter pro-
vides useful information only about the general (roughly speaking, see the dis-
cussion in Subsections 1.3 and 2.1) truth of a given statement. On the other hand
automatic derivation is different from automatic discovery in that the former does
not include a priori a specific thesis and does not pretend to modify the given hy-
potheses. Nevertheless, from the methodological point of view, automatic deriva-
tion could be understood as a particular case of automatic discovery of statements
without a thesis at all (as the method presented in 2.1 could be easily adapted to
derive geometric formulae), but we will not focus on this analogy here.

Although [8] already formulates explicitly the goals of automatic discovery”
and proceeds with rather similar ideas (in the context of Wu's automatic proving
techniques) to those presented here using Grobner basis tools, we feel that most
previous work just includes some enlightening examples and does not Systemati-
cally address this important issue.

We have collected in Section 1 some needed notation and results from automatic
proving, and we introduce one example that will be considered from different
points of view along the paper. The reader is referred to book [1] or [4] for fur-
ther details. Section 1 is written for the nonspecialist and has a didactic goal (the
specialist should excuse our winding approximation to the key concept of geomet-
rically independent variables, general components, and so on). Section 2 presents
our automatic discovery method and discusses two illustrative examples. Some ba- i
sic ideas have been already sketched in [14]. The book [13] (in Spanish) includes a
relatively large collection of theorems (re)discovered under this approach. Finally,
some conclusions are outlined, and a didactic application is briefly presented.

»

-- the objective here is to find the missing hypotheses so that a given conclusion follows from
a given incomplete set of hypotheses. .
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 3

1. Automatic Proving
1.1. GEOMETRICALLY TRUE THEOREMS

Let K be a field of characteristic 0, for instance, the field of rational numbers Q,
and L an algebraically closed field containing X, for instance, the field of complex
numbers C. Given a geometric theorem (or, simply, a geometric construction), we
begin our procedure by translating the geometric hypotheses and theses (or the
construction steps) into algebraic expressions, after adopting a suitable coordinate
system. Roughly speaking, the collection of hypotheses of a theorem is expressed
as a set of polynomial equations*,

hy(xy,...,x,) =0, coevhp(xy, oo xy) =0,
and the thesis™ is also rewritten as a polynomial equation,
k(x;, ey X,,) = O,

where hy, ..., h, k € K[x|,...,x,]. Thus, the geometri¢ statement is translated
into '

Vixi,...ox) € L hy(xg, oo, x0) =0, hp(xy, .y x,) =0
= k(xl,...,x,,) =0.

Therefore, within this formulation, the geometric statement is said to be geo-
metrically true iff the algebraic variety defined by {(h; = 0, ..., h, =0} C L"
(the hypothesis variety H) is contained in the variety {k = 0} C L" (the thesis
variety T).

Since, by using the well-known trick of Rabinowistch, it happens that the ideal

J=((hy, ..., hp, kt = DK[x), ..., x0, (DN K[xy, ..., X,)

is also the set of elements g € K[x, ..., x,] such that, for some power m, gk™ €
(h1, ..., hp). it follows from Hilbert Nullstellensatz * that a way fortesting H C T
is to verify whether

lel=(h,....hp kt = DK[x), ..., %0 1],

* Itis quite easy to deal as well with hypotheses of the kind % = 0, by adding some extra variables
zsothat i # Qs converted intohz — 1 = 0.

** If there is more than one, we can consider the conjunction of several theorems. one for each
thesis. . ‘

* This formulation implies that we are proving/refuting statements taking into consideration all
complex values of the involved variables. Although elementary Euclidean geometry, in general,
deals with figures in the real plane or space. it happens that many “classical” theorems hold also
when coasidering complex coordinates for the involved geometric constructions. The approach to
automatic theorem proving or discovery of thesis holding only for real values of the coordinates is,
computationally speaking. more difficult: see [3, 5. 12].
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4 T. RECIO AND M. P. VELEZ

where 1 is some slack variable; and this can be automatically accomplished by
computing any Grobner basis of this ideal and by reporting if 1 is an element of
such basis. Of course, in order to avoid proving trivially true results, it should be
previously checked that H is nonempty (again, using the Nullstellensatz). because
any thesis can be formally derived from a contradictory (empty) set of hypotheses.

There are many examples that show how the outlined procedure works (see the
impressive collection given in [1]), but let us choose instead an example that does
not work as intuitively expected.

EXAMPLE 1. Let us consider a triangle of vertices O(0, 0), A(l. 0), B(a, b) and
a point x(x, y) in the circle defined by the three given vertices (the outer circle
or circumcircle of the triangle). We construct (see figure below) the svmmetrical
images of such point with respect to the three sides of the triangle, and we call
them, respectively, X' (x, —y), x"(X, Y), X" (Z, W). Now we claim that these three
points are always aligned, that is, XW — Zy + xY +yX - YZ — xW = 0.

X
B
X
X" o
0 \\\\\\\h_ﬂf////// A
L] XI

To prove this theorem automatically we start generating the algebraic translation
for the given data. Here we do it very naively — as it could be done by a machine
with a minimum of information about the terms involved in our construction. For
instance, the symmetric point x” of x with respect to side OB, is obtained step by
step constructing, first, a perpendicular line to such side through x, namely: a(L —
x) +b(M — y) = 0. Then, let (L, M) be the intersection of this line with the one
described by the given side, so that also —bL + aM = 0. Finally, this symmetric
point(X. Y) is defined through the vector equation (x, y) + 2((L, M) — (x, y)) =
(X, Y). For side AB we will define analogously an intermediate point (R, S) in the
construction; and for the third side, the symmetric point can be directly seen that
has coordinates (x, —y). Next we consider the equation x2b — xbl + y*b — ya® +
yal — yb* = 0, describing the circle that passes through O(0, 0), A(/, 0). B(a, b).
In total, this yields the following collection of construction hypotheses:

Ideal (a(L — x) +b(M — y), =bL +aM, X — x — 2(L — x),
Y—y—=2(M—=y),(@a-D(R=x)+b(S—-y),
—b(R=D+@=-DS,Z—x—2(R—x),W -y —2(5—y),
x2b — xbl + y2b — ya® + val — yb?).
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 5

Obviously, this set of conditions is nonempty, for we are able to construct
particular triangles verifying all of them. Next we test if the thesis follows from
these hypotheses by checking (with the program CoCoA* all through this paper)
the NormalForm™ of 1 in I, where

| = Ideal(La + Mb — xa — yb, —Lb + Ma, -2L + X + x,
-2M +Y +y,Ra— Rl + Sb —xa+ x|l — yb, —Rb + Sa — S| + bl,
—2R+Z+x,-2S+ W +y,x2b — xbl + y*b — ya? + yal — yb°,
XWt+ Xty —YZt+Ytx —Zty — Wix - 1);

but we obtain
NormalForm(l, ) = 1.

Surprisingly, we must conclude that the theorem is not geometrically true, at least
in the way it has been algebraically translated.

1.2. NON-DEGENERACY CONDITIONS

Algebraic varieties, namely, zero sets of algebraic equations, are ‘small’ or ‘thin’
subsets of the affine space they lie in. In fact, they are considered small, since they
do not include any hypercube or hypersphere of that affine space: a planar curve
has no width at any point, a surface in space is never thick, and so on. On the other
hand, algebraic varieties are always closed sets in the Euclidean topology of the real
or complex affine space. But there is a different topology that can be constructed
on any given algebraic variety: the Zariski topology, having as closed sets precisely
those algebraic varieties contained in the given one. Thus, open Zariski sets are to
be considered as ‘large’, being the complement of an algebraic variety.

These technical remarks allow us to analyze some statements that fail to be
geometrically true. Concretely, statements that do not hold in all cases but that are
true if a few geometric instances of the hypotheses are ruled out? (that is, if they
fail only on a *small" set of points of the hypothesis variety). Technically speaking,
we are considering now that H is not a subset of T, but that a nonempty Zariski
open subset W C H is contained in 7. The important news is that we can still
detect such statements, performing a small modification of the above procedure.
Namely, when the theorem is not geometrically true, we should compute a basis of
the ideal

J=((hy,....hp, kt = DK[x), ..., %0, tD N K[x, ..., x,].5

It is immediate from a precedent observation that for every g(xy,...,x,) in this
ideal, and any ¥ = (x;,..., x,) € L”, it holds that

" Freely distributed at (cocoa@dima.unige.it).
** The Normal Form of an element with respect to some ideal happens to be zero iff the element
belongs to the ideal: see [4].
* See the discussion at the end of 1.3 for a more precise description.
**This operation of finding the polynomials in an ideal that include just some specific variables is
called the eliminarion of the remaining variables.
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6 T.RECIO AND M. P. VELEZ
hME)=0A - Ahp(X) =0Ag(¥) #0= k(X) =0.

Therefore, elements of this ideal J provide some complementary hypotheses of a
negative kind (g # 0) such that, adding them to the given hypotheses, the thesis
now follows. Of course, to avoid proving theorems that hold because of contra-
dictory hypotheses, it should be required as well that the new set of conditions
hEx)=0A---Ah,(x)=0Ag(x)#0is nonempty (i.e., that H ¢ {g = 0}).
For reasons that will become apparent soon, these extra hypotheses g € Jare
often called non-degeneracy conditions* and the ideal J is referred to as the non-
degeneracy ideal. If H C {g = 0}, the non-degeneracy condition g # 0is called
trivial. Thus. we should always search for nontrivial conditions. ;

This extended procedure can be algorithmically carried on computing (as in
[71), by elimination, a basis of J, say, (g1, ..., gs), for instance, through the com-
mand Elim from CoCoA. Next we should look for trivial generators in this basis,
and this can be done obtaining, for each i, the normal form of 1 in the ideal
(hi, ..., hp, git — 1) and determining — as above — whether H is contained in
the zero-set {g; = O}. If H C (");_,{g = 0}, then all conditions in the found basis
are trivial; moreover, it is easy to see that this implies that all conditions in the ideal
of non-degeneracy are trivial as well.

If this is not the case, there will be points X = (xy,...x,) € L" such that

RE =0A AR E) = 0A(g1(F) £ OV - v g,(7) £ 0)
and for all such x = (xy,..., x,) € L",
i) =0A- Ahy(@) =0A(g1(X) 0V -V g(F) #0) = k(X) =0

so that the theorem now holds under any of these non-degeneracy conditions.

Let us see how this technique applies to our previous example. Performing the
elimination of the slack variable ¢ introduced in the last line of the definition of |,
one gets a collection of over thirty polynomials, say, J = Elim(z, I), in the remaining
variables {LMRSXY ZWxyabl}, too large to reproduce here. Some of them yield
trivial conditions, for instance, all the generators of the hypotheses ideal (all the
generators of | excluding the last one), which are obviously contained in J. But
some others polynomials from the elimination basis, for instance, a* — 243/ +
2a*b* + a®I* — 2ab*l + b* + b2 give nontrivial conditions:

NormalForm(1, Ideal(La + Mb — xa — yb, —Lb + Ma, 2L + X + x,
—2M +Y +y . Ra— Rl + Sb —xa + xl — yb,
—Rb+Sa—Sl+bl,-2R+Z+x, =25+ W +y,
x2b — xbl + y2b — ya® + yal — yb?) -
(a* —2a%1 + 22’6 + a®1% — 2ab2] + b* + b2yt — 1);

1; '

* We are, for the sake of clarity, omitting in this subsection some technical precisions regarding
non-degeneracy. in particular, the fact that it should be defined only in terms of independent variables;
but we want to postpone the introduction of this elusive concept until the end of 1.3 and Section 2.
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 7

Therefore the theorem should hold under the condition a* — 243 + 24a%b* +
a’l* = 2ab’l + b* + b*I* # 0. We check this adding to the ideal | the polynomial
(a*=2a%1 +2a*b> +a*1*> = 2ab*1 + b* + b*1*)h — 1, where h is another — different
— slack variable. As expected, now the normal form of 1 is 0.

NormalForm(1, Ideal(La + Mb — xa — yb, ~Lb + Ma, =2L + X + x,
~2M +Y +y . Ra— Rl + Sb—xa+xl — yb,
—Rb+Sa—Sl+bl, 2R+ Z+x,-25+W+y,
x2b — xbl + y*b — ya® + yal — yb?) ,
(a* ~2a31 + 2a°P? + a*1? — 2ab*l + b* + b3t — 1,
XWt+ Xty —YZt + Ytx — Zty — Wtx — 1));

0;

What does this non-degeneracy condition mean geometrically? It factors as
((a—1)?+b%)(a®+b%) # 0, thatis, {(a—1)2+b2 # O} A {a® +b? # 0}. So the first
clause in this conjunction can be interpreted, over the reals, as {a # I} v {b # 0},
and the second one means {a $# 0} v {b # 0}. Condition {b # 0} implies the
given triangle does not collapse to a certain line; the other two conditions imply
the triangle is not straight and could be considered as degeneracies associated to
the algebraic formulation. We warn the reader about imposing, instead of the found
condition, any of these ‘real’ counterparts: they do not yield a 0 normal form. Al-
though they seem more natural in the geometric context, they do not translate well
the algebraic behavior of the geometric statement. These real-field interpretations
should be ‘for your eyes only’. A similar analysis can be carried on with other
conditions arising from this elimination computation.

In summary, in the case that there are nontrivial non-degeneracy conditions
and the ideal of non-degeneracy has a basis (&1, ..., &), with, say, (g1,...,g)
nontrivial, the given theorem holds over the nonempty open set of H A(g (%) #
0V .-V g (x) # 0) (which happens to be the largest open one in H where the
theorem holds).

1.3. PROVING PSEUDO-THEOREMS

‘Unfortunately, things are a little bit more complicated than the previous example
shows: in fact, if we apply mechanically the procedures we have developed in the
preceding sections, it can happen that we end up labeling as truthful a statement that
happens to hold only over cases that are, intuitively, degenerate. Such a phenom-
enon is what we informally name as proving ‘pseudo-theorems’. Let us describe
what we mean through a suitable modification of that example’s formulation.

EXAMPLE 2. This time we will consider as data the given triangle O(0, 0), A(l, 0),
B(a, b) and an arbitrary point x(x, y). We also consider the symmetrical images
of such point with respect to the three sides of the triangle, X' (x, —y), X"(X, Y),
X"(Z, W), but we forget to input, as one of the hypotheses, that the point x(x, y) is
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8 T. RECIO AND M. P. VELEZ

in the circumcircle of the triangle. Still, we are claiming that the three symmetrical
images of x are aligned, that is, XW — Zy +x¥Y + yX = YZ — xW = 0.

First, as expected, we find out that the theorem is not geometrically true (and
we will omit this part of the procedure); then, in order to find non-degeneracy
conditions, we denote by I’ the ideal

I"= Ideal(a(L — x) + b(M — y). —=bL +aM, X — x - 2(L —x),

Y=y -2M =-y).(a - DR =-x)+b(S ~y), .
—b(R—l)+(a—l)S.Z—.t—2(R—x),W—y—-2(S—y),
(XW—Zy+xY+yX-YZ-xW)t -1

and proceed eliminating ¢. Let ' = Elim(¢, ') be the elimination ideal. Then we
obtain )

J' = Ideal(Xa + Yb—xa— yb, Xb—Ya + xb —ya,L —-1/2X —1/2x,
M —1/2Y —1/2y,Za — ZI + Wb — xa + x| — yb,
Zb—Wa+ Wl+xb—ya+yl —2bl,R —1/2Z — 1/2x,
S—1/2W — 1/2y, Z°b —2Zbl + Wb — x2b + 2xbl — y*b,
1/2XZ1 — XWb — 1/2Xxl + YZb+ 1/2YWI + 1/2Y yl —
—Ybl — 1/2Zxl + 1/2Wyl + 1/2x* + 1/2y% — ybl,
XZb+1/2XWI+1/2Xyl — Xbl — 1/2YZI + YWb+
+1/2Yxl - 1/2Zyl — 1/2Wxl — x2b + xbl — y2b,

I2XWI + Xxb+1/2Xyl — Xbl + 1/2Y ZI — 1/2Y x] + Yyb —
—Zxb+1/2Zyl — 1/2Wxl — Wyb — xyl + xbl,

1/2XZ1 = 1/2Xxl 4+ Xyb — 1/2YWI — Yxb — 1/2Yyl + Ybi —
—1/2Zxl — Zyb + Wxb — 1/2Wyl + 1/2x% — 1/2y%] + ybl,
X2+ Y2 —x% — yv2b, ZU — 2712 + WY — £ +2xl* — 2,
X2+ YU — x¥ — ) '

After some computations, we can check that.all but the last two polynomials
yield trivial conditions (in the sense of 1.2). That neither Z% —2ZI2 + W2/ — x2] +
2xI% — y2I nor X214 Y2/ — x2 — y* is trivial means that each of the corresponding
zerosets Z*1 —2Z12 + W2 — x2 + 2x12 — y2 =0, X[+ Y2l — x2] — yi=0
does not vanish identically over the hypothesis variety.

Factorizing the equations, we see that, geometrically, Z3/ —2Z1% + W — x2] +
2xl* — y?I = 0 expresses the disjunction

{{=0}v{d(Z, W), (1,’0)) =d((x,y), (!, 0))}
while X2/ + Y2/ — x2 — y?] = 0 means
{{ =0} v {d((X,7),(0,0)) = d((x, y), (0, 0))}.

Thus there is a Zariski-open set of points in the hypothesis variety where both {I #
OIA{d((Z, W), (1,0)) # d((x.¥). {, 0))} (and another open set where {I £ 0}
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 9

{d((X,Y), (0,0)) = d((x, y), (0.0))}). And over each one of these open sets the
given statement holds, because the polynomials defining the open sets belong to
the non-degeneracy ideal. Therefore we must conclude that the three symmetrical
images X', X", X" of any point x, with respect to the sides of a triangle, are aligned if
{I # 0}, that s, the triangle does not collapse to a certain line, and if d(x"", (I, 0)) #
d(x, (,0)) ord(x", (0,0)) # d(x, (0, 0)).

Thus we have discovered a property that holds over some nonempty open sets
of the hypothesis variety, but it is intuitively obvious — if we draw some pencil
and paper sketch of this geometric construction - that something goes wrong here!
First of all we notice that (/,0) (resp. (0, 0)) is in the symmetry axis between
(Z, W) and (x, y) (resp. (X,Y) and (x, y)). And symmetrical points lie at equal
distance from any point in the symmetry axis. Therefore, over ‘normal’ triangles
one would have expected that both equalities d((Z, W), ([, 0)) = d((x, ¥), (,0)
and d((X,Y), (0,0)) = d((x, y), (0, 0)) should always hold. Since the open sets
where we have discovered our theorem to hold do not verify such equalities, we
must conclude that these open sets include only intuitively ‘abnormal’ triangles.

Aiming to understand better what is happening, let us exhibit what kind of
triangles lie in these open sets. Thus we consider the ideal generated by the orig-
inal hypotheses and, say, one of these non-degeneracy conditions (expressed as
X3+ Y% — x% — y* # 0), and we eliminate all the variables but those that seem
independently given in our construction — in the intuitive sense that their values
can be arbitrarily determined and also that they finitely determine the values of the
remaining ones — namely, {xyabl}. Then we will get polynomials that, being com-
binations of the hypotheses and of the non-degeneracy conditions, should vanish
over all points in the corresponding open set. On the other hand, these polynomials
will involve only independent variables, and independency means that no nontrivial
algebraic combination of these variables should vanish on open sets of intuitively
non-degenerate instances of the hypothesis variety. Both considerations imply that,
if the open sets we are analyzing do include some reasonable cases of our geometric
construction, the elimination must yield the zero ideal. But let us see what we
obtain here:

Elim(r.. W, Ideal (X2 + Y? — x2 — y})It — 1, a(L — x) + b(M — y),
—bL+aM, X —x=2(L —x),Y —y—2(M — y),
(@a=D(R=x)+b(S—y),=b(R=1)+ (a-1)S,
Z—x—=2R-x),W—y~—2(§—- »));

Ideal(b, a);

Likewise, for the other non-degeneracy condition we get
Ideal(b, a — ).

Thus we see that all triangles verifying any of the two non-degeneracy conditions
necessarily verify also b = 0, so they must collapse to a line (remark that this
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10 : ‘ T. RECIO AND M. P. VELEZ

happens even imposing that {/ % 0}). We can conclude that the open sets where
we have discovered that the stated thesis (the three symmetrical points are aligned)
does hold are also subsets of the hypothesis variety where all triangles collapse to
lines.”

We could say that we have proved a ‘pseudo-theorem’: the statement, as it has
been algebraically translated, is true in some open set, but of geometrically degen-
erate cases. On the other hand, the example in 1.2 was also a statement holding
on an open set, but of geometrically non-degenerate cases. Thus, the difference
between the two cases depends on the idea of geometric degeneracy, perhaps clear
for human intuition, but difficult to formulate in objective terms. For instance,
we could use human cooperation during the process of translating into algebraic
formulae the given geometric hypotheses, so that the independent variables are
explicitly declared before starting the automatic proving procedure. By definition,
no nonzero polynomial in the independent variables should vanish on any open
set of geometrically non-degenerate cases. In this framework we could declare as
pseudo-theorems™ those holding just over open subsets of the hypothesis variety
where the independent variables verify some nontrivial algebraic relation among
them, such as b = 0 in the above example. Since this procedure to rule out pseudo-
theorems is well documented in the bibliography, we present here a short summary
of the situation, and we refer the reader to any of the references (in particular to
[1]) for complete details. ‘

Briefly, the intuitive concept of independent variables is technically formulated
as the concept of algebraically independent variables modulo the hypothesis ideal,
that is, variables {xi,..., x4} such that (0) = ((hy,...,h)K[x;,....x,, D N
K[xi,..., x4]. In algebraic-geometry terms, independent variables are those veri-
fying that no nonzero polynomial in these variables vanishes over some irreducible
component of the hypothesis variety (equivalently, over any nonempty open sub-
set of such component). There are, in general, several possible maximal sets of
independent variables, even with maximal cardinality. After a meaningful set of
independent variables, say, X’ = (xi,..., xq), has been identified — through hu-

* In fact, we see that the originally given hypothesis variety has many other peculiar features: for
instance, it has dimension higher than expected: it ‘should’ have been of dimension five, since there
are just five independent variables (xyabl} that geometrically control the construction; but, actually,
it has'dimension six. as we can check, again, with CoCoA (P stands for the name of the current ring
with all the involved variables {LM RSX.Y ZWxyabl}.

dim(P/Ideal (a(L — x) + b(M — y), —-bL +aM, X — x —2(L —x), )
Y—=y-2M -y, @a=DR=x)+b(S—y),-b(R=D+(a-DS,
Z—x=2(R=x),W—y-2(5—y))
6:

Moreover, we can verify that this dimension diminishes by one if b is required to be nonzero, in
other words, if we restrict to the set of points in the hypothesis variety that correspond to ‘normal’
triangles.

** See the formal definition of generally false theorems in the next section.
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 11

man intervention — among the complete set of variables (x,, ..., x,), the ideal of
non-degeneracy should be redefined as the elimination ideal

J=((hy.... . hp, kt — l)K[.rl,...,x,,:t])ﬂK[x,,...,xd].

Accordingly, the irreducible components of the hypothesis variety where {x|, ...,
x4} remain independent are now labeled as non-degenerate components.

This time the nonzero elements of J always yield nontrivial conditions, since
they can belong neither to some components of the hypothesis ideal and nor to the
ideal itself. Again, it can be shown that for every nonzero element g(3¥') € J, and
forall x = (xy,...,x,) € L",

hi(x) =0A - Ahp(X)=0Ag(X)#0=2k()=0
but this time we are sure that the set
hi(x) =0A- - Ahp(X)=0Ag(X")#0

includes all non-degenerate components: in fact, over such components g cannot
be identically zero, so k must vanish over a nonempty open set of the component,
and therefore, by its irreducibility, over the whole component.

Thus, the existence of nonzero element in

((h[,...,hp,kt— l)K[x,,...,x,,,t])OK[x,,...,xd]

is equivalent to proving the given thésis holds over all non-degenerate irreducible
components, and this set surely includes an open set of cases where nonzero poly-
nomials in the independent variables cannot vanish identically. This is what hap-
pened in Example 1, since we have found a non-degeneracy condition in Subsec-
tion 1.2, in terms of the independent variables. It is said, then, that the theorem
1s generally true, that is, true under some negative subsidiary condition on the
independent variables. On the other hand, it is easy to see that there is no such non-
degeneracy condition for Example 2, and therefore we can say this is an example
of a not generally true theorem. Finally, we must notice that there are statements
(see Example 4) that hold over some open set of non-degenerate cases, but not
over all non-degenerate irreducible components. They should not be considered as
pseudo-theorems, but still they will be simply called not generally true. Making a
finer filter to separate all three cases requires some more advanced techniques that
will be briefly discussed later on the next section.
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12 T. RECIO AND M. P. VELEZ

2. Automatic Discovery

2.1. THE METHOD

From the point of view of exploring open geometric situations, our interpretation
of the above (more or less classical) results is the following. Assume hypotheses
and theses are given in some totally arbitrary way, then the computer will output
answers of three possible kinds: (1) the conjectured theorem is true as stated; (2) it
is (generally) true; (3) could be that it is not generally true, even when considering
any complementary non-degeneracy hypotheses, if they are all trivial (i.e., if the
ideal of non-degeneracy conditions is zero).

Therefore, with the outlined method we will be able to deal only with those
theorems that could be previously ‘nearly” guessed, since — with the terminology
introduced at the beginnirg of 1.2 — the thesis should hold over a ‘large’ (open)
subset of the hypothesis variety for the method to output some helpful information.
So we must, in practice, know in advance that the theorem is ‘almost’ true and the
method just confirms/slightly corrects/refutes the correctness of the initial guess.
Therefore. up to now the method has been, properly speaking, one of automatic
‘proving’. If our initial guess is wrong, the preceding approach does not provide
any useful hint about how to proceed any further. On the other hand, we could say
that automatic theorem ‘discovery’ should deal, in most cases, with detecting just
a ‘thin’ subset of the hypothesis variety, not a large one. In fact, if the thesis does
not hold over any large set of the hypothesis variety, it could still happen that the
thesis vanishes over a smaller subset of the hypothesis variety; or it could be that
it is not true at all over any point. But, so far, we have not provided any means to
identify such truth-subsets in this particularly interesting situation when we have
not made a correct guess of a geometric theorem.

The method for automatic discovery of elementary geometry theorems that we
propose here is quite straightforward. Let us assume that a given thesis & does not
hold over any open set (described by polynomials in the geometrically independent
variables X' = (xy, ..., x4)) of the hypothesis variety {h; = 0, ..., h, = 0}, that
is, that the theorem is not generally true, so that

)= (hy, ..., hp bkt — DK[x1,.... x5, 11N K[xy, ..., x4]).

Then, we simply start by adding the thesis to-the collection of hypotheses. Of
course, since T AH = T is always true, it is obvious that whatever the thesis might
be, it will now follow from the enlarged set of hypotheses. In geometric terms, the
intersection of the hypothesis variety and the thesis hypersurface is always included
in the latter variety. The key step toward discovery is to rephrase the conjunction of
hypotheses and thesis in terms of geometrically meaningful variables, namely, the
independent ones. Thus we must eliminate the nonindependent variables from the
new ideal of (hypotheses, thesis). The vanishing of every element 4’ in this elimina-
tion ideal (typotheses, thesis) N K [independent variables] is obviously a necessary
condition for the theorem to hold, since it is a combination of (hypotheses. thesis).
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AUTOMATIC DISCOVERY OF THEOREMS IN ELEMENTARY GEOMETRY 13

If the theorem holds over some instance, then both hypotheses and thesis must
vanish on it. and the same should happen for the elements of the elimination ideal.
Then we have to distinguish two possible cases.

e First, that (1}, ..., h)) = (hy, ..., hp, )N K[xy, ..., x4] # (0).

It is easy to show” that this happens if and only if & vanishes on none of the
non-degenerate components of the (old) hypothesis variety. This situation has
already been labeled in the literature ([1]) as the generally false case. In fact it
means that the theorem does not hold over any open set of geometrically non-
degenerate cases: it can only hold over open sets of geometrically degenerate
instances.™

In this case, moreover, the zero set of (h], ..., h]) in the former hypothesis va-
riety gives a proper closed set (since it includes points only where the variables
in X’ are dependent). So we have now a strictly smaller hypothesis variety given
by (hy,....hp kY, ..., k) that it is more likely to be contained in the thesis
variety. Next we should restart again the automatic theorem-proving method,
identifying over this new hypothesis variety a subset {xy, ..., x,}, where m <
d, of independent variables, testing whether the thesis is generally true over such
variety and finding, if that is the case, an open set of non-degenerate conditions,
and so on. :

Note that over the new hypothesis variety the given thesis is always not generally
false,* so unless it is generally true over this variety, we will be lead into the next
situation. :

e Second, that (0) = (hy,...,hp k) N K[xy,...,x4] (the not generally false
case). Then we know that the thesis holds over some non-degenerate component,
but also that it does not hold over some other non-degenerate component (for
we are assuming the given statement is not generally true). In such situation
we do not know how to proceed further on without decomposing the variety
into irreducible components, and we do not consider feasible to get into such
computational problem at this moment.

Summarizing, the method could be outlined as follows:

Input: Hypotheses as algebraic equations {4, =0, ..., h, = 0}, and a conclusion
k =0, also an algebraic equation, all over variables xi, ..., x,.

* Take O # g € (hy. ..., hp, k)N K[xy,...,xq]. Then g # O over the non-degenerate compo-
nents and, since g is a combination of k, k;"s and all k;’s are zero over every component, it follows
that k # O over the non-degenerate components. Conversely, if k vanishes on none of the non-
degenerate components, we construct a polynomial g € K[&’] as follows: take, for each of the
remaining components, a polynomial g; (') that vanishes over it. and let g be the product of all g;’s.
Then {h} = 0,...,hp = 0.k =0} C {g = 0} and thus g € Vi hp kY N K[F'), which
implies (hy,..., hp, k)N K[Z'] # 0.

** Such as the example in 1.3.

* Obviously. (0) = (hj,....hp.h}.... .kl k) O Klxp,....xm] = (k) ....k}) N

K[xy, ..., xm]. by the independence of the variables {x}, ..., xn).
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14 T. RECIO AND M. P. VELEZ

(1) Check whether the hypotheses are contradictory by computing
NormalForm(1, Ideal(hy, ..., hp)).

If the answer is O, outpur a warning message. Otherwise, find a maximal
set of geometrically meaningful, independent variables {x;,..... xy} over the
hypothesis variety.
(2) Check whether the theorem is geometrically true, computing
NormalForm(1, Ideal(h,, .... hpkt —1)).

If this normal form is zero, outpur: theorem geometrically true.
(3) If not geometrically true, check whether the theorem is generally true, com-
puting '
Elim(s...xg41, deal(hy, ..., by, kr — 1)).

If the answer is a set of nonzero polynomials {g,..., g;} in the variables
{x1,.. rd} output: theorem generally true under non-degeneracy conditions
&1 # 20V .-V & # 0.
(4) Else, the theorem is not generally true and we look for missing hypotheses,
computing
Eﬁnw(xn...xd+4,IdeaKhl,...,hp,k))

If the answer is zero, output: theorem not generally true and not generally false
(decomposition required!).
(5) If the answer is a set of nonzero polynomials {A},...,h.}, go to Step 1,

considering now the set of hypotheses {h;,..., hp, k), ..., h.}.

We remark that Step 5 can be improved in some cases: for instance, if only one
nonzero missing hypothesis 4’ is obtained and it can be factorized, then instead
of going to Step 1 adding A’, we could add just anyone of its factors (u yields a
smaller hypothesis variety).

As can be deduced from the above description, the method is not complete. This
is shown in the example of Subsection 2.3 (where we have arrived at a dead end
after one successful step of the outlined method).

2.2, A SUCCESSFUL CASE: EXAMPLE 2 REVISITED ‘
EXAMPLE 3. Same hypotheses and thesis of Example 2 of 1.3.

After checking in 1.3 that the theorem is not generally true, let us call I” the
ideal generated by the set of hypotheses and by the thesis (alignment of the three
symmetrical images of x):

I//

= ldeal(a(L —x) +b(M — y), =bL +aM, X — x = 2(L — x),
Y—y—=2(M—-y),(@a=D(R—-x)+b(S-y),
=b(R-D+(@-0S,Z~x—-2(R-x),
We—y—=2(§—-y),XW—-2Zy+x¥Y+yX -YZ—xW).
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Let J” = Elim(L..W,1”) be the corresponding elimination ideal that removes
all variables except the independent ones {xyabl}:

J" = ldeal(x*b*l — xb*I* + y*b3 — ya*b*l + yab*® — yb*l).

Thus we are in a generally false case. Equating to zero the only generator of this
elimination ideal, we express, therefore. a necessary condition for the alignment of
the symmetrical points of (x, y), namely, &' = x2b3] — xb*I* + y2b31 — ya?b?l +
yab’l? — yb*l = 0. It can be interpreted as (b2 = 0}* v {(x, y) lies in the
circumcircle of the given triangle}. We should continue then with the automatic
proving procedure, checking if the thesis XW+ Xy~ YZ+Yx—Zy— Wx =0is
generally true with the given set of hypotheses plus 2’ = 0 and considering as new
set of independent variables {yabl}, since {xyabl} are already related by ' =0.

Elim(s..x, Ideal(La + Mb — xa — yb, —Lb + Ma, -2L + X + x,
—2M +Y +y.Ra— Rl 4+ Sb — xa + xl — yb,
—Rb+Sa—Sl+bl,-2R+Z+x,-25+W +y,
x2031 — xb312 + YB3 — yab*l + yab?l? — ybil,
(XW+Xy—YZ+Yx—Zy—Wx)t —1))

Ideal(a* ~ 2a% + 2a*b* + a*I* — 2ab¥l + b* + b21?);

We conclude that the theorem, with the new hypothesis, is generally true under the
condition a* — 2a’! + 2a*b* + a*I* — 2ab?l + b* + 22 # 0, which is the same
that appeared in 1.3 for Example 1. Therefore, over (non-degenerate) triangles that
verify {6%l # 0} we have discovered a new hypothesis for our thesis to hold:
namely, that the given point (x, y) must lie in the outer circle of the triangle.

2.3. A CASE OF FAILURE

EXAMPLE 4. In a triangle, the orthocenter (intersection of heights), the centroid
(intersection of medians), the circumcenter and the incenter (center of the excircle
or outer circle, resp. incircle or inner circle, of the triangle) lie on a line.

Let us consider the triangle of vertices a(—1, 0), b(1, 0), c(a, b). Let d(p, q)
be the orthocenter, e(u, v) the circumcenter, and f(/, r) the centroid, respectively.

* From the intuitive point of view, a case of degeneracy.
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16 T. RECIO AND M. P. VELEZ

Denote by o the origin (0, 0). Now we state the algebraic conditions verified by
such points:

Hypotheses : ab 1 cd : p—a=0
ac Lbd: (p—Da+1+gb=0
ae =ce : U+ 1D+ —w—aX-@w-52=0
a6 =be : W+ =@-17=0
feco: ar — bl =0

febla+c)/2 (—-Db—-r(a-3)=0

Moreover, the incenter g(s, w) verifies that it is the center of a circle of radius w,
which is also tangent to the sides of the triangle. We use CoCoA to find determining
equations for this point by eliminating variables {x, y} in the two systems each
consisting of the equation of the circle of center (s, w) and radius w, (x —s)>+(y —
w)? — w? = 0, and of the equation expressing the perpendicularity from a radius of
this circle to the side A€ (resp. bc): b(x +1) — (a + 1)y (resp. b(x — 1) — (a— 1)y).

Let us use the set {txyswpquvlrab} as variables for all the computations con-
cerning the example, remarking that here {a, b} are the only independent variables
(taking r as an auxiliary variable in some computations). Then the determining
equations for the incenter can be obtained as follows:

Elim(z..y, Ideal((x — 5)> + (y — w)? — w?, b(x + 1) — (a + l)y
(x=s)a+ 1)+ (y—wb));
ldeal(swab — 1/25%b* + 1/2w?b? + swb + wab — sb* + wb — 1/2b%);

Elim(z..y, Ideal((x — $)*> + (v — w)? — w?, b(x — 1) = (@ — 1)y,
(x =s)a— 1)+ (y — w)b));
Ideal(swab — 1/25%b> + 1/2w*b*> — swb — wab + sb? + wb — 1/2b2);

Therefore, we can take the two output polynomials as the hypothesis equations
that simultaneously determine g. As it is well known, the centroid, orthocenter,
and circumcenter are aligned. Let us focus on the following statement: the incenter
g(s, w), the circumcenter e(u, v), and the centroid f(/, ) lie in a line, namely, they
verify (sv +ur +1lw — rs — wu — lv) = 0. After noticing that this theorem is not
generally true, we apply our technique of adding the thesis itself to the collection
of hypotheses and eliminating

Elim(r..r,1deal((u — 1)* + v —(u —a)> = (v —b)2, (u + 1)? = (u — )2,
ar—>bl,({ — 1)b—r(a = 3),
swab — 1/25%b> + 1/2w?b? + swb + wab — sb? + wb — 1/26%,
swab — 1/2526> + 1/2w?b? — swb — wab + sb* + wb — 1/2b2,
Sv4ur +lw—rs —wu —[v));

Ideal(a®h + 243b® + ab’ — 10ab — 6ab® + 9ab,
a’ —3a’b* — 2ab® — 11a° + 12a°b? + l1ab* + 1943 — 12ab* — Ya);
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Thus, a necessary condition for the validity of our theorem is that these last two
polynomials vanish simultaneously. In the previous example it was the case that
. the discovered necessary conditions were also sufficient, but not in this example: as
shown below, we cannot find non-degeneracy hypothesis for the alignment thesis
to hold over triangles verifying {a’b + 2a°b’ + ab® — 10a°b — 6ab> + 9ab =
0} Afa’ ~3a3b* —2ab% — 11a° + 12a°b + 11ab* + 19a® — 12ab* —9a = 0}.* Note
that now only, say, {b}, is to be considered as independent variable, since {a, b} are
linked by one equation (but it yields the same result considering a instead).

Elim(z..a, Ideal((« — 1)> + v> — (u — a)> — (v — b)?,
(u+1>—=@w—=10%ar—>bl,(1-1b—r(a-3).
swab — 1/252b* + 1/2w?b* + swb + wab — sb*> + wb — 1/2b2,
swab — 1/25?b* + 1/2w?b* — swb — wab + sb? + wb — 1/2b2,
a’b +2a3b’ + ab’ — 10a3b — 6ab® + 9ab,
a’ —3a’b* — 2ab% — 11a° + 12a3p* + 11ab*+
+ 19a> — 12ab* — 9a,
(Sv+ur+lw—rs —wu—lv)—1));

Ideal(0);

Therefore it turns out that the alignment of incenter, centroid, orthocenter and
circumcenter on isosceles triangles cannot be proved, with the proposed method,
to be generally true under the new, discovered hypotheses. As remarked in 2.1, it
is not either generally false. Thus we are stuck, and our method is shown to be
imcomplete.

2.4. DISCOVERY THROUGH FAILURE

Nevertheless, the reader probably believes that the claimed theorem holds over
1sosceles triangles, after he/she tests a few examples. We have arrived at a para-
doxical situation that provides, simultaneously, one example of the limitations
of the method (since we have here a statement that cannot be conclusively an-
alyzed) and, on the other hand, one example of its success (we have found an
‘intuitively’ true theorem, holding over some specific kind of triangles discovered
by this technique)!

* In fact. the two extra hypotheses can be factorized as follows:

b + 2a36% + ab® — 10a3b — 6ab® + 9ab
ab(a“Z +2a -3+ b",)(a2 —2a-3+ bz),

7~ 3035 — 2ab% — 115 + 12a3b% + 11ab* + 1963 — 12ab? — 9a
= a(@® +2a-3+b%) @ —2a -3+ b2)@? ~ 1 —2b2).

o
|

We observe that each of the factors of the GCD of these two polynomials express the condition: the
triangle must be isosceles.
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18 T. RECIO AND M. P. VELEZ

The reason behind such paradox is that our algebraic description of incenter
point does not actually determine the true incenter we are intuitively thinking of,
but, instead, a collection of four points (the centers of the four tri-tangent circles
to a triangle), since the incenter was given as an intersection of two degree-two
equations in s. w. Obviously, it is not possible that this four points are simulta-
neously aligned with the other given points (centroid. circumcenter, orthocenter),
since they are never aligned themselves (see the figure, where we have displayed
Just two incenters and the points d and e, which are aligned with only some of the
incenters)!

The algebraic-geometry counterpart of this fact is that we have several com-
ponents for the different incenters. When we project from the xyswpquvirab
space onto the a — b plane the original hypothesis variety intersected with the
equation expressing the thesis, we get three curves: a = 0, (a? +2a — 3 + b%) =
0, (a*—2a—3+b*) = 0, each one prescribing different pairs of sides of the triangle
to be equal. For each of these equality cases, two incenters become aligned with
the orthocenter, centroid and circumcenter. But when we consider the cylinder over
anyone of these curves, it comes out that it intersects some of the components of the
hypothesis variety (but not that corresponding to the ‘internal’ incenter) in points
(associated to positions of the other incenters that are not aligned) that are not in the
variety intersected with the thesis; therefore some components of the intersection
of this cylinder with the variety are not contained in the thesis hypersurface, but
one is. When we work over the component of the internal incenter, the lifting of
the a — b projection does not include any extraneous point, and thus the thesis
surely holds over this component, as intuitively expected. We remark that when we
consider some other component, then only for the lifting of some concrete curve
(such as a? — 2a — 3 + b*> = 0) of the projection does not include points not in the
thesis, but the other curves will yield extraneous intersections.

So the theorem will hold true, for isosceles triangles, if we could modify the
hypothesis variety, restricting to one specific component (the one that corresponds
to the interior incenter). Now, finding the equations for one such component im-
plies, in general, performing decomposition methods, and it leads to much more
elaborated, less performing, algorithms, far from the present simplicity of our
approach. Nevertheless, at least we can say the method succeeded giving us the
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intuition to discover what was ‘really’ true, even if it could not be proved by the
same technique.

3. Conclusions

The novelty and interest of our present work could be that rather than focusing on
proving or disproving theorems, our goal is on finding complementary hypothesis
for a(ny) given conjectural statement to hold true. Although incomplete (if fac-
torization of varieties is to be avoided) when dealing with statements that are not
generally true and not generally false, it is in practice quite performing (see [13]).

~ As the automatic discovery method provides means to explore open geometric
situations, it can have many applications. Among other, the proposed method could
be regarded as the core of a future program—dedicated to elementary teaching—
that allows, when linked simultaneously with a tool for displaying geometric con-
structions and a symbolic computation package, the mteractlve exploration of geo-
metric properties.

As is well known, Cabri-Géomeétre provides an interactive learning environment
for elementary geometry; in particular it has been considered as an instrument for
theorem proving in this context [11]. We think that the interaction of such tool
with our method could provide an intelligent, interactive environment for learning
Euclidean geometry. The idea is to build a sort of Geometry Guide program that
not only allows one to experiment properties and to display figures, but that also
has the ability of ‘knowing’ in advance what is the correct direction that the user
has to follow if some geometrical construction is set, in case he/she wants to find
some stated property (or, using automatic derivation techniques, what could be
some interesting properties hidden in a given construction). Obviously, for this
particular application, understanding how the program itself proceeds should not
be considered as a requirement for the child-user; the core of the discovery method
should be a kind of black box for that particular user. Maybe this is too much of
a future dream, as the present state of algebraic computation technology is too far
from providing a sound basis for attacking too complicated geometrical situations
(in particular, since we are lacking of a sufficiently developed ‘real’ geometry
approach). But it is, anyhow, a promising research idea, in our opinion.

A different didactical application to Algebraic Geometry teaching at higher
education level is discussed in [14].
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