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In this paper we study the following two problems: first, given a rational parametrization
P(2) = (p1(2),p2(2)) € C(2)? of a complex curve C in C?, to determine algorithmically,
if C has an infinite number of real points (i.e. if the trace of C in R? is a real curve).
If this is the case, then we would like to find another parametrization mapping of the
same curve, but this time with real rational functions. The solution to both problems
is given here by a simple algorithm, requiring essentially just a gcd computation and a
parametrization of a real line or circle. On the other hand, the theoretical foundation
for the algorithm seems more involved, relying on factorization properties of conjugate
harmonic polynomials. The case of space curves or curves over a higher dimensional
space follows by a direct generalization of our results or by considering the primitive
element theorem.
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1. Introduction

In this paper we study the following two problems: first, given a rational parametrization
P(z) = (p1(2),p2(2)) € C(2)? of a complex curve C in €2, to determine algorithmically,
if C has an infinite number of real points (i.e. points in R?). If this is the case, then we
would like to find another parametrization mapping of the same curve, but this time
with real rational functions. The case of space curves or curves over a higher dimensional
space follows by a direct generalization of our results or by considering the primitive
element theorem.

From a purely mathematical point of view, the solution is simple: let us consider the
imaginary parts Im(py(x+ty)), Im(p2(x+iy)) of the given parametrization components.
Then C has an infinite number of real points if and only if there is an infinite number
of real points in common for the curves Im{pi(z +iy)) = 0, Im{pa(z +iy)) = 0, and
therefore, according to Bezout’s theorem, if and only if the numerators of Im(p,(z+:y))
and Im(ps(z +iy)) have a common factor which vanishes at an infinite number of real
points. From the algorithmic point of view, this approach is not satisfactory for several
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reasons: it is not so trivial to factorize over the reals a given two-variate polynomial; it is
also non-trivial to determine which factors vanish over an infinite number of real points.

Again, from a non-algorithmic viewpoint, the solution to the second problem (repara-
metrizing with real coefficients) is quite straightforward: if C has an infinite number of
real points, then its implicit equation can be taken with real coeflicients and it yields a
real curve (in the sense of having an infinite number of real points). Now, according to
the real version of Luroth’s theorem [see Recio and Sendra (1995)], a real curve that has
a parametrization over C(z)?2, has also a real parametrization. If the given parametriza-
tion is proper (also called faithful in the literature: i.e. a parametrization such that
C(p1(2),p2(2)) = C(z)), then we know that any other desired parametrization can be
obtained via a simple change of variables of the form ‘Cl:idb in the given one. We could
then perform formally such substitution depending on the complex coefficients a, b, c,d
as parameters, on the given rational functions, and then we could search for complex
values of a, b, ¢,d such that the resulting expression is a real parametrization. But this
implies solving a non-linear system of equations and it is not feasible in practice. The
case of non-proper parametrizations can be reduced to this one by finding the greatest
common component of {p1(z),pz(z)} [see Alonso et al. (1995a); Sederberg (1986)]. There
is another possibility (in theory): to obtain, first, the implicit equation of the curve C
(using implicitization algorithms, rather costly); to check, then, if it has an infinite num-
ber of real points and to re-start a suitable parametrization process [such as in Sendra
and Winkler (1997)] that outputs a real parametrization mapping when the given curve
is real. But this procedure has, again, high time complexity.

As a counterpoint, the algorithms presented in this paper are very simple, involving
essentially trivial operations such as finding a greatest common factor of two bivariate
real polynomials and deciding if this ged is non-constant and of degree less than two.
Otherwise we will show the curve is non-real. In the affirmative case the curve must be
real and the reparametrization mapping will be obtained just by composing the given
parametrization with any real parametrization of the line or circle defined by the vanish-
ing of the ged. After the idea is explained, one is tempted to think that the proof must
be quite obvious. In fact, it is so from a geometric point of view. If the curve given by the
parametrization P(z) = (p1(z),p2(z)) is real, it is quite easy to show that the zeroes of
the ged of the imaginary parts Im(p1(z+iy)), Im(pz(x+iy)) must be a real line or circle,
since the image of a real line by a conformal mapping is a line or a circle. The problem
is that, from an algebraic point of view (hence from an algorithmic point of view), the
equation of the line or of the circle could be just one factor among many others of the
ged, these ones having no real zeroes. Therefore one should, in principle, have got to
factor the ged in order to check if the curve is real or not. But a finer algebraic analysis
of the situation implies that this step can be always avoided and the elimination of such
factorization requirement is an important goal of this paper.

The tools we use to guarantee that the algebraic behaviour of this ged agrees with the
geometric expectative are some basic, but apparently new, properties of analytic poly-
nomials (ie. conjugate harmonic polynomial functions) and analytic rational functions,
concerning real factors (see Section 2). The main result is that the gcd of conjugate
harmonic polynomials is always 1 (see Lemma 2.1). This Section 2 could be thought
of independent interest, as harmonic functions appear in many different mathematical
contexts. For instance, from an algorithmic point of view, Section 2 establishes some
simplification properties for various standard manipulations with rational functions of
complex variables, such as the irreducibilty of the real and imaginary parts of an irre-
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ducible rational function (see Lemma, 2.2). Section 3 is devoted to prove the main result,
the criterion for reality of a curve given by a complex parametrization mapping (see
Theorem 3.1) and the real reparametrization procedure (see Theorem 3.2). Section 4
ends with the description of algorithms, a few computed examples of their performance,
and the computing time analysis that shows that the complexity of our algorithm is low
degree polynomial.

The interest of the problems we deal with in this paper is twofold. It is clear that
the analysis of the conversion of geometric objects from implicit to parametric repre-
sentation and viceversa is an important aspect of Computer Aided Geometric Design
[see Hoffmann (1989); Buchberger (1987); Sederberg (1987)]. On the other hand, with
few exceptions [see Sendra and Winkler (1997); Bajaj and Royappa (1993); Alonso et al.
(1995b)], algebraic algorithms for dealing with these problems are usually done assuming
an algebraically closed field (such as the complex number field) as framework, since real
algebraic geometry is less comfortable to work with. But since the objects of interest
in CAGD are, most commonly, subsets of the real plane or space, some analysis of the
reality of the output of such algorithms is finally required. On a second motivation, we
can say that this paper is just a step towards the more general (and difficult) goal of
obtaining optimal parametrizations of given curves, that is, parametrizations with “best”
coefficients and degrees. Here in our work, by “best” we have understood, when the given
curve has one real parametrization but a complex one is given as input data (coming,
maybe, from a conversion algorithm from an implicit equation), the parametrization that
has coefficients belonging to the real field as opposed to one with complex coefficients.

2. Analytic Rational Functions

Analytic rational functions are bivariate rational functions with complex coeflicients
that are generated by univariate complex rational functions when the complex variable
is formally replaced by its expansion as a real plus a purely imaginary variable.

DEFINITION 2.1. A polynomial p(x,y) € Clz,y] is called analytic if there exists a poly-
nomial f(z) € Clz] such that f(z +iy) = p(z,y). Similarly, a rational function r(z,y) €
C(x,y) is called analytic if there exist a rational function h(z) € C(z) such that h(z +

iy) =r(z,y).

Equivalent definitions and basic properties of analytic polynomials can be found in
complex analysis textbooks in the context of harmonic functions [e.g., Bak and Newman
(1982)}; for 1nstance it can be proved that p € Clz, y] is analytic if and only if —E =122 M, if
and only if 6“ = ay and 3“ = — %Y (where u(z,y) and v(z,y) are the real and imaginary
parts of p(a:, y)) if and only if p(:v, y) = p(z+iy,0); if and only if p(z,y) = p(0, —i T +y).

For our purposes, we are mainly interested in the real and imaginary parts of ana-
lytic polynomials. These polynomials are very special. For instance, the number of real
intersections, counted with multiplicity, of the complex plane curves that they define,
is always the degree of the complex univariate polynomial that generates the analytic
polynomial. We start with the following lemma, stating that analytic polynomials do not
have real factors.

LEMMA 2.1. Let p(z,y) be a non-constant analytic polynomial, and u(z,y),v(z,y) the
real and imaginary part of p(x,y). Then it holds that ged(u,v) =1
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PRrROOF. f(z) € C[z] such that p(z,y) = f(z +iy). We consider g(z) € C[z] monic, and
A € C such that f(z) = Ag(z), and let v/(z, y) and v'(z, y) be the real and imaginary parts
of g(z +1y). Then, if A = A\; + 1 Ag, with A1, A2 € R, one has that u = \ju/ — A/, v =
Agu’ + A1v'; and since X # 0, one also has that v’ = ﬁgu + |3‘\—|27v, v = —ﬁfyu + ]i—fgv.
Thus ged(u, v) = ged(u’, v'). Now since g is not constant, g can be expressed as:

o) =]~ &)

where n is the degree of ¢g(z) and {¢1,...,&,} are its roots. Hence, if £; = 5]1- +i§]2, with
]1-, §J2 € R, one has that:

j=n

gz +iy) =u/(z,y) +iv(z,y) = H((x—f})+i(y—£]2-))

j=1

Let g(z,y} = ged(v/(z,y),v' (z,y)) and let us suppose that q(z,y) # 1. As ¢ divides
g(z +7y), there exist s # 0 and k1,...,ks € {1,...,n} such that ¢ = szl((az - §,ij) +
iy — 5,%]_)). But this implies that ¢(z,y) ¢ R|z,y] (consider ¢ = ¢ and use the unique
factorization property over C|z, y]), which is impossible since the ged of real polynomials
is always real. Therefore, one concludes that ¢ is constant. [

The next lemma analyses analytic rational functions. If one normalizes a rational
function (i.e. transforming it into a rational function with real denominator) such that
the new denominator is the square of the norm of the initial complex denominator, then
it is clear that the new numerator is not analytic anymore; hence Lemma 2.1 cannot be
applied to study its real factors. However, it can be shown that the real factors of the
numerator are directly related to the ged of the univariate complex polynomials that
define the analytic rational function. More precisely:

LEMMA 2.2, Let f,g € C[z] be non-constant polynomials, h(z) = ged(f,g), and f1, f2 €
Rlz,y], 91,92 € Rlz,yl, and hi,ha € R[z,y] be the real and imaginary parts of f(x +
ty),9(x +1iy), and h{z + iy), respectively. Then, if

flx+iy) _ (hilmy) +ifa(zy)o(zy) —igary)  u(zy) +iv(z,y)

g(z +iy) 91(z,9)? + g2(z, y)? 91(z,y)? + g2(z, y)?
where u,v are the real and imaginary parts of f(z +1iy)-g(x —1iy), it holds that:

(1) ged(u,v) and h? + h3 are associated (i.e. equal except for a real constant).
(2) ged(u,v, g% + ¢3) and h? + h% are associated.

(3) ged(u, g2 + g3) and h? + h3 are associated.

(4) ged(v, g% + g2) and h? + h2 are associated.

PRrOOF. (1) We first observe that one can assume that f and g are monic: Let f(z) =
A f*(2) and g(z) = pg*(z), where A\,p € C and f*,g* € Clz], and let u*,v* be the
real and imaginary part of f*(z + iy)g*(z — ty). Then, if & = Az = a1 + t g, with
a1,z € R, it holds that u = aju* — agv*, v = agu* + av*, and u* = Sy + 22y,
v* = — 2%y + *Lo. Therefore, ged(u, v) = ged(u*, v*).
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Let then f(z), g(z) be monic. We factor them as:

j=n
fRy=1]Ge-¢), 9= sz
j=1

and let ¢(z,y) = ged(u, v) € R[z, y]. Then, since q(z,y) divides f(z+1iy)g(z —iy), there
exist kq,..., ks € { ...,n} and t1,...,t. € {1,...,m} such that:

jms i
H @-&)+ily-&), ey =][(E-mn)-ily-2)
j=1 j=1

and ¢ = qig2, where & = & +4€2, n; = ) + ing, with £, 2,n},m; € R. Then,
taking into account that g = g go is real one deduces that for every k; there exists t;
such that & = . Hence, §i(z,y) = g2(x,y). Then, ¢i(z,y) divides f(z +iy) and
g(z +1iy), and therefore q; divides h(z + iy). Thus, one concludes that ¢ = g; g2 divides
hz+iy)h(z —iy) = h% + h3.

On the other hand, let f’, ¢’ € Clz] such that f = h f' and g = hg'. Thus, u +iv =
(h2 + h2)f'(z +iy)g'(x — iy), and taking into account that h? + h3 is real one deduces
that h? + h3 divides ged(u, v).

(2) Let ¢ = ged(u,v, g% + g2). Then q divides h? + h3 = ged(u,v). On the other hand,
by (1), k2 + k2 divides u, v, and since h divides g one also has that h? +h3 divides g2 +g2.

(3) From (2) it follows that h? + hZ divides u and ¢? + g3. In order to see that g(z,y) =
ged(u, g2 + g3) divides h? + h 3, we first observe that after (2), one simply has to prove
that q(x,y) also divides v. Let g(z) factor as:

= H(Z_nj)’

and let n; = n} 4+ in?, with n;,7? € R. Then, since ¢ € R[z,y] is a divisor of
G+g=g+iyg—iy) =[[(—n)*+ @y -n)?
j=1
there exist k1,...,ks € {1,...,m} such that

S

q(z,y) = [[(@—ni)* + w-n})®).
j=1
Let Ay, = (z — 17,1C Y+i(y — 7],% ). Then, for j = 1,...,s it holds that [kkj divides u, and

since Ay, divides g(z —iy) it follows that A, also divides u+iv = f(z +iy)g(z —iy)-
Therefore Ay, divides v for j = 1,...,s. Hence since v € R[z,y|, one also deduces
that Ay, divides v forj=1,...,s. Therefore, q= szl Ay, Ay, divides v(z,y).

Analogously, one proves (4). O

COROLLARY 2.1. Let f,g,h € Clz] be non-constant polynomials such that ged(f,g,h) =
1, and let f1, f2 € R[z,y], 91,92 € R[z,y], and hy1, he € Rz, y] be the real and imaginary
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parts of f(x +1iy), g(x +1y), and h(x + iy), respectively. Then, if
flzt+iy)  w(z,y) +ivley) gz +iy) _ ua(z,y) +ive(z,y)

Mz +iy)  hi(z,y)? + ha(z,y)?’ h(z +iy)  hi(z,y)? + ha(z, y)?

where uy,v1 and up,vy are the real and imaginary parts of f(z +iy) - h(z —iy) and
gz +iy) - h(x —iy), respectively, it holds that ged(vy, ve, h3 + h3) = 1.

PROOF. Let p = ged(f,h), ¢ = ged(g,h) and A = ged(vi,ve, h? + h3). Then A =
ng(ng(Ul ) h% + h%)? ng(Uz, h% + h%)) Thusa if Y41 (:E, y)’pZ (1:1 y) and q1 (JJ, y)a Q2(ma y) are
the real and imaginary parts of p(x+17y) and q(z+1iy), respectively, applying Lemma 2.2,
one deduces that A = ged(p? + p%, ¢% + 4¢3).

Let now B € Rz,y] be a non-trivial common factor of p? + p3 and ¢? + ¢, and let
p(z) = ;:11(2 —&;),q(2) = ITj~,(z — n;)- Then, there exist ki,...,ks € {1,...,n} and
t1,...,ts € {1,...,m} such that

j=s j=r
Bz.y) = [[((@ - &) + (= &)°) = [[ (@ = ni))* + (= n))*)
7j=1 j=1
where £; = £} +i€3,m; = 0 +in? and €},€3, 75,17 € R. Therefore, for every k; there
exists ;s such that &; = n;,,. This implies that ged(p, ¢) # 1, which is impossible since
ged(p, q) = ged(f,9,h) = 1. T

Linear invertible rational functions play an important role in the parametrization of
curves. For the particular case of these rational functions, Lemma 2.2 can be sharpened
as follows

LEMMA 2.3. Let f(2) = az+ b,g9(z) = cz + d € C[z] such that ’;—53 is invertible (i.e.
ad —bc#£0), and let f1, f2 € Rlz,y] and g1, g2 € Rz, y] be the real and imaginary parts
of f(x +1y) and g{x +iy), respectively. Then, if

flz+iy) _  ulz,y) +ivz,y)

glz+iy) gz, y)? + g2z, y)?

where u,v are the real and imaginary parts of f(z +1iy)-g(x —iy), it holds that g% + g2
is a constant or irreducible in R[z,y], and u,v are constants or irreducible in Clz,y].
Moreover, if u or v are not constants, then they are either real lines or real circles.

PROOF. Let a = ay+iag, b=>b1+iby, c=c1+ice, and d = dy+idy, with a;,b;,¢;5,d; €
R, and let

Al=ascx+ajcq Bi=cias — caaq
As=andy +bacy+a1di + b1y By =apd; + bacy — ardy — bicy
Az=byci+ardy —axdy —bicy By =a1di + asdy — bicy — baco
Ay =byds + by dy By =dibs — doby.

Then, after some computations one shows that:
w(z,y) = A1 (2° + y%) + Aoz + Asy + A4
v(x,y) = B1 (2® +y°) + Box + Bsy + By
g + 95 = (az — ey +di)* + (cz + cry + do)*.
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Let us suppose that g + g2 is not a constant. Then, neither g; nor g, are constants.
Now, g2 + g2 factors over C[z,y] as (g1 + ig2)(g1 — ig2), and each factor, being of degree
one, is irreducible. It follows that if g? + g2 factors in Rz, y], it must have two factors,
one associated with g + % g2, the other with g; — ¢ go. But g1 + g2 does not have, by
Lemma 2.1, real factors. Then, g3 + g2 is irreducible over the reals.

In order to analyse the polynomial u, we distinguish two cases. If A; = 0 then v is a
real line and therefore irreducible over C, or a constant. Let A; # 0, then we express u
as sum of squares as follows:

As \? As \? 4444, — A2 — A2
u=A1(z+—i) +A1<y+—3)+ Gl e Bt

2A, 24, 4A,
Moreover, since 4444, — A% — A% = —A? — B2 one deduces that u can also be written
as:
As 2 Az 2 A% + B?
=A 22 A Ay _ 4 To
“ 1<w+2A1> * 1(y“LzA1 14,

where A = apdy — beco + brc1 —aidy, and B = bycy — ajdy + by c2 — azdy. In this
situation it is clear that u is irreducible over C if and only if A2+ B? # 0. Thus, taking
into account that ad — bc = 1 (since we have by hypothesis that ad — bc # 0, one can
always assume that the value of this determinant is 1), the irreducibility of u over C for
any values of a, b, ¢, d verifying this relation can be deduced by computing the Grébner
basis of the ideal generated by the involved equations:

(agdg—b262+b1cl —a1d1)2+(b201——a1d2+b102—a2d1)2=0
ardy —bjci —agde +byco —bpcy +arda +asdy —brea=1
a1d2+agd1—b102—b201=0,

where the last two ones express the condition ad — be = 1. Performing such computation
with a symbolic computation package, it turns that the basis is {1}. Thus there is no
solution for this system of equations and, therefore, it always holds that A2 + B? £0.

Furthermore, the signature of the quadratic form defined by w is either two (if A; > 0)
vALE® centered at

or one (if A; < 0). In any case, the conic is the real circle of radius 57
A A !
(_ 71421_ T 24, )
Similarly, if B; = 0, then v defines a real line or a constant. Let B; # 0, then we

express v as sum of squares as follows:

By \? B; \* 4B.B, — B? — B}
=B —2 ) +B =2
v 1<x+231> + 1(y+231 * 1B,

By \’ Bs\*> A2+ B?
-B By g+ 2] A LS
1<x+231> * 1<y+231 4B,

where A and B are as above. In this situation, a similar reasoning concludes that v is

: o VAT B? By, _ B
the real circle of radius Y55 centered at (-5, — 35, ). O

3. Real Reparametrization of Real Curves

In this section we present our main result (Theorem 3.1) that gives a necessary and
sufficient condition, easy to test algorithmically, on the existence of real simple points
on a complex rational plane curve. By the real Liiroth’s theorem [see Recio and Sendra
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(1995); Chevalley (1951)], this is equivalent to the existence of a rational parametrization
over the reals for the given curve. We assume that the input data is a complex rational

curve, properly parametrized by pi(2) = }—Z%, pa(z) = }glg)) € Cl[z], both non-constants

and such that ged(f,g,h) = 1. Let us remark that it is quite easy to get to convert
any given parametrization into one having these properties (see the introduction); the
case of some constant component is trivial to handle directly. The theoretical basis for
a reparametrizing algorithm is given in Theorem 3.2: it is a simple consequence of the
condition given in Theorem 3.1.

Our main result states that this curve is real if and only if the imaginary parts of the two
analytic rational functions pi1(z), p2(2), the coordinate functions in the parametrization
mapping, intersect exactly in one real line or one real circle. More precisely, one has the
following theorem.

THEOREM 3.1. Let pi(z) = ,{Ei),pg(z) = 28 € C[z], both non-constants, such that

ged(f,9,h) =1 and C(p1(2),p2(2)) = C(z), and let

—

uz(z,y) +ive(z,y)
hl('r9 y)2 + hQ('r? y)2

ul(l‘,y) +iv1($1y)
hl(xvy)2 + hZ(x’y)z’

pilz+iy) = plz+iy) =
where by, hy € Rlz,y], u1,v1 € Rlz,y] and uz,v2 € Rlz,y] are the real and imaginary
parts of h(z +1iy), f(z+iy) -h(z—1iy) and glx +iy) - h(z —iy), respectively. Then, the
plane curve C that (p1(2), p2(2)) defines over C, i.e. C = {(p1(z),p2(2)) € C*/z € C},
has infinitely many real points if and only if ged(vy, v2) is either a real line or a real
circle.

Proor. Let ged(vi, ve) be a real line or a real circle. From Corollary 2.1, one has that
ged(vy, va, h? + h3) = 1. Thus, there exists an infinite set M C R? such that for every
(z,y) € M it holds that v1(z,y) = va(x,y) = 0, and hy(z,y)? + ha(z,y)? # 0. Further-
more, N = {(p1(z+iy), p2(x+iy))/(z,y) € M} C CNR? and cardinal(N) = oco; indeed,
since (p1,p2) is proper, it is injective over M.

Conversely, let cardinal(C NR?) = oo, and let F(z,y) = Fi(z,y) +i Fo(z,y) € Clz, ],
with Fy, F» € R[z, y], be the primitive irreducible polynomial that defines C. Then, there
exist infinitely many (r,y) € R? such that F(z,y) = Fy(zx,y) = 0. Therefore, since
ged(Fy, Fo) = 1, it follows that either Fy = 0 or 5 = 0. This implies that F is associated
with a real polynomial, and hence we can assume that F is real. Now, since F' € Rz, ],
and cardinal(C N R?) = oo, applying real Liiroth’s theorem, one deduces that C can be
parametrized over R. Let (q1(z),q2(z)) be a real proper rational parametrization of C.

Then, there exists an invertible rational function ¢(z) = %ﬂ)’ € C(z), a,b,c,d € C,

such that (p1(z),p2(z)) = (q1(e(2)), @2((2))). Also, let M(z,y) = % € R(z,y) be
a rational inversion of (q1,¢2); i.e. M{(q1(2),q2(2)) = z (note, that since by assumption
R(q1,492) = R(2), we can take M(z,y) € R(z,y)). Therefore, M{p;(2), p2(2)) = ©(z).

In this situation, we consider the homogenization of the polynomials M1, M> € Rz, y].
That is, M (z,y,2) = 2**Mi(£,%), and Mh(z,y,2) = 2%2 My(Z,Y), where a1 =deg(M;)
and ag = deg(Ms). Then, one has that:

MIMf(z+iy), gz +iy), bz +iy))
h(zx +iy)%

Mj(pi(z +iy),p2(z+iy)) =
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ME(f(z+iy), gz +iy),h(z +iy)) - h(z —iy)™
7+ R
MM f(z +iyh(z —iy), g(z +iy)h(z —iy), h(z +iy)h(z — iy))
(h% + h3)%
MJh(ul +i’U1,U2 +7;’U2,h% + h%) _ A](J,',y) —+—zB](x,y)
(h3 + h3)*s (hi + h3)es
where A;, B; € R{z, y] are the real and imaginary parts of M;L(ul +ivy, ug+ive, 2 +h3).
Therefore,

Mpi(e+in)pala + i) = G ZERU (b 4 ) = ola+ i)
Thus, applying Lemma 2.3, one has that
Ai(z,y) +1Bi(2,y) (z,y) +iv(z,y)
Az(z,y) + i By(z,y) w(z,y)
where w € Rz, y] is irreducible, and u, v define either real lines or real circles. Normalizing
the left-hand side of the equality one obtains:

w- (B2 +h2)% - (A1 Ay + B1By + i (AyB1 — A1 By)) = (A2 + B2) - (h2 + h2)™ - (u +iv)

u o
(AT + h3)** = -(hY + h3)

and taking the imaginary parts one deduces that
w- (k3 + h3)%2 . (AyBy — A By) = (A2 + B2) - (h + h3)** - 0.

Now, let G = ged(vy,v2). Then G # 0, since v1,v2 # 0. In fact it is easy to prove that
the imaginary part of a non-constant analytic polynomial cannot be zero, using Cauchy-
Riemann conditions. Assume p; = {2—3 is not constant. Then vy is not zero, since, if
f=fi+ifo,h = hy +ihg, then 0 = vy = foh; — hgfi implies, by Lemma 2.1, that
every real factor of fo divides ho and conversely; and the same applies to f; and hq;
thus f and h are associated and p; is a constant. Furthermore we observe that G is not
a non-zero constant since cardinal(C NIR?) = co. We have to prove that G is either a real
line or a real circle. We first note that, since MJh(m, y,2) € Rlz,y, 2], and since G divides
v1, v, one has that G divides By, B. Thus, G divides (A3 + B3) - (h3 + h3)*! - v. On the
other hand, taking into account Corollary 2.1, one knows that ged(vy, ve, h% + h%) = 1.
Hence G divides (A3 + B2) - v. Let us see that ged(G, A3 + BZ) = 1. If so, since v is
irreducible, then G and v are associated, and therefore, G defines either a real line or a
real circle. Let H be an irreducible real common factor of G and A% + B3. Then, since H
divides By, it follows that H divides also A,. Therefore, since

MI(f(z +iy),g(z +iy) h(z +iy)) _ Aslz,y) +iBa(z,y)

Aot iy =T RrRm
applying Lemma 2.2, one deduces that H divides C? 4+ D2, where C,D € R|z,y| are
the real and imaginary part of N(z +iy) and N(z) = ged(MP(f(2), 9(2), h(2)), h(2)*2).
Moreover, since N - N divides h®? - h®?, one has that H divides (h? 4+ h3)**. How-
ever, since H is irreducible, one deduces that H divides (k% + h3). Therefore H divides

ged(vy,va, h? 4+ h3). Thus, by Corollary 2.1, one concludes that H = 1. O

The next theorem shows how to reparametrize, over R, real curves given by complex
rational parametrizations.
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THEOREM 3.2. Let p1(z) = ﬁz), p2(z) = ZE;; € C[z], both non-constants, such that

ged(f,g,h) =1 and C(p1(2),p2(2)) = C(z), and let

L m(@y) +in@y) ) = La(By) Fivn@y)
P = e R PO T R by

where hi,hy € Riz,y], u1,v1 € Rz,y] and uz,v2 € Rlz,y] are the real and imaginary
parts of h{xz + iy),f(x +iy) - h(z —iy) and g(x +iy) - h(z — iy), respectively. Then,
if the plane curve C, that the proper rational parametrization P(z) = (p1(2), p2(z)) de-
fines over C, has infinitely many real points and (mq(z), ma(z)) is a real proper rational
parametrization of ged(vy,v2), it holds that P(my(z) + ima(z)) is now a real proper
rational parametrization of C.

~—

Proo¥F. If cardinal(C NR?) = oo, one has by Theorem 3.1 that G = ged(vi, v2) is either
a real line or a real circle. If G is a real line, since (m1(z), ma(2)) is proper, it holds that
mi(z) +im(z) is a complex linear invertible rational function. On the other hand, let G
be a real circle of the form (z — a)? + (y — b)? = ¢?, with a,b,c € R. Then,

22-1 22
N(z) = <a+022+1,b+022+1)

is a real parametrization of the circle. Therefore, since (mj(z), m2(z)) is another proper
parametrization of the same circle, there exists an invertible rational function ¢ € C(2)
such that {mi(z), m2(z)) = NM(¢(z)). Thus, after doing some computations,

big(z)+cod(z) +ic+b+ad(z) —ia

¢(z) — i
which is a complex linear rational function. In both situations one deduces that P(m(z)+
imo(z)) is again a proper rational parametrization of C. Furthermore, by Corollary 2.1
one has that ged(vy,v2, h? + h3) = 1, and hence h;(m1,m2)? + ha(my, m2)? # 0. There-
fore, since (mi(z), ma(z)) parametrizes G, one has that

P(mi(z)+ima(z))= < ug(mi(z), ma(2)) uz(my (2), m2(2)) ) GR(Z)2.

hi(mi, m2)2+ha(m1, ma)?’ hi(mi, m2)2+ho(my, ma)?

mi(z) +ime(z) =

O

4. Real Reparametrization Algorithm

This section is devoted to the detailed description of the real reparametrization al-
gorithm, as well as to the computing time analysis. In the following algorithm REAL-
REPARAMETRIZATION is outlined. Given a proper rational parametrization whose ra-
tional functions have the same denominator (note that this situation can always be
achieved from any proper rational parametrization), it decides whether the curve can
be parametrized over the reals and, if this is the case, exhibits a reparametrizing linear
rational function that transforms the input parametrization onto a real one.

Algorithm REALREPARAMETRIZATION
GIVEN: a computable subfield L. of C, and a proper rational parametrization P(z) =

(ig’z;, ,’;gg) € L(z)?, with ged(f,g,h) = 1, of an affine complex plane curve C.

DECIDE: whether C can be parametrized over the reals.



Real Reparametrizations 251

DETERMINE: (in the affirmative case) a proper real parametrization of C.

1. Compute uy + vy := f(z + iy)h(z —iy), up +iv2 := gz + iy)h(z — iy), and
w = h(z +iy)h(z — iy), where uy,v1,u2,v2,w € Rz, y].

2. Obtain G(z,y) = ged(vy, v2).

3. Ir deg{G) & {1,2} THEN RETURN that C cannot be parametrized over R.

4. IF deg(G) = 1 THEN

4.1. Compute a real proper rational parametrization (m;(z), ma(z)) of the real line
that G defines.
4.2, RETURN (lmime) uzimima),

w(mi,m2) * w(my,ma) /*

5. IF deg((G) = 2 THEN

5.1. Check whether G defines a real circle.

5.2. IF G is a real circle THEN
5.2.1. Compute a real proper rational parametrization (m;(z), ma(2)) of G.
5.2.2. RETURN (“‘(m"m"‘) u2(”“”"2)).

w(my,mz) ? w(mi,mz)
ELSE

5.2.3. RETURN that C cannot be parametrized over the reals.

The following examples illustrate the algorithm. The first example corresponds to a
real reparametrization of a real curve defined by a complex parametrization. However,
the second example takes a complex parametrization and detects that the corresponding
curve cannot be parametrized over the reals.

EXAMPLE. Let P(z) be the proper complex parametrization

(52z—24zi—20i+16—30z5—2425i~824—154z4i—148z3—184z3i—12822—4z2i
82 254240 244110 22 :—60 234280 23 14300 22¢—240 22450 2¢—40 z—18i—2

—362°+42°i+1082*—1762%i—296 2% —368 2% i +248 22 1 —264 224230 2420 z 1420~ 662)
82 25+240 24+110 24 1 —~60 234280 23 i+300 22 i—240 22+50 2 i—40 z—18i—2

and let C be the affine plane curve defined by P(z). Then, the gcd computed in step 2 of
the algorithm is the real circle:

Glz,y) = -1 -z +a° +3°

that can be parametrized over the reals as:

M(z) = (mi1(z),ma(2)) = (-

Thus, C has infinitely many real points, and a real parametrization of C is

P(ma(z) +ima(z)) = 22— 4224622 —42+2 2 —4234+622-22+3
! P T 2 =522 41022 —102+45) 2(z =522+ 1022 — 10z + 5

—142z 22-1—2
22417 2241

We finish the example giving the implicit equation f(z,y) of the curve C

flz,y) = —97x — 2782% + 57422y — 171325 + 258524y — 137023y — 94z > +
63622 y? — 1064 2% y +3322% — 44" + 32022 % — 352 y? +2y° — 3622 — 374z y? +
1122y +78y® — 7692 +97y. O
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EXAMPLE Let C be the affine plane curve defined by the proper complex parametrization
PL2) —4z—-4234+2-224 —622i+i+ 2%
z) = .
~2—4z—423 4222 -2 424234224
Then, the ged computed in step 2 of the algorithm is:

Glz,y) =z +y* + 1.

Thus, since deg(G) = 2 and it does not define a real circle, it follows that C cannot be
parametrized over the reals, or equivalently, C does not have infinitely many real points.
Indeed, since C is not real, one has that C has no real simple point. In fact, C is the curve

flz,y) =29 +2* + 22 y?

that corresponds to a 4-degree curve with all its singularities real. More precisely, the
curve has three double points at each affine origin (1:0:0),(0:1:0),(0:0:1). O

We finish this section with the computing time analysis of the given algorithm. Note
that the output is given in simplified form, i.e. as a composition of rational functions.
This seems to be more suitable, in practice, than to expand the result of the computa-
tion. In deriving bounds we shall assume that all arithmetic operations on integers and
polynomials are preformed by classical algorithms. Then it holds that the complexity
of the algorithm is quadratic in the maximum degree of the rational functions of the
parametrization. More precisely, one has the following result:

THEOREM 4.1. Let L be a computable subfield of C, P(z) = (,{Ez;, igzg) € L(z)?, with

ged(f,9,h) = 1, and let n = max{deg,(f),deg,(g),deg,(h)}. Then algorithm REAL-
REPARAMETRIZATION requires at most O(n?) field operations.

PROOF. The polynomials f(z +iy),g(z+iy), h{z +iy) and h(z —iy) can be computed
in O(n?) (note that it basically implies to determine recursively O(n2) combinatorial
numbers). Futhermore, since the degree of f(x +iy),g(z +iy), h(z +iy), h(x —iy) is
bounded by n, the polynomials u;,v;, w can be determined in O(n?) field operations.
Therefore, step 1 requires at most O(n?) field operations. Also, since the degree of vy, va
is bounded by 2n, one has that step 2 also is dominated by n?2.

To analyse step 4 we observe that, since G is a line, step 4 is dominated by O(1) (we
assume that step 4.2 and step 5.2.2 return the formal solution, and hence no substitution
and no rational function reduction are performed). ‘

Step 5 basicaly involves the decision on the reality of G and its parametrization. In
order to check whether the quadratic polynomial G defines a real circle it is enough
to check whether GG defines a real conic (observe that if G defines a real conic then
by Theorem 3.2 it has to be a circle). Thus, step 5.1 can be perfomed analysing the
signature and rank of the corresponding quadratic form. Hence, it requires O(1) field
operations. On the other hand, to parametrize G over the reals one can compute the
center and the radius of the circle, and that can be done applying linear algebra. Thus
step 5 is dominated by 1. Therefore, algorithm REALREPARAMETRIZATION requires at
most O(n?) field operations. O

Now, we analyse the bit-complexity of the real reparametrization algorithm when L =

Q(¢). For this purpose, let P(z) = (ﬁzgv {18) € Q(i)(2)?, with ged(f,g,h) = 1, be
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a proper parametrization of an affine complex curve C, let L be the maximum of the
max-lengths [see Buchberger et al. (1982)] of the polynomials f(z),g(z),h(z), and let
n = max{deg,(f), deg,(g),deg,(h)}. Then, we prove the following technical lemma.

LEMMA 4.1. Let G € Z[z,y] be a quadratic polynomial of maz-length L. Then it holds
that:

(1) The worst case complexity for deciding whether G is a real circle is O(L?).

(2) Let G define a real circle, then G can be parametrized over Q(a), where a is an
algebraic real number whose minimal polymonial has length O(L). Furthermore, the
worst case complezity for computing such parametrization is O(L?)

PROOF. (1) Let G = aj122 + agey® + a122y + a13x + azay +ass € Z[z,y|. Then, G defines
a real circle if and only if a;; = as2 # 0, a12 = 0, and 4aj1a33 < a%B + agg. Thus, the
worst case complexity for deciding whether G is a real circle is O(L?).

(2) Let G define a real circle. Then G is of the form G(z,y) = a;1x? + any? + a3z +
arsy + ass, with a1; # 0, a;2 = 0, and 4aj1a33 < a?y + a?,. Then, the center of G
- . . 2 2 - . - .

is (=542, —72%) and the radius is —-———-——-—-—W. Thus, if « is the algebraic number
defined by any real irreducible factor of the polynomial p,(z) = 7% — (a5 +a%, —4a11a33),
one has that G can be parametrized over Q(«) as:

P(z) = <

Now, we observe that the length of any real irreducible factor of p,(2) is O(L). Further-
more, it is clear that P(z) can be computed in O(L?). O

a a 22-1 ass « 2z
— + , + 5 .
2a11 2011 22 +1° 2aq1 2a11 2% +1

We finish this section with the following theorem that analyses the bit-complexity of
our algorithm.

THEOREM 4.2. The worst case complexity for algorithm REALREPARAMETRIZATION,
working over L = Q(i), is O(n®(L + nlogn)?)

PRrROOF. Let T; be the time of execution of step i of algorithm REALREPARAMETRIZA-
TION. In step 1, first f(z+iy),g(x+1iy), h(z+iy) and h(z —iy) have to be determined.
This essentially implies to compute the integers a - (fc) for0<k<j<n andacZ
being the real part or the imaginary part of any coefficient of f(z), g(2), h(z), h(Z). Thus,
since the combinatorial numbers can be obtained recursively as the sum of other already
computed combinatorial numbers, one has that the computing time for determining the
combinatorial numbers is O(n3logn) (observe that the length of (i) is dominated by
klogj). Therefore, f(z +1iy),g(z +iy),h(z + iy) and h(z — iy) can be determined in
O(Ln®logn). Furthermore, the length of f(z +iy),g9(z +iy), h(z +iy) and h(z — iy)
is dominated by L + nlogn. In order to compute u;,v;,w € Rlz,y], we assume that
the real and imaginary parts of f(z +iy),g(z +iy),h(z +iy) and h(z — i y) have been
already collected. This implies to read all the coefficients of the polynomials, hence it
can be achieved in O(n?(L + nlogn)). In this situation, uj,v;j,w can be computed in
O(n*(L + nlogn)?). Therefore, Ty = O(n?*(L + nlogn)?), and the length of u;,v;,w is
clearly O(L + nlogn).
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In step 2, one has to compute the gcd of two polynomials in Z[z,y] of length O(L +
nlogn) and degree 2n. Thus, using Brown’s modular algorithm [see Buchberger et al.
(1982)] it follows that Ty = O(n®(L + nlogn)?), and using Landau-Mignotte bound for
the length of the factors of integer polynomials [see Buchberger et al. (1982)], one has
that the length of G is O(L + nlogn).

Step 3 is clearly codominated by 1. To analyse step 4, we observe that if G is a line
then it can trivially be parametrized over Q, and m;(z), mg(z) are bounded in length by
the length of G. Thus, Ty = O(n(L + nlogn)) (we assume that step 4.2 and step 5.2.2
return the formal solution, and therefore no substitution or rational function reduction
are performed).

Finally, applying Lemma 4.1 one has the Ts = O((L + nlogn)?). Thus, the worst case
complexity for algorithm REALREPARAMETRIZATION is O(n®(L + nlogn)?). O
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