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A Relatively Optimal Rational Space Curve Reparametrization Algorithm
Through Canonical Divisors *

Carlos Andradas Tomas Recio J. Rafael Sendra
Departamento de Algebra Departamento de Matematicas Departamento de Matemiticas
Universidad Complutense Universidad de Cantabria Universidad de Alcald

E-28080 Madrid, Spain E-39071 Santander, Spain E-28871-Madrid, Spain

andradas@matss2.mat.ucm.es recio@matesco.unican.es mtsendraQalcala.es
Abstract good in the other sense, since it involves just rational coeffi-
cients; and (it, ~t®)) is a case of a bad (in the second sense)
Let K be a given computable field of characteristic zero and parametrization of the same variety, but also of a good one

let I be a finite field extension of K, with algebraic closure in the first sense, since it is of maximum degree two.
F. Assume a rational parametrization P(t) € L(t)" of some A further dichotomy appears between authors that
irreducible curve C in the affine n-space over F is also given. achieve good parametrizations by taking as starting point a
In this paper we will show, first, how to decide -without set of implicit equations for the parametric variety, and those
implicitization algorithms- whether the given curve C is de- that consider any given parametrization as their basic input.
finable (by a set of equations with coefficients) over K; apd, For example, proper parametrizations (i.e. parametrizations
if this is the case, we will determine -without computing with optimal degree) are directly output in most parametri-
the implicit equation set and then using parametrization zation algorithms (i.e. algorithms that yield a set of para-
techniques— a reparametrization of P(t) over the smallest metric equations from the implicit ones); see [5),{11). More-
possible field extension of K; that is, over a field extension over, reparametrization methods (i.e. the conversion of a
of K of degree at most two. given parametrization into a better one by means of an al-

gorithm entirely performing inside some subfield of F(t) and
avoiding implicitization) that yield proper parametrizations

1 Introduction ! ! g
for improperly parametrized curves are also available, for

Rational curves play an important role in the field of Com- instance, in [2],[10].
puter Aided Geometric Design. They arise in practical ap- In [12],[6] algorithmic solutions (via adjoint curves and
plications such as computer graphics, geometric modeling or canonical divisors, respectively) to the so called “optimal
in the manipulation of offset varieties. As a consequence, in parametrization problem” (i.e. procedures determining pa-
the past years different algorithms have been developed in rametrizations over the smallest possible field extension of
order to perform various computations over parametric va- the ground field) are presented for plane curves, but in both
rieties; we refer the reader, for instance, to a recent special cases involving manipulation of the implicit equations, since
issue of the Journal of Symbolic Computation [4]. their primary goal is to parametrize and, just as an extra, to
In particular, several authors have addressed the prob- do it in an optimal way. Also in both methods, a birational
lem of computing good parametrizations of rational curves. map over the ground field (i.e. an “a priori” determined field
In some of these works good is interpreted as a quality of containing the coefficients of a defining monic polynomial of
the maximum degree (that of being the smallest possible the plane curve) that maps the original curve onto a conic is
one) of the polynomials involved in a collection of rational found. In this way the parametrization problem is reduced
functions parametrizing the variety; while, in some other to curves of degree two. Therefore, a parametrization of the
papers, good means that the coefficients of such functions given curve over a ground field extension of degree at most
lie on a small algebraic extension of some given field. For two is finally obtained.
instance, (¢?,¢*) would be an example of a bad -in the first As remarked above, both approaches assume that the
sense- parametrization of parabola y — z? = 0, but it is curve is given implicitly: in fact, even the formulation of

the problem they deal with appeals to a certain ground field
of coefficients of the implicit equations. Apparently there is

“All three authors supported by HCM:“SAC™; first author sup-
ported by DGES PB 95-0354 and EC contract CHRX-CT94-0506; sec-

ond author supported by ESPRIT-IV:“FRISCO” and HCM:“SAC"; no way in these works to take advantage of knowing in ad-
third author supported by HCM“SAC” and DGICYT PB 95-0563: vance some set of parametric equations of the curve. How-
“Sistemas de Ecuaciones Algebraicas: Resolucién y Aplicaciones” ever, in many applications, algebraic varieties are directly

and UAH-Proy. E010/97:“Algoritmos y aplicaciones de las variedades presented in parametric form a.lthough not necessa.rily in
paramétricas en disefio geométrico”. !

Permission to make digital/hard copy of all or part of this work for a‘n.OPtiP{al one. Furtl_ler_morev pa{ametrizati.on .prOCEdureS
personal or classroom use is granted without fee provided that copies of implicitly given varieties are quite expensive in terms of
are not made or distributed for profit or commercial advantage, the complexity (see [8]). Hence, if a parametrization is already
copyright notice, the title of the publication and its date appear, known, finding an optimal one (or merely testing if the given
and notice is given that copying is by permission of ACM, Inc. To is alread R . S .
copy otherwise, to republish, to post on servers or to redistribute to one1s a.rea y optimal) by u-npllcmzmg and then parametriz-
lists, requires prior specific permission and/or a fee. ISSAC’97, Maui, ing again by the methods in [12] and [6] seems not an effi-
Hawaii, USA. ©1997 ACM 0-89791-875-4/ 97/ 0007 $ 3.50
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cient solution; and, in any case, not an aesthetically pleas-
ant one. Thus we feel that this issue needs to be reconsid-
ered once more, but this time entirely within the parametric
point of view, i.e. considering an optimal (reparametriza-
tion) method. An algorithmic solution to a version of this
problem, for the particular case when a parametrization is
given over Q(i), is presented in [9]: first, by computing some
ged it is checked whether the curve admits a parametrization
over R, and in that case, a parametrization over Q or over
a degree two extension of Q C R is found, in time quadratic
on the degree of the given parametrization.

More precisely, the relatively optimal reparemetrization
problem can be stated as follows: Let K be a computable
field of characteristic zero, L a finite field extension of K,
F its algebraic clousure (therefore also the closure of K),
and let C be the rational space curve over F given by the
parametrization P(t) € L(t)". In this setting we want, first,
to decide whether K C K(P(t)) is a regular field extension
[13]. This is an indirect way to check (see section 2, Theo-
rem 2), whether the given curve is implicitly defined by a set
of equations with coefficients in K; otherwise, it is clear that
the curve has not a parametrization over K. Then, in the af-
firmative case, we want to determine —without implicitizing
and parametrizing again— a reparametrization of P(t) over
the smallest possible field extension of K; that is, over a field
extension of K of degree at most two. Having found a good,
in this sense, parametrization, it is straight-forward to see
that it can be guaranteed, also, to be a proper one. Since,
as mentioned above, the proper reparametrization problem
is well solved over any characteristic zero field, we do not
include any further comments on this aspect; moreover, we
can assume the given parametrization verifies this property
(section 2, Corollary 3).

Such are the goals of this paper. We call this ap-
proach relatively optimal since it depends on the field K
that has been “a priori” specified. We present, in section
2, a method to test regularity (Theorem 3 and following
comments), and we give, in section 3, an algorithmic solu-
tion to the repa.ra.metrization question based on canonical
of the reparametrlza.tlon process is to compute a bxratlonal
map over K that sends the original curve onto a conic. We
observe that knowing a parametrization of the curve allows
a simple description of the field of rational function on the
curve. Thus, we analyze the method described in {6], and
we show how it can be adapted to our situation. In addi-
tion, we also present a specially simple approach to the same
problem, when the degree of the extension K C L is two.

At this stage it is hard to compare our method with
the previous ones that assume as input data a set of im-
plicit equations. As Theorem 1 shows, it is easy, from this
input, to determine the smallest field of definition for the
curve and thus, to achieve an absolute version of the opti-
mal parametrization problem. Starting with a parametriza-
tion does not allow to find it (unless we implicitize). On
the other hand, if by some external information it happens
that we are given both the ground field of the curve and a
parametrization over an algebraic extension, it seems that
reparametrizing is computationally simpler than implicitiz-
ing and finding —a new- a good parametrization, althought
the precise computation and comparison of complexities has
not been done.
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2 Regular Field Extensions and Parametric Curv.;.*

As above, let K be a computable field of characteristic zero,
L a finite field extension of K, F its algebraic clousure. Let
C be the irreducible curve deﬁned over F by

pi(t) pn(t)
P =B B e,
where gcd(p1,-.-,Pn,q) = 1 (this situation is always reach.

able from any rational parametrization). Moreover, we wilj
use the following notation: £ = (£1,...,%a); if K is a suh.
field of F, then Zx(C) denotes the ideal of the set of points
of the curve that lie in K", i.e. Ix(C) = Z({C N K™); and for
every ideal J in K[Z], JF[z] denotes the extension of J to
F(z].

In this section, we study the regularity of the field ex.
tension K C K(P(t)) (see Theorem 2). We recall that a
field extension 2 of a field ¥ is said regular if the extension
is separable and ¥ is maximally algebraic in Q; i.e. every
element of §2 that is algebraic over ¥ belongs to Z. In par-
ticular, (see [13], Theorem 39, Ch. VII, 11, Vol. II), if 7
is a prime ideal over a polynomial ring K[Z], it holds that
the quotient field of K[£]/Z is a regular field extension of
K if and only if Z is absolutely prime. Requiring that the
extension is regular amounts to say (in the classical termi-
nology of algebraic function fields, see, for instance [3]) that
K is the exact constant field of the rational function field of
K(P(t)).

For our problem, we consider the homomorphism
¥ : K[z] — F(¢t)

such that ¥(z;) = *;4(%1 fori =1,...,n. Then, since ker(¥)
is a prime ideal, in order to analyze the regularity of the
extension K C K(P(t)) one has to study when ker(¥) is ab-
solutely prime. For this purpose, we start with the following
lemmas.

LeMMA 1. ker(®) = Igp(C) N K[Z]

PRrROOF: Let g € ker(¥). Then g € K[Z] and g(P(t)) = 0.
Thus, since C is irreducible, g vanishes on all the points of C.
Hence g € Ip(C) N K[z]. Conversely, let g € Ip(C) N K],
then clearly g(P(t)) = 0, and g € K[z]. Therefore g €
ker(¥) O.

LeMMA 2. Let D be an algebraic curve over a characteristic
zero algebraically closed field F, and let K C L be subfields
of F (without requiring that the extension is algebraic or
that F is the algebraic closure of K or of L). Then it holds
that:

(1) DNK" is an algebraic set in the affine space A"(K)
over K.

(2) If D is an irreducible curve, then card(DNK") = oo if

and only if Zg(D) N K[zZ] = Ig (D).

If D is an irreducible curve and card(’D NK") = oo,
then D N K" is a curve, and Ip(D) is generated by
polynomials in K[Z], namely, by T (D).

@)

(4) If D is a rational curve, then card(DNK™) = oo if and

only if D can be parametrized over K.

(5) If D is a rational curve, and P(¢) a parametrization of
D over L. Then card(DNK") = oo if and only if there
exists a parametrization Q(¢) of D over K such that

K(P(t)) is isomorphic to K(Q(t)).




PROOF. (1) Let fi,..., f, € F{Z] be the generators of Zp(D),
and let {e1,...,e.} be a basis of the K-vector space gener-
ated by the coefficients of the f;’s. Then, for every genera-
tor f; there exist M, ; € K[z] such that f; = Y°7_, M, je;,
and clearly DN K" is the algebraic set in A®(K) defined by
{Mi;}acicrigi<s)

(2) Let D have infinitely many points in K*. Clearly,

IF(D) NKiz] C IK(D).

Let g € Ig (D). Then g € K[z], and g vanishes on infinitely
points of the curve. Thus, since D is irreducible one deduces
that g vanishes on all the points of D; that is g € Zp(D) N
K([Z]. Therefore, the two ideals are equal.

Conversely, from the proof of statement (1) it follows that:

I§(D) C (M ;)F(z] C I (D)F|z]
Therefore, if (D) N K[£] = Ig (D), then
Ik (D)F(z] = (Zg(D) N K[z])F[z] = Ip(D)

Furthermore, since Iy (D) is prime (it is the contraction of
a prime ideal), and since the dimension of a prime ideal is
preseved when extending (see [13]),0ne has that:

dim(Ig (D)) = dim(Zp(D)) = 1

Hence, card(DNK") = o0

(3) If card(D N K™) oo, following the proof of state-
ment (2), one deduces that D N K™ is a curve, and that
Ik (D)F(z] = Ig(D). Thus, Ip(D) is generated by the basis
0¥( Ik (D).

(4) The right-left implication is trivial, and the other impli-
cation follows, for instance, from the parametrization algo-
rithm in [11].

(5) follows trivially from (4). O

Applying Lemma 2 one may prove that there exists an op-
timal “candidate” subfield & of F, that we call the ground
field of the curve, for parametrizing. More precisely, one has
the following result.

THEOREM 1. Let D be a rational curve over F. Then, it
holds that:

(1) There is a smallest subfield ¥ of F (or a smallest subfield
L containing a given subfield K, if we wish to fix a base
field; the general case is equivalent to taking K = Q)
such that Tp(D) is generated by polynomials in Z[%].

(2) If Qis a subfield of F (respectively, a subfield containing

K) and Q(t) € Q(¢)" parametrizes D, then & C .
@)

There always exists a parametrization of D over an al-
gebraic extension of ¥ of degree at most two.

(4) There are subfields Q2 of F (respectively, subfields con-
taining K) which are minimal with respect to the prop-

erty: D can be parametrized over §.

(5) There are subfields Q2 of F (respectively, subfields con-
taining K) which are minimal with respect to the prop-

erty: card(DN Q™) = oco.

PROOF. (1) Compute the unique reduced Grébner bases of
Ip(D) and consider the field £ generated (over Q or K) by
the coefficients of the polynomials in the basis. Next supose

1
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that this ideal is also generated by a different collection of
polynomials over some other field . ;From this collection
we can compute again a reduced Grobner bases, which will
have coefficients all in 2. But reduced bases are unique, so
zca.

(2) If Q(t) € Q(t)" parametrizes D, then card(DNQ™) = oo,
and therefore, by Lemma 2 statement (3), one has that
Zp(D) is generated by polynomials in [Z]. Thus, £ C Q.
(3) A constructive proof follows from [12].

(4) Given a curve, if it can be parametrized over the
smallest field of definition ¥, it trivially holds, by (2),
that this field is also the smallest one with respect to
the parametrization property. Otherwise, by (3), there
are degree two extensions ¥’ of L where the curve is
parametrizable, and we claim that any such is a minimal
field for the parametrization property. In fact, suppose
there is a subfield £’ of £’ where the curve has also a
parametrization. Then, by (2), X C Z”. FromEZc ¥’ c &
it follows, by degree considerations, that " = ¥'.

(5) it is just a version of (4) considering Lemma 2 (4). O

REMARK. Note that these results do not imply that there
is a smallest subfield of F where we can find parametric
equations of a given variety. In fact, a simple example (such
as 2 +y* = 6) shows a curve that can be parametrized over
two different fields (Q(1/(2)), Q(1/(5)) in this case) but not
over any common subfield. According to (4), both fields
are just minimal fields with the parametrization property.
On the other hand, the usual Zorn’s lemma argument fails
to show that (5) holds for non-parametric varieties, and we
guess it is not true in general. In fact, for the elliptic cubic
D=x3+y® =1, one can find a strictly decreasing chain of
fields K;, such that for all i, card(D NK?) = oo, but Q will
be the only lower bound for the chain and the cubic has just
a finite number of rational points. Take an infinite number
of indeterminates over Q, {z1,...,Zn,...} and define the

fields Ki = Q(zi, zi41,..)[Y/1-23), Y1 ~23,,,..). ' D

For the following theorem, we assume again that the
parametrization is given with coefficients in a field L which
is a finite field extension of K, and where L C F is its alge-
braic clousure. The next result characterizes the regularity
of the field extension K ¢ K(P) by means of the implicit
representation of the curve.

THEOREM 2. K C K(p1(t),p2(t)) is regular if and only if
I(C) is generated by elements in K[3].
PROOF. Let Zp(C) be generated by elements in K[Z]. Then

(Zp(C) NK[Z)Fz] = IR(C)

Thus, by Lemma 1, one has that ker(¥) is absolutely prime,
and therefore the extension is regular.

Conversely, let K C K(p:(t), p2(t)) be a regular extension.
Then, ker(¥)F(Z] is prime, and by Lemma 1

ker(¥)F[£] = (Zg(C) N KI[Z))F[z] C Zp(C).

On the other hand, dim(ker(¥)) = 1, since it is equal to
the transcendence degree of K(P(t)) over K, and this agrees
with the transcendence degree of the function field of the
curve F(P(t)) over F, because F is an algebraic extension of
K. Therefore ker(¥)F[z] is also of dimension 1 and prime,
hence, ker(¥)F(z] = Ip(C). Thus, Ip(C) is generated by

Iwe thank A. Prestel for this example



elements in K(z]. O

REMARK. Note that if L is not algebraic over K, the right-
left implication in Theorem 2 remains true. However, the
left-right implication does not hold. For instance, given the
parametrization (x,t), the extension Q C Q(n,t) is regular,
but the implicit equation of the curve is not in Q[z,y]. O

CoOROLLARY 1. Without the restriction of algebraicity of
K c L, if K C K(pi(t),p2(t)) is regular, then C can be
parametrized over a extension of K of degree at most two.
PROOF. A classical result states that a function field of
genus zero is the function field of a conic over the exact
constant field ([3], see the comments at the beginning of
this section) and the corollary follows from it. For a con-
structive proof, let K C K(p1(t), p2(t)) be regular. Then, by
Theorem 2, one has that the ground field T of the curve is
contained in K. Thus, by Theorem 1, C is parametrizable
over I(f3), with 3 algebraic over T of degree at most two.
Thus, C is parametrizable over K(3) and 3 is also algebraic
over K of degree at most two. O

COROLLARY 2. Let Q) be any subfield of F (not necessarily
algebraic over K) and Q(t) € 2(¢)" a parametrization of C.
Then, if card(C N K") = oo it holds that K C K(Q(t)) is
regular.

Proor. It follows from Lemma 2, statement (3), and The-
orem 2. 0.

On the other hand, Theorem 2 implies that the regularity
of the extension depends only on the curve and not on the
parametrization (provided they have coefficients algebraic
over K). More precisely:

COROLLARY 3. Let Py (t) and P2(t) be rational parametriza-
tions of C over and algebraic extension K C L. Then,
K C K(Pi(t)) is regular if and only if K C K(P:(t)) is
regular.

Thus, in order to analyze the regularity one may assume
properness of the given parametrization. Furthermore, it is
obvious that the regularity can be tested by implicitizing. In
the following we give an alternative algorithmic characteri-
zation of the regularity that does not require this elimination
procedure.

THEOREM 3. Let L = K(a), [L: K] =4d, I = (to, ..
f=to+tia+ - +t4-1a* !, and let:

pi(t) _ vo.(d)
q(t) u(t)

- 1td~l))

vl.l(f)a
u(t)

vd—l.l(t—) -

+o+

pa(t) _ von(f) vl’"(t_)a

aH - W@ MORR
where u,v; j € K[f]. Then, K C K("T‘(%),..., ”;—((tgz) is regu-

lar if and only if the dimension of the variety

Vd-1,n (%) !

oot

W=V, ..,%-11,-,Vns.+-,Vd=1,n)

over F is one.
PROOF. Let P(t) = (&) 22{)) ‘and let C be the ratio-

q(t) > "7 q(t)

nal curve that P(t) defines over F. Also, let T(Z) € L[z] be
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the inverse of the parametrization P(t); that is, T(‘P(t)) -
and P(T(z}) = £ modulo Zg(C). Then, we express T gg:

T(z) = To(2) + Th(Z)a + - - - + Ta—1(F)a®"1,

with T; € K(z). Let ¢ : F[{f] — F(C) be the homomorphi,n
such that ¢(t;) = T; modulo Ip(C), for i = 0,....d-¢;°
In this situation, we prove that it always holds that, up to
finitely many points, W is contained in the variety V(ker(,p))
generated by ker(y), and that dim(ker(p)) = 1. For this
purpose, we observe that, since T is the inversion of P(t)
one has that: '

t=T(P() = To(PE) +Ti(P(H))a+- - -+ Tu_1(P(E))ad?,

Hence, modulo the ideal generated by the polynomials v,
1<i<d-1,j<j<n,it holds that:

vo,1(f) vo,n () )
u®) " u(t)

Therefore, if £ € W such that u(f') # 0, (note that only
finitely many points of W vanish u) and G € Ker(y), one
has that:

G(F) = G(To(z"), ..

ti =Ty =0,...,d-1.

- Ta-1(F)) = ¢(G) = 0.
where ' = (v‘:"(’t(,t;),..., “‘:;E‘tft;)). Thus, up to finitely
many points, W C V(ker(¢)). On the other hand, since
P(T(z)) = T modulo Zf(C), one deduces that

o(P(D) = P(T(2)) = &.

Therefore, ¢ is suprajective, and hence dim(ker(p)) = 1.

Let now assume that K C K(P(t)) is regular. Then, by
Theorem 2, Zp(C) is generated by a set H C K[Z]. Thus,
since P(T(%)) = T modulo Zg(C), one deduces that:

pvi;(B) =0 for 1<i<d-1,1<j<n

Therefore, V(ker(¢)) C W. Hence, dim(W) =1

Conversely, let dim(W) = 1. Then, since ker(yp) is ir-
reducible of dimension one, and since W is included -up to
finitely many exceptions- in V(ker(¢)), one deduces that W
decomposes as the union of V(ker(y)) and of a zero dimen-
sional variety. Then, it follows that ker(y) is generated by
polynomials over K (note that since W is the zero set of an
ideal 7 generated by polynomials over K, then —see [13],Ch.
VII, Vol. II- its only prime component of dimension one
of the radical over F of 7 is also generated by polynomials
over K). On the other hand, if ¢’ is the resctriction of ¢ to
K[{], it is clear that the quotient field of K[t]/ker(y') is iso-
morphic to K(P(t)). Furthermore, ker(¢’) = ker(¢) N K[
Hence, ker(y') is absolutely prime, and therefore one con-
cludes that K C K(P(t)) is regular. O

This test is particularly simple for the case of degree two
extensions:

CoOROLLARY 4. Let [L : K] = 2. Then, with the notation of
Theorem 3, one has that K C K(qu(%l, RPN ”q—"(%l) is regular
,vl_,.) e F.

Proor. It follows directly from Theorem 3, considering the
intersection of the plane curves v1,1=0,...,v1, = 0. O

if and only if gcd(v1 1, . .-

REMARK. Let C be a rational space curve given by a pa-
rametrization P(t) € L(¢t). Then, since C is K-birationally




equivalent to a plane curve D, and since the regularity is kept
under birational morphims, the regularity of K C K(P(t))
is equivalent to the regularity of K C K(Q(t)), where Q(t)
is the image of P(t) under the morphism. Thus, one sim-
ply has to apply methods described above to plane curves.
Furthermore, note that if P(t) is proper, then Q(t) is also
proper, and therefore implicitizing Q(t) basically involves a
resultant computation. O

3 Relatively Optimal Reparametrizations

In this section we present an algorithm, based on canonical
divisors. that solves the relatively optimal reparametrization
problem for space curves. Let K, L, and F, be as in section
1. Then, given a rational parametrization P(t) over L of
an irreducible space curve C over F, and assuming that the
extension K C K(P(t)) is regular, we want to reparametrize
the curve over a field extension of K of degree at most two
(see Corollary 1 of the previous section). Obviously, since
L is finite over K, the regularity of the extension can be
decided either by implicitization or by Theorem 3 and fol-
lowing remarks. If the extension is not regular, then we
know that there is no parametrization over K (Lemma 2,
and Theorem 2), and we must reconsider another field K.

Assuming the regularity has been established, the idea
consists, first, in birationally projecting, over K, the given
parametrization onto a parametrization of a plane curve
which is also defined over K. Then, we will compute a bi-
rational transformation, again over K, that sends the plane
curve onto a K-conic. Therefore, the problem is reduced to
analyzing a conic and this can be done as in [6]. The second
birational map is obtained by means of canonical divisors,
again following [6], but instead of using the implicit equation
the basic idea here is to observe that knowing a parametriza-
tion of the curve, the field of rational functions on the curve
4s much simply described. Thus, we show here how Hoeij’s
method can be adapted to our case. As a consequence, one
gets an apparently computationally simpler process (if one
starts with parametric data: for instance, implicitization
and integral basis computation are not required).

We start with the reduction of the problem to plane
curves. Afterwards, the general case for plane curves is an-
alyzed.

RepUCTION TO PLANE CURVES

Let C be an irreducible space curve over F given by the
parametrization P(t) = (mi enitdy ¢ L(t)". Then, it

q) ' )
is well known that C is bi(rationally(equivalent to a plane
curve. Algorithmic versions of this fact, for implicitly repre-
sented curves, can be found in the literature, via the prim-
itive element algorithm [7]. In our case, since the curve is
given parametrically, one basically has to analyze the field
K(C) of K-rational functions on the curve, which is isomor-
phic to K(P(t)). Then, since the transcendence degree of
K(C) over K is one, K(C) = K(M,N), where M € K(C) is
trancendental over K, and N is the primitive element of the
algebraic extension K(C) over K(M). Furthermore, one may
take M as any nonconstant rational function in P(t), sav
M= qu, and N as a K linear combination of the remaining

rational functions, say N = agpql 4+ + anﬂq’—'ﬂ.

Thus, again, M,N € L(t)" and the extension K C
K(M(t), N(t)) is also regular, since this last field is K-bi-
rationally isomorphic to K(P(t)) and regularity is kept un-
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der birational morphisms (see the definition in the intro-
duction to Section 2). Notice that also L(C) = L(M,N)
and F(C) = F(M, N). Therefore, in the following, we might
assume that we are given an irreducible plane curve.

THE GENERAL METHOD

Let C be a rational plane curve over F and let F(C) be the
field of rational functions on C. Then, if D = 3 npP is a
divisor on C, we denote by Lg(D) the F-vector space

Lg(D)={h€ F(C)/ordp(h) 2 —n, for all places P € F(C)}

Similar definitions apply to the other fields K, L un-
der consideration. The method presented in [6] (basically a
computational version of the classic procedure (3]) consists
in considering a rational divisor D of F(C) of degree two and
dimension 3, where rational means being invariant under the
action of the Galois group Gal(F/X), and X is the ground
field of the curve. In particular, —D is taken as the divisor
of the differential dz. Thus, since the genus of C is zero,
by Riemann-Roch Theorem one has that deg(D) = 2, and
dim(Lg(D)) = 3. Then, by means of integral basis compu-
tation, a basis g1, g2, g3 € £(C) of LE(D) is determined. In
this situation, (g—:, -%) defines a birational map over T from
C onto a conic. Therfore, the initial problem is reduced to
analyzing this conic and to inverting the parametrization of
this conic via the birational map.

Here, we show that these ideas can be adapted to solve
our problem. For this purpose, we assume that we are given
a proper parametrization P(t) = (&, B2)e L(t)?, and we
want to compute, from P(t), the canonical divisor div(dz)
of the function field K(C), and to determine a basis over K
of Lk (—div(dx)).

To compute div(dz), we proceed over F(C) = F(t). Here
the places of C are easy to determine, since it is clear that

{P(t +to)/t0 € F}

plus P(}) generates the set of all places of F(C). Moreover,
let Py, (respectively P% } be the place defined by P(t + to)

(respectively, P(3)) and let ny, (or n%) be the corresponding
coefficient of P, (or P%) in div{dz). Then, since

dz = g(t)dt where g(t) = (qu)',

one has that ne, = ord(g(t +to)). Therefore, n¢, # 0 if and
only if to vanishes either the numerator or the denominator
of g(t). For ny one has to compute, ord:(—g($))-

Although the canonical divisor is determined over F,
since we know it is rational, the corresponding expressions
over L or over K could be obtained. Next a basis over K of
Ly (—div(dz)) has to be obtained. We know that in the sep-
arable case, under extension of the coefficient field both the
dimension and degree of divisors remain invariant. Thus,
first a basis over L is computed, taking advantage of the
fact that L(P(t)) = L(¢). Therefore, since the dimension of
Ly (—div(dz)) is known in advance, it is easy to find three
elements hi, hz, hs € L(t) satisfying the conditions imposed
by £y (—div(dr)) and being linearly independent. Now a
basis over K must be derived.

First we observe that the map:
L) — L(&,2)

T’ q

@ =L(t)

u(z,y) — w(B,B




is an isomorphism and it is computationally simple to in-
vert. Then, we consider the elements ui(z,y) = e l(h),i=
1,2,3.

In order to derive from {uj,us,u3} a basis over K of
Ly (—div(dz)), we observe that the extension K C K(P(t))
is regular. Therefore, by Theorem 2, one deduces that
the ground field & of C is contained in K. Thus, re-
sults in [6] implies that there exists a basis {v1,v2,v3} of
Lk (—div(dz)) over K. To compute such a basis, we apply
that [L : K| = d < co. Let L = K(a). Then, each v
can be expressed as a linear combination over L of the ba-
sis {u1, uz, us}. Thus, introducing undetermined coefficients
we find algebraic conditions for v € Ly (—div(dz)) N K(C).
More preceisely, v can be expressed in the form:

d—1 d-1 d-1
v= (Z a;0 Yuy + (Z bja’ Yus + (Z c;jal Yus
;=0 j=0 =0

where a;,b;,c, € K. Hence, writing also w in terms of the
powers of a, v is expressed as:

Ry R Ry-y _a-1
O
TS + 51a+ Sa-1
where R; € K[ao,...,ad_l,bo,...,bd_l,co,...,cd_)][x,y],

and S; € K[z,y]. Now, note that the coefficients of the R;
depend linearly on the g;,b;,¢;. Therefore, solving the lin-
ear system of equations derived from the conditions R; =0,
i=1,...,d— 1, one may find {v1,v2,v3}.

Summarizing, we have computed a birational map
(3x, ) over K that sends the original curve C over the conic
D parametrized projectively over L as (11(P), v2(P), v3(P)).
Furthermore, since regularity is kept under birational mor-
phisms, the defining polynomial of D is over K. Being a
conic, D can be parametrized over a field extesion of K of
degree at most two. Thus, inverting such a parametrization
one achieves a solution to our problem.

We finish this section with an example that illustrates
the ideas described before.

EXAMPLE. We consider the rational space curve C given by
the rational parametrization

t2+2ta2—3—t—oz2
P(t) = = ,
(8) = (P1,p2,P) (t3+3t202+t2—7t+2ta2—307-3

2+ 2%a?—2+t+a’  2+2° —1)
t+a?-1 ot+ae? -1

over Q(a), where a+2 = 0. Then, we project C birationally

onto the plane curve D parametrized as Q(t) = (p1,p2+Dp3):

t2+2t02—3—t—02
Q(t):(s 2,2 2 2 2 )
134 3202 +t2 — Tt +2ta? — 3a? -3

t2+2ta2—1——t—a2)

t+a? -1 ’
Now, the regularity of the extension Q C Q(Q(t)), and
therefore the regularity of the extension Q C Q(P(t)), can

be checked using the results in section 2. For instance, we
compute the defining polynomial

flz,y) = ——4+121:—912+y2—xy3+11zy—-4a:2y2—2y—12:52y

of the curve D. Thus, since f € Q[z,y], we conclude that
Q C Q(P(t)) is regular.
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In order to compute the canonical divisor div(dz), we
determine )
(=34 a?)(t + a?)?

(t+1+a?)3(t+0? -1
Furthermore, ordtgg(t +3-ah) = l,ordg(g(t ~-a%) =
2 ord(g(t -~ 1 — a®)) = =3,0rdi(9(t +1 — @) = ~2, anq
ordy(~#9(3)) = 0. Hence:

div(dz) = Pg, +2P¢2 - 3P:3 - 2Pg4,

g(t) = p(t) =

where t; = 3 —a?,ty = ~a’,t3 = -1 —a? and ts =1~q2.
Therefore,

1= (t+1+a®)*(t+a® =1)°

h t—3+a?
1o = (t+1+a2)3(t+a’ —1)°

{t +a?)?
13 = t+1+a®)3(t+a’=1)°

t-3+a?)(t+a?)? |
is a basis of EQ(Q)(—div(dz)) over Q(a). Now, we compute
the inverse M (z,y) of Q(t) g
__2y——4zy—2a2 +3za®+2 -3z +ya® —y®
3r—2+vy !

M(z,y) =

that applied to {h1,h2, hs} provides the basis {u1, u2, us},
Uy = h,'(.M(z, y)):

v = (-3 +4z +y) 'y’ (—y+4ry —4+6z+ y?)?
! (=5y + 4zy +4 — 6z + y2)(3z - 2+ y)*

(=3 +4z + )’y (—~y+4zy—4+6z+ y°)?
(2y +4zy - 2+ 3z +3%)?(3z - 2 +y)°
- (=3 + 4z + y)’y*(—y + dzy — 4 + 62 +3°)°
T a(?)
where a(t) is the polynomial

uz =

(—2y+4xy-2+3z+y2)2(—5y+4zy+4—6z+y2)(3x—2+y)2,

that is already a basis over Q. Thus,

P(t) = (=

u2
us > ug

((—2y+4:cy—2+3x+y2)2 —5y+4xy+4—6z+y2)
3z — 2 + y)? ' 3r—2+y

defines a birational map from D onto a conic £, that is

parametrized by

$(Q) = (2 + 2ta® — 2,t — 3 +a”).

Therefore, £ is the parabola z — 9 — y® — 6y, that can be
parametrized over Q as M(t) = (9 + t2 + 6t,t). Hence,
inverting M(t) by ¥ ™', one gets the parametrization of D
over Q

7+t% 45t
2+t

5t+t>+5
(2 +8t+16)(2+1)’

Finally, inverting the plane parametrization over Q, one de-
duces an optimal parametrization of the space curve C

Q' (t) = ( ).

5t+t2+5
(t2 + 8t +16){(2+1¢)°

1247t +t* 2t +5
24t 1 2+t

Pt = ( )




4 Alternative Approach to the Two Degree Case

In this last section, we present an alternative approach to
the case where [L : K] = 2. Note that this particular sit-
uation appears, for instance, when working in real geom-
etry. The following theorem shows how to proceed HEO-
REM 4. Let C be the rational curve over F parametrized

by P(t) = (&,...,B2) € K(a)(t)", where [K(a) : K] = 2.
Then, if t = to + t1a, and
pi(t) _ vou(to, t1) v1.1(to, 1)
q(?) u(to, t1) u(to, t1)
pn(t) - vo,n (to, t1) an(to,tl)a
q(t) u(to, 1) u(to, t1)

where u,v,; € K[to,t1], it holds that:
(1) deg(ged(vi1,v1,2)) <2

(2) C is parametrizable over K if and only if the curve de-
fined by gcd(vy,1,v1,2) is parametrizable over K. Fur-
thermore, if M(t) = (mi,m) is a parametrization
of ged(viy,v1,2) over K, then P(m.i(t) + amz(t)) is
a parametrization of C over K.

If K is the prime subfield of F, and ged(vi,1,v12) €
F, then K(a) is the ground field of C, and P(t) is an
optimal parametrization of C.

If K is the prime subfield of F, gcd(vi1,v1,2) € F. but
gcd(vi,1,v2,1) can not be parametrized over K, then
K is the ground field of C, and P(t) is an optimal
parametrization of C.

3)

(4)

PrROOF. (1) and (2) follow from a direct generalization of
the results in [9].

(3) Let ¥ be the ground field of C. By Corollary 4, one has
that K ¢ K(P(t)) is not regular. Thus, applying Theorem
2, one deduces that K is a proper subfield of £. On the other
hand, Theorem 1 implies that & C K(a). Hence, £ = K(a).
(4) Let £ be the ground field of C. By Corollary 4, one has
that K ¢ K(P(t)) is regular. Applying Theorem 2, one de-
duces that ¥ C K. Thus, since K is prime, one deduces that
¥ = K. On the other hand, by statement (2), C can not be
parametrized over K. Hence, P(t) is optimal. O

REMARK. The natural question after this result is to analyze
whether the theorem can be generalized to algebraic exten-
sions of higher degree. The problem is that the curve that
the polynomials v;; define in the general case is of degree
equal to the degree of the field extension, and therefore, it
IS not a conic anymimore.
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