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Formal Determination of Polynomial
Consequences of Real Orthogonal Matrices

M. J. GONZALEZ-LOPEZ AND T. RECIO

1. Motivation

Geometric problems (as motion planning in robotics) dealing with position of
rigid bodies in physical n-space (for instance in real two or three dimensional
euclidean space) are often approached by attaching a reference system to the
body and considering the algebraic set in R™ " of all possible positions of this
reference system with respect to a fixed external reference. The points of this
algebraic set represent direct motions, i.e. pairs composed by a real n x n or-
thogonal matrix (rotation) and an n-array (translation), and in this way the
algebraic statement (and algorithmic solution) of a variety of geometric prob-
lems involves systems of polynomial equations in the rotational and translational
variables. A representative example of these problems is the computation of the
inverse geometric model of a robot manipulator, which consists in determining
the placement and orientation of the arms of the robot knowing the end effector
placement and orientation. Buchberger [B] has studied this problem assuming
as input a system of algebraic equalities that describes the relations satisfied
by all the variables of the model (for instance, parameterizing rotational and
translational variables for each body in the robot), so that finding a solution to
the inverse model problem consists in obtaining the arm-variables of the system
as a function of the end effector coordinates. Roughly, triangularization of the
system by means of a Grobner basis with respect to some pure lexicographical
order in which the end effector variables are smaller than the remaining ones is
regarded by Buchberger as to facilitate the searching of the inverse model.
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EXAMPLE. Let’s consider the very simple robot manipulator with two bodies
and two rotational degrees of freedom moving in the plane as in the figure.

By

We denote by P; := (v;, 4;) the position of the body B;, ¢ =1, 2, where

v; = (ai,bi) S ]R,z, A; = (Zl ?z) € 50(2)

The geometric constraints that express conditions on P;'s to represent the
position of a body in the plane and relations between positions of the two bodies
are given through the system of algebraic equalities:

AAL =1, det(4;) =1, i=1,2,

1 ay bl
(1 0 0)-{0 2 wn |=(1 0 0),
0 1
1 ay bl 1 a9 b2
(1 1.0)-[{0 21 sn|=(1 0 0)- 10 22 1w
0 -1 H 0 29 (o

where (1 0 0) and (1 1 0) represent, in homogeneous coordinates, the
extreme points of the bodies. A Grobner basis of the ideal generated by these
polynomials, with respect to the pure lexicographical order in which z; > y; >
21>t >a >b>x2 > Y > 22 >t >ar > by provides the equivalent
(triangularized) system:

1 =as, Y =by, z1=—by, t1=az, a1 =0, by =0,

a4 b5 =1, 2413 =1, yo=—2, T2=1t2

where we obtain, in particular, the coordinates in Py as a function of the coor-
dinates in Py.

Let us remark that equations describing that a matrix is orthogonal (AAt=1T)
or proper orthogonal (AA! = I and det(A) = 1) appear for every body of
the robot under consideration. More generally, an algebraic description of the
orthogonal group O(n) or of the special orthogonal group SO(n) by equations
describing these groups as subgroups of the set M(n, R) of matrices n xn with
real coefficients appears in many algorithms in robotics other than the inverse
geometric model: namely, in the computation of the direct geometric model, in
the computation of the degrees of freedom of a robot system, in the checking of
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irredundancy, etc. Thus we quite naturally yield to the study of these algebraic
descriptions, and, in particular, to the question of finding a “well behaved”
polynomial description for the mentioned groups. For instance, we will like to
obtain a description such that:

1) all and only all matrices in the group satisfy the polynomial equations;

2) any polynomial consequence of the matrix group (see definition below)
is in the ideal generated by the polynomials in the description:

3) we can exhibit an algorithm to test whether a polynomial is a-consequence
or not of the matrix group;

4) there is a geometric or matricial interpretation of the polynomial equa-
tions in the description.

DEFINITION. Let G be a subgroup of M(n,R). A polynomial consequence

for G is a polynomial P(z) € R(z], z = (Z1,1,.- -, T1,ny- -, T 1, - - ,&n,n), Such
that:
ayy ... a1n
Plaig,...,a1 ... yAn1y -y 0nn) =0, for all : : €Gq.
Anl .. Gng

Examples of (almost trivial) polynomial consequences for O(n) are:
“ P =i+ +22, -1, i=1,...,n
- Qi(z) :x'f’i+...+$i’i -1,:i=1,...,n;

- Pj(z)=zazi+ o+ TinTim, 4,5 =1,...,m;
- Qi (z) = T1,i%1,5 ++ TniTnj, 1,7 =1,...,n;
2
25 7% R Ti,n
] S B
In,l .. .Z'n’n
— 2 ~2
- Hiy(2) =2, — 75,
where
1,1 L1,5-1 T1,5+1 Tin
~ (_1 itj | Li-1,1 e Tim15-1 Ti-lj41 .- Ticign| .o -1
mi»] - ) . L1 =1,...,n
Tit11 .- Tiy1,5-1 Titl,j+1 .- Tit+1,n
Tn,1 N Tn,j—1 Tn,j+1 cee Tn,n

Again, a specific polynomial consequence for SO(n) is:
Hijz)=z; — %, i,j=1,...,n.

From the point of view of algebraic geometry, properties 1 and 2 above mean
just that the polynomial description gives a basis of the ideal of the algebraic
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variety of all matrices in the group (identifying matrices and points in ]R”Z).
Property 3, computationally oriented; says just that the sought polynomial ba-
gis of the ideal solves the ideal membership problem . As is well known, the
Grobner basis of an ideal also has this property, but there could be other bases,
not necessarily Grobner, for solving the same problem. Polynomial descriptions
having these four properties could be of use in the algorithmic approach to some
of the problems in robotics we have mentioned at the beginning, as it is clear
that the lack of property 2 will imply, for instance in the example of the in-
verse model, the consideration of multiple-redundant solutions. On the other
hand having property 3 could ease the computation of the Grobner basis or the
triangularization of the given system (see §5 below). One could claim that it
could be better to this purpose to have computed directly a Grobner basis of
the ideal of matrices in the group, but it turns out that we have been unable to
find a geometric or matricial interpretation of the elements of the Grobner basis
of this ideal for many conceivable orders, while the basis we have found has a
quite natural interpretation (property 4). In this way we can write explicitly a
basis, depending on any n, with the four properties for any orthogonal or proper
orthogonal group; while in the case of Grobner basis we have not been able to
do so for general n. Moreover for the case n = 2, n = 3 the basis we have found
happens to be also Grobner basis for the proper orthogonal ideal with respect
to several orderings.

2. Main results

Coming to this point let us state formally the main results of this paper.

NOTATION. Let IK be the field of real numbers R or the field of complex num-
bers C. We identify a n x n matrix A = (a; ;) with entries in IK, with the array
a=(a11,---1Q1in,---s8n1s--->0nn) D K", If Kiz] = K[z11,..,T1n, s
Tniy---»Tnn) i the polynomial ring in n? variables with coefficients in IK and
f(z) € K|[z], we denote by f(A) := f(a) € IK. Let A(z) = (z;,;) be a matrix
whose entries are the variables in K [z]. We consider the polynomials:

(i) det(z) == det(A(z)).

(i) D (z):= Z.’Ek,i.xk,j —bij; i€l .,n 1<
k=1

n
(i) Dij(z) =Y @ik-jh—bi5; 6J€l,...,n i<y

k=1
(iv) Let 7 = (i1,...,%a I1,.-.,Ip) and w = (k1,...,kq, K1,...,Kp) be even
permutations of (1,...,n), b <a <n—1and a+ b= n; we denote:
Tiyky -+ Tiyke Tr,Ky - TILLKy
D(m,w;a,b):=| Lo - : :

Ligky o+ Tigke Tr,Ky - TIKy
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And the ideals in K[z]:
so := (det(z) — 1,{D; j(z)/i,5 € {1,...,n},i < j}),

0= <{Dl,3(.$_>/za.7 €{l,....n}d <ih-

THEOREM 1. (See Theorem 3.3 in §3.) The ideal o in R[z] is real (i.e. it is
the ideal of the real algebraic set V (o, R); there is an equivalent purely algebraic
description by the Dubois-Risler Nullstellensatz [D][R]). Analogoulsly the ideal
so in R[] is real and prime.

THEOREM 2. (See Theorems 4.4.1 and 4.4.2 in §4.) Any real polynomial of
degree d vanishing over all real orthogonal matrices is a combination of

{Dij, Di;/i,5 €{1,...,n},i < j}

with polynomial coefficients of degree at most d — 2. Analogously, any real poly-
nomial of degree d vanishing over all proper real orthogonal matrices is a com-
bination of

{Di>j’ D:(,J/Z?] € {L"'an}ai S]}
U
{D(7,w;a,b)/w, T even permutations of (1,...,n) ,b<a<n—1,a+b= n}

by means of coefficients which are polynomials of degree at most d—2, d— 2 and
d — a respectively.

THEOREM 3. (See technical results 3.1.2 and 3.1.4 in §3.) One can ezhibit
the polynomials in {D;"j/i,j € {1,...,n},i < j} as a polynomial combination
of those in {D; ;/i,j € {1,...,n},i < j}. Also {D(r,w;a,b)/w,n even permuta-
tions of (1,...,n) ,b < a <n-1a+b=n} as a polynomial combination of
{D;;/i,j €{1,...,n},i < j} and det(z) — 1.

THEOREM 4. (see Corollary 4.4.3 in §4.) One can determine algorithmically
in a priori bounded number of steps whether any real polynomial p of degree d is
a polynomial consequence of the group of real orthogonal (real proper orthogonal)
matrices and if it is so, to construct the combination of polynomials that gives
the membership to the ideal.

It follows from the results above that {D; ;, Df;} (respectively {D; ;, D},
D(m,w;a,b)}) are the “well behaved” basis of o (respectively so) that we were
looking for, verifying properties 1 to 4 of §1. For reasons that will be clear in
a moment we propose to name such basis the Weyl basis of the corresponding
ideal. From the purely mathematical point of view, the interest of finding a basis
with these properties is already present in the reputed invariant-theoretic book
of H. Weyl, The Classical Groups [W]. In fact one can follow his fascinating
winding way towards this basis during the first one hundred pages of the book.

The modern approach to invariant theory seems to overpass the need for such a
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basis, as we have not found references to its existance or to its construction in
more recent but also classical books ({D-C), [F], [N], [S], [BO]).

In fact we can say that our main results in the paper are just a reformulation of
some theorems of Weyl (namely his Theorems 5.2.C, 5.3.B, 5.4.B, 5.4.C, 5.4.D).
We have moreover also followed some of his proofs. The (if any) originality of
the paper has to be therefore carefully explained. First, we have made a shorter
and direct proof to the reality of the orthogonal or the proper orthogonal ideal,
which is intrinsically tangled in Weyl’s proof with the algorithmic property 3
of the basis. Second, we prove this algorithmic property without using (as it
is done in his book) a cumbersome detour to Cayley’s parameterization and
to “formalized” main theorems for invariants (here “formalized” is used in a
technical sense, as in Weyl’s Chapter II, §11, meaning roughly invariants for
generic orthogonal matrices). Third, we have formalized (in the sense of being
less literary than the wonderful prose of Weyl) many of the concepts used in
Weyl’s proof and which are scattered throughout one hundred pages of his book,
as he introduces them for a variety of purposes. We have also tried to make
a self-contained proof, referring only to modern texts for some auxiliary results
needed (in particular, a variation of Wedderburn’s theorem from representation
theory). Finally, our proof is a final check to Weyl’s proof—as he does not
detail the case of proper orthogonal matrices, leaving to the reader the task of
adaptation from the non-proper orthogonal case proof-—but in the case of non-
proper orthogonal matrices Weyl’s proof has a gap ([W] p. 143, Theorem 5.3.A,
Supplement, Theorem 5.3.B and Corollary), as recognized by him in the Errata
to the second edition, which includes a brief sketch about how to correct the
mistake. We want to acknowledge our thanks to professor E. Becker who first
mentioned the relation between our originally naively posed problem in robotics
and the result of Weyl; to the late professor P. Menal, who helped us with the
aspects in representation theory a few weeks before his sudden tragic death; and
to professors T. Mora, C. Traverso and M. Coste for their help regarding the
relations with Grobner basis.

3. Technical results and reality questions

In this paragraph we prove one of the main results (§3.3), namely that the
ideals 0.R [z] and so.R [z] are real and moreover that so.R [z] is prime (see no-
tation in §2). In §3.1 we introduce some technical results, obtaining different
basis for these ideals that will be used later. The proof of the reality and pri-
mality first considers the complex zeroes of the ideals, checking that the local
rings of 0.C[z] and so.C[z] at any complex zero are regular. This follows from
the computation of Jacobians. Then it is a standard algebraic result to conclude
that 0.C[z] and so.C[z] are radical ideals. Next we prove (§3.2) that V(so, C)
is connected by using a parameterization with skew-symmetric matrices via the
exponential mapping. Thus, as V (so, C) is non-singular and connected, we con-
clude that so.C[z] is prime and therefore so.R [z] is prime. Again computation
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of local dimension allows us to prove that so.R[z] is real. For 0.R[z] the result
follows from its representation as intersection of two copies of so.R [z].

3.1. Let us denote, following the notation in §2:

so := (det(z) — 1,{D; ;(z)/i.j € {1,...,n},i < j}),
= (det(z) - 1,{D; ;()/i,j € {L,...,n},i < j}),
o:=({Dy;(z)/i,j € {1,...,n},i < j}),
o: <{Dz,](——)/7’7]e{177n}71§]}>
Let IK be the field of real numbers R or the field of cornplex numbers C. If q
is an ideal in K|z}, let V(q, ) := {a € K™ /p(a) = 0,p(z) € q}. If B(z) and
C(z) are matrices n x n with entries in K[z] we write B(z) = C(z)(mod q) if all
the entries of B(z) — C(z) belong to q. We shall use the following properties:
- if B(z) = C(z)(mod q), then det(B(z)) = det(C(z))(mod q);
- if H(z) is another matrix, and B(z) = C(z)(mod q), then H(z)B(z) =
H(z)C(z)(mod q) and B(z)H (z) = C(z)H (z)(mod q).
The following results are clear from a geometric point of view (i.e. they are trivial
to check for any orthogonal or proper orthogonal matrix, according to the case)
but we are interested at the ideal (formal) level. The claims are valid over K,
real or complex.

3.1.1. det(z)? —1€o0na.

Note that polynomials {D; ;(z)/i,j € {1,...,n},i < j} are the entries of
the (symmetric) matrix A(z)A(z)* —I. Thus A(z)A(z)* = I(mod o), implies
det(A(x)A(z)") = det(I)(mod o), and det(z)? = det(A(z) A(z)) = 1(mod o).

Likewise we obtain det(z)? = 1(mod o') using instead the entries of A(z)!
Alz) - 1.

3.1.2. 0= 0" and so = so’.
Let adj(A(z)) be the adjoint matrix of A(z). We have the following list of
formal implications:

adj(A(2) A()' = det(z)]
A(z)tA(z) = I (mod o')
adj(A(2) Alz)* Alz) = adj(A(z)) (mod o)
det(z) A(z) = adj(A(z)) (mod o')
det(z) A(2) Alz)' = adi(A(2)) Alz)" (mod o'
det(z)A(z)A(z)" = det(z)I (mod o')
det(z)*A(z) A(z)! = det(z)?I (mod o)

A(z)A(z)" = I (mod o),

so that finally {D; ;(z)/i,j € {1 .n}i<j} Cco. Slmllarly {Df;(z)/ij e
{1,...,n},i<j} Co.So0 =0 and obviously so = so’.



148 M. J. GONZALEZ-LOPEZ AND T. RECIO

3.1.3. Let A;; be the (i,j)-entry of the matrix adj(A(z)). Then we have
T ;— N j €80, 4,5 €{L,... ,n}. In fact we have the following implications:

A(z)tA(z) = I(mod so)
adj(A(z))A(z)' Az) = adj(A(z))(mod so)
det(z)A(z) = adj(A(z))(mod so)
A(z) = adj(A(z))(mod so)

z;; — Ag; €80, i, €{1,...,n}.
3.1.4. With notation as in §2, let

W := {D(r,w; a,b)/w, 7 even permutations of (1,...,m)
b<a<n-—1l,a+b=n}

Then W C so.

PROOF. Let A be a n x n matrix with complex entries and let C := adj(A).
Then:

Civky -+ Cirka Cip,Kn -+ Ci Ky
Cigky -+ Cigks CigKi - G Ky
0 e 0 1 .. 0
0 0 0 1
Qiy by oo Qigky  OnLnky -+ ALk
Qiy kg o+ Qigks QI ke -+ Qlyka _
iy Ky -+ Qi Ky OLLKy --- O K
i Ky, --- Qi Ky OLLK, -+ OLK,
det(4) ... 0 0 R 0
0 ... det(A) 0 . 0
iy Ky - Qig Ky OIL Ky --- QLK
ai Ky, - Qi Ky QnK, --- QLK
Thus we have:
Cirky -+ Citka an Kk, --- QALK

det(A) = det(A)®

Cigki -+ Cigkg ar,, Ky -+ QLK
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As this identity is proved for all matrices we conclude that it is also formally
true, which means that polynomials:

adj(A(@))i by -~ adi(A(Z))iy ka
p(m,w;a,b) = :
adj(A(Z))ig k- adj(A(Z))i, k.

rn K, - ZI.K,
det(A(z)) — det(A(z))*| :
Tl Ky - TIK,
are identically null, thus they belong to so. Since det(A(z)) = 1(mod so) and

adj(A(z)) = x; j;(mod so) for all i, j, we conclude that polynomials D(r,w;a,b)
belong to so. O

THEOREM 3.2. V(so0,C) is a connected algebraic variety.

Proor. We will denote by SS(IR) the set of skew-symmetric n X n matrices
(A + A' = 0) with entries in R. This set can be identified with R and it
is therefore connected in the set M(n,R) of n x n matrices with entries in R
endowed with topology given by the euclidean norm. Our theorem will follow

from the construction of a continuous surjective map:
h:SS(R) x V(so,R) — V(so,C)

as it is well known that V(so,IR) is also connected. We define this map by
h(S,R) := Rexp(iS). Then it is easy to check that h is well defined using
some properties of the exp mapping with respect to the trace and the determi-
nant. Moreover h is clearly continuous. To prove surjectivity let B € V(so, C);
then B*B (where B* is the conjugate transpose matrix of B) is hermitian,
positive-definite and orthogonal, and therefore using a result of Gantmacher
(cf. [G, vol. II, Chap. 11, Lemma 1, §1]) there exists S’ € SS(IR) such that
B*B = exp(iS’). Let S := 35 € SS(R) and R := Bexp(—:S). It is clear that
B = Rexp(iS). To conclude it is enough to prove that R € V(so,R). Since
exp(—tS) € V(so,C), we have that R € V(so,C). Besides R has real entries
because it is also unitary; in fact:

R*R = (Bexp(—iS))*Bexp(—iS) = (exp(—iS))*B* B exp(—iS) =
= exp(—i5) exp(:S') exp(~iS) = exp(—iS) exp(2iS) exp(—iS) =
= exp(—1S5) exp((2iS) + (—i5)) = exp(—iS)exp(iS) = 1. O

THEOREM 3.3. The ideal so is real and prime in Rz]. The ideal o is real
and radical in R [z].

ProOOF. Let a € V(o,K) for IK either the real or complex numbers, and
denote J(0)(a) the jacobian matrix evaluated in the point a. Then some easy
computation yields rank(J(o)(a)) = MJQ Analogously for a € V(so, K), we
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have rank(J(so)(a)) = —”("2—+1) Next we remark that ideals so and o are equal
in K [z]m,, where m, = {p(z) € K[z]/p(a) = 0}, using 3.1.1. As o is generated

by 2t bolynomials it follows that K [z]m, /(0-IK[Z]m, ) is a regular local ring

2
n{n—1)

of dimension and therefore also IK{z)m, /(50.JK[2]m,) is a regular local

ring of dimension E("Q—_l) Now recall that if b = (hy{z),...,h(z)) is an ideal
in Clz], a € €% 8,: Clz] — C[z]m, the canonical inclusion, and V (b, C) the set
of zeros in C™ of b , then

b= (1] &' (bClm,)
eV (b,C)

It follows that so.C[z] and o.C[z] are radical ideals and therefore also so.R [z]
and o.R[z]. We conclude that V(so,C) is an irreducible algebraic variety as it
is non singular and connected (3.2). Therefore so.Clz] is prime and the same

"("T_l) and agrees

follows for so.R[z]. As the dimension of so.R [z] is equal to
with the topological dimension of V' (so, R) we conclude that so.R [z] is real. The
reality of 0.R [z] follows, again using 3.1.1, from 0.R[z] = so.R[z] Nso™.R[z],

where so™ is defined by

so™ := (det(z) + 1,{D,;(z)/i,5 € {1,...,n},i < j}). O

4. Weyl basis

In this paragraph we obtain basis for the orthogonal and proper orthogonal
ideals verifying the properties 1 to 4 of §1. First we introduce some notions from
invariant and representation theory, namely the concept of enveloping algebra
and the double centralizer property (4.1.1) for semi-simple rings. The idea of
Weyl is, very roughly speaking, that using Kronecker products we are able to
linearize polynomial consequences of orthogonal (or proper orthogonal) matrices.
Next some linear conditions satisfied for all orthogonal (or proper orthogonal)
matrices (again we recall that no precision is intended in this explanation) are
introduced (4.3.1) so that the main point (4.3.2) is to prove that, conversely, any
matrix satisfying such conditions is orthogonal (or proper orthogonal). Here we
use the criterion given by the double centralizer property and therefore check-
ing orthogonality is reduced to checking commutativity of such matrices with
all commutators of orthogonal matrices. But this commutativity implies the
invariancy of functions of the entries of the matrices with respect to the group
considered (4.2.3). Therefore using the first main theorem (4.1.2 and 4.1.3) of
the invariant theory for the group we have an easier way of checking the double
commutativity. Finally the ideal membership problem is reduced to the same
problem for an ideal generated by linear polynomials and we are done. Our
proof, for the reasons explained in §2, is done for the special orthogonal group,
but of course the simpler case for the orthogonal group follows along the same
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lines and it is therefore omitted. In what follows [W] will be the standard ref-
erence, but we have also included references to more modern texts for the basic
concepts.

4.1. Let K be a field. If U is a set of n x n matrices with entries in K we
define its linear closure [U] in K as the set of all finite linear combinations

ar Ay + -+ a4,

of matrices A; in U by means of coefficients a; in K. If U is a (multiplicative)
group, then addition of two matrices, multiplication of a matrix by an element in
K and multiplication of two matrices are three operations closed in [U], so that
this set is an (matrix) algebra in K which is called the enveloping algebra of
the group U (cf. also [SH, vol. I, 3.5.1]). The commutator of U is the set:

C(U):={BeM(n,K)/AB=BAfor all Ac U}.

Clearly we see that C(U) is a K-algebra and C(U) = C([U]). Let V be a n-
dimensional K-vector space, W C V a subspace and U C M(n, K) a group of
matrices acting on V' by means of:

AV — 'V, AeU

x — zA.

If A€ M(n,K) we say that W is A-invariant if wA € W for all w € W; and W
is U-~invariant if it is A-invariant for all A € U. Note that W is U-invariant if
and only if W is [U]-invariant. The group U is fully reducible if we can write
V=Vi® @ Vi, where V; is an U-invariant subspace for all i = 1,... k. (cf.
also [C-R, §10], as completely reducible).

The following theorem (the double centralizer property) is an extension
of the theorem of Wedderburn on simple rings to semi-simple rings.

THEOREM 4.1.1. (Cf. [C-R, §59] or [SH, p. 124]). The enveloping algebra
of a fully reducible matriz set U is the commutator algebra of the commutator
algebra of U, i.e. C(C(U)) = |U].

For the applications of this theorem let us remark that clearly any set of
orthogonal transformations over a real field K is fully reducible and in particular
the groups O(n) and SO(n) are fully reducible.

DEFINITION 4.1.2. Let f(z™,...,2(%)) a function on V*. We say that f is
invariant on W associated to k vectors, with respect to U, if f(z1), ..., J,’(k)) =
f@WA . 2" A4) for all Ain U and all z; in W.

THEOREM 4.1.3. (First main theorem on invariants of the orthogonal group.)
If f is a function invariant on R™ associated to k vectors with respect to O(n),
then there exists a polynomial p (in k* variables) such that:

AR L) (D, 2 (D @)y
0,2), ) 0) (a0, 00
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for all z®) e R",i = 1,...,k, where (—,—) denotes the canonical scalar product
m R™.

THEOREM 4.1.4. (First main theorem on invariants of the special orthogonal
group.) If f is a function invariant on R™ associated to k wvectors with respect
to SO(n), then f is in the R-algebra generated by functions of the form:

() [0, ..., 2],

(ii) g(zV,...,z®),

where
£ )
200, 2] =] S
x&i") ... zﬁf")

i; € {1,....k},j=1,...,n, (bracket factor),
and g is a polynomial combination of the scalar products (@), AN N =
{1,...,k}.
DEFINITION 4.2. Let A € M(nxm, K), B € M(n' xm/, K). The Kronecker
product of A and B is the nn’ x mm/ matrix:
aLlB e alynB
A® B := .
am1B ... ama.B
Thus if 7 is a natural number and A € M(n, K) the r-Kronecker power of A is
the n” x n” matrix:
I(A)=4®..". . . A=

a(L,1,...,1:L1,..1) a(l,1,...,51,1,...,2)--a(L,1,...,Lin,n,...,n)
a(1,1,...,2;1,1,...,1) a(1,1,...,2;1,1,...,2)---a(1,1,...,2;m,m,..., 1)

a(n,n,...,n;1,1,...,1) aln,n,...,n;1,1,...,2)a(n,n,...,n;n,n,...,n)
where a(z’l, N ,’ir; k‘l, ey k‘r) = a(il, k‘l)a(ig, k?z) e a(z’r, kr)
4.2.1. Some basic properties of II,.(A) are:
(1) II,(A) is bisymmetric, i.e., if  is a permutation of (1,... ,T), then
a(z’l, SN ,’ir; kl, ceey k,«) = a(i,,(l), e vin(r); kn(l)v ey kn(r))
for all indices ;, k.
(2) I.(AB) = I1,.(A)I1(B), thus if U is a matrix group then the set
IL(U) := {1I(A)/A € U}

is also a matrix group.
(3) If A is an orthogonal matrix then II.(A) is also orthogonal.
(4) If det(A) = 1 then det(II.(A)) = 1.
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We shall proceed further considering the set R(") of matrices of the form:

A, 0
A
A0 = !
0 Ag
where A, is a n¥ xn" bisymmetric matrix and we denote its entries by a(iy, ..., 4y;
ki,....ky) € K, ij,ks € {1,...,n}, v = 1,...,r, and Ay := a(— —) € K.
Remark that R") C M(m,K), where m =1+n+n?+ .-+ n" = %

4.2.2. Some properties of R("™) are:
(1) R™ is a matrix algebra. In fact the product A(r)B(r) is a bisymmetric

matrix that has the form:

A, B, 0
Ar—lBr—l

0 Ao By
(2) A subset of R(" is the set of matrices of the form:

11 (A4) 0
H(T)(A) — H(r—l)(A) § ’

0 ' To(A)

where A € SO(n) and Iy(A) := 1.
It is easy to verify that (") (AB) = I1(") (A)TI("(B), so the set nM(SO(n)) :=
{1 (A)/A € SO(n)} is a group; besides O (AT (A)E = 1, so IM(SO(n))
is a set of orthogonal matrices and consequently fully reducible.
We are interested in describing the enveloping algebra of (SO(n)), which
agrees with C(C(II)(SO(n)))), after Theorem 4.1.1. Note first that if we de-
note:

Br,r Br,r~1 .. BT,O
B = : : :
Boy Bor-1 ... Bpyg
where B, , are matrices of dimension n* x n’ and coefficients b(i1,...,%y;

J1s--+yJu), With g, 5y € {1,...,n}, then:

C(M"(SO(n))) = {B € M(m, K)/BII"(4) = ") (4)B, for all A SO(n)}.
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PROPOSITION 4.2.3. If B € C(IIW(S0(n))), and for each u,v € {0,...,7},
we consider the multilinear form asociated to u + v vectors:

fu,v . (]Rn)u+v SN R
(@D 2. > bit, .. tuski, .- ko)
M, ey T R SN
Yooy 1 u 1 v
y Y x§1>...xiu>y§cl ...yku)

defined by means of the (u,v)-entry By, of B, then fu,w 18 tnvariant asociated
to u + v vectors with respect to the group SO(n).

ProoF. First note that
fu v(x(l), . ,w(u); y(l), o ,y(v)) — (x(l‘) Q- ® x(”))Bu 1)((y(l))t Q- ® (y(v))t).

Let A € SO(n); since B € C(II)(SO(n))) it is easy to check that By, =
I, (A) By (I, (A))* for all u,v € {0,...,r} and for all A € S0O(n). Then we
have the following identities:

fu,v(:r(l)A, WA VA YW A) =
= @VA® - ®cWA)BL,(y(1)A) ® - ® (y(v)A)) =
= (W @ ® 2, (A) By (I, (A) (¥(1)' & - ® (y(v))') =
=@V - @z)B,  (¥V)® - ® (y)H) =
= fu,v(:n(l), ez ). O

COROLLARY 4.2.4. With the notation above, if B € C(II"(50(n))), then
fuw is in the R-algebra generated by functions of the form:

(1) [0, 26)],

(2) g(=0,...,20),
where [201), .. z(1n)), 4s the bracket factor, g is a polynomial combination of the
scalar products (29,200, 4,5 € {1,...,k}, and the 2D are choosen among the
=@ or y\9) variables. Moreover f can be written in such a way that there is no
repeated variable in every monomial.

PROOF. After theorem 4.1.4, it is obvious that f,, belongs to the R-algebra

generated by the functions stated in (i) and (ii). Besides fy, has degree 1 in
(%)
J
(Remark also that bracket factors with repeated variables 21 are identically
zero.) O

Explaining a little more on the form of functions f, ., we remark that it is a

every variable z;’, so that functions generating it cannot have repeated variables.

linear combination of functions of the form:
(3) Zzab(l.(l), o ,x(");y(l), o ,y(v)) = (m(”(l)),x("(2))) Co <$(U(2a—1)),

(@2 L (D) @)y (g (1(=D) ().
(gle@ad) BN (o) )y,
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(i) gearv (zD, ... 20y ) 1= [0 4@y,
Ly (D] puaat (pleletD) | plo@) mdt) )y

U—C,v—

where o and n are permutations of (1,...,u) and (1,...,v) respectively, u—2a =
v—2b,u—c—2a' =v—d-2V, c+d =n and, finally, w and o are permutations
of ((c+1),...,0(u)) and (n(d+1),...,n(v)) respectively. Remark that powers
of bracket factors do not appear because of the relation:

(x(l),y(1)> (x(l)yy(n)>
W™ DL ™) = :

(@™, y D) (g gy

Let’s denote by 537’1)“”(1'1,_,_&; k1 .. ) the function:

8(ic(1),T(2)) -+ - 8(io(2a—1)1 B0 (2a)) - 6(kn1), kn(2)) -
(5(]677(21),1), kn(Qb)) : 6(i0(2a+1)1 kn(2b+l)) et 6(ia(u)7 kn(v))

and by ¥37°%(4y, . u; k1,....») the function:

#’7(10(1)5 0(2)) ( t5(1)> ia(c)) . (.U(l)>k77(1)) BEEE 'Y(ia(l)v kn(d))
Vio(2)s0(3)) "+ - ’7(20(2)7 To(e))  V(Eo(2), k1)) - -+ Y(ia(2)s kn(ay)-
"Y(ia(c)v kn(l)) et V(iU(C)’ k”](d))

A(kp1ys kne2y) - - - - (k1) kngay)-

Y{kna-1), kn(ay)

where y(4,7) := 1 — 8(4,5) and # takes value 1 or —1 according to the parity
of the permutations ¢ and 7 ; in fact when the function 'y""c‘i(zl,,,,,u;kl,_“,v)
is different from 0 the n-uple ((1),...,0(c),n(1),...,n(d)) is a permutation of
(1,...,n); if it is even then # := 1 and # := —1 in other case. Remark that
both 6, , and «, ., are {0,1, —1} valued functions.

COROLLARY 4.2.5. With the notation above, if B € C(II")(SO(n))) then we
have, for all indices i; and k; that:

b(il,...,iu;kl,...,kv)z

Z )\anab 6onab .,u;kl,..‘,v)_"

o,n,a,b

Y Bonee VI, ik ) 8978 (i (er1), oo (ai Bad (o)

T,,w,a
c¢,d,a,b
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where Agyq.p and 5"7;’;‘ are constants.

PROOF. As we have seen, it is possible to write:

cdab
o,m,a,b o,n,w,a
’

oNwa
} : )‘anab anab+ ,Bonua .gu?gab )

In particular we can write:

Z )\Unab anab Z I: Z >\ar,ab 6o'nab (Zl ):I 1‘511) . ’Ejj)yl(cll) . y.'(mv)

o,m,a,b i,k oyma.b

and analogously:

= Z[ Z ﬂi’;‘ié’ ’qu)ab( .,u§k1,‘..,v)+

ij,ky o,m,a,b

+ D Bomse A k) 6528 —aioer).. ,o(u>3kn<d+1>,...,n<u>)}

g,n,w, 0
c,d,a.b

e INORNE!
“ . EZ ykl . ykv

v

So, identifying in the first expression the coefficients corresponding to the mono-
(1\ (u)y,(cl) o yl(cv)
1 v

mial z; ' ... x;

tu

, we obtain the desired equality. [

4.3. After this preparation we are ready to prove the main point, namely the
description of the set of “linearized orthogonal matrices” (i.e. [l1((SO(n))]) by
means of a set U™ of linear equations in the entries of the matrices in R(™.
As explained at the beginning of this paragraph, we shall use theorem 4.1.1 to
test equality between U(") and [II(")(SO(n))]. Naturally we shall profit from the
special form of writing the elements in C(II("(SO(n))) given by corollary 4.2.5.

DEFINITION 4.3.1. Consider the sets of matrices:!

U .— { A € R

Z a(il,. .. ,’iv;k,k,kg,. . .,kv) = 6(i1,i2)a(i3,. .. ,iv;k;),,.. -7kv)7
k=1

n

z a(i,i,ig,...,iv;kl,...,kv) = 6(k)1,k2)a(i3,...,iv;kg,...,kv),

i=1
ved{2,...,r}hik; € {1,...,n}}.

1The set U(™) alone is the one needed for the proof of the orthogonal case.
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We will denote by 7, a permutation of (1,...,a), and |r,| takes value 1 if 7, is
even and —1 if it is odd.

T .— { A" € R
Z |7ra|a(i1, e aiayia+lv e 77:11; kﬂa(l)a cey k‘lra(a)a ka+lv R kv)
= Z fwbla(ll, ey Ib,ia+1, . ,iv; wa(l)v . ,wa(b), ka+1, N ,kv),
wh

(il,...,ia,ll,...,jb) and (kl,...,ka,Kl,...,Kb)
even permutations of (1,...,n),4411,- .99, Kkat1s.- -, ko
6{1,...,n},a+b=n,a2b,1gvgr}.

Finally let us call U™ = U n (),
It is an easy exercise to prove that all these sets are JK-algebras.
THEOREM 4.3.2. (Cf. [W].) For any natural number r,
U™ = [M(S0(n))).

PROOF. For the inclusion [II"(SO(n))] ¢ U™, since U™ is a K-algebra, it
suffices to prove II"(SO(n)) c U™M. Let II(M(A) € IM(SO(n)), A € SO(n);
as we have seen, I1("(A) € R(") and it verifies:

n n

S alin, ik kg, k) = [Z aliy, k)a(is, k)]x(ig, ks) ... 2(iy, ky)

k=1 k=1
= 6(i1,i2)a(i3, - ,iv; k‘3, ey k‘v)

The same reasoning concludes the other condition needed in order to prove
Ay e U,

On the other hand, technical result 3.1.4 allows us to establish the central
identity among the following, to obtain that I1(")(4) € T,

E |7ra|a(z'1, . . ,ia,ia+1, .. 7iv;k7ra(1)7 . .,k.,ra(a),k'a+1, . ,kv) =
Ta

= [Z[wala(il,kmm) e lla, k(@) |@ar1, Karn) - ali, ) =

a(iy, k1) ... a(i1, kq)

= aioyi, kat1) -, alin, ky) =
a(ia, k1) ... a(ia, kq)
a(li,Ky) ... a(l,Kp)

= a(tat1, Kkat1) - - alin, ky) =
a(ly, K1) ... a(ly, Kyp)

= [Z(wbm(h, Koy)) - a(ly, wa(b))]a(ia+1, kar1) -y aliv, ky) =

wp
= Z ]wb,a(Il, o .,Ib,ia+1, e ,iv;wa(l), ce ,wa(b),ka+1, . .,kv).
W
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With respect to the other inclusion, after theorem 4.1.1., it suffices to prove
U™ e c(Cc@M(SO(n)))). Let AM e UM and B € CII(SO(n))). We will

prove, as needed, that B, ,A, = A,B,, for all u,v € {0,...,7}. Multiplying
the (i1, ..,1y)-Tow of By, times the (ki,...,k,)-column of A, we obtain:

Zb(i17~-~7iu;j17~-~7jv)a(jla'-~»jv;k17‘--’kv)

= Z[ Y Aonabi (i, i Fro)

j omab
g cd . waab
Z /BUCZZ?’Y n 1,. .,uakl ) w-—-Cv— d(ZU(C+1), ,a(u)ak (d+1),...,n(v))}
oW,
c,d,a,b

(i, Gui k- ke) = D AonabBenes

o,m,a,b

[zéanab(il 'k'IA )a(jla'-"jv;kh“"kv):l
+ Z [Z’YU"Cd 1,...,u3 l )633((1:‘?11—11

o,n,w,a
c,d,a,b

(Go(ct1),mo(u)s Kn(ds1),m@))@U1s - - s Joi k1,0 k’u)j| :

Making the equivalent computation with A, B, , we see that it suffices to prove,
for o,7n,w, a,a,b,c,d fixed, the two identities:

(I1)
Zé""“”(', i J,0) @ty Jus R k)
—Zég'lf‘b(jl _____ wiki . 0)a(in, .o s g1y ey Ju)-
(12)
Z’Yﬂm(ll,...,u;jl ..... )80 a(io(ct1), o (w)i In(d+1), ()
a(j17~~-7jv;k17--~7 Z’Y”"Cd(h, i K1) 802U et1),en o)

kn(d+1),...,n(v))a(7'17 P ,Zu,jl, ces ,ju).

Playing with the expressions in (I;) and since A € U™, we obtain that both
sides of the equality are equal to:

8(io(1), o (2)) - - - 6(io(2a—1)» to(2a)) O (Kn(1) Bn(2)) - - - 0(kn(2b—1), Kn(2p))

a(ia(2a+1)7 oo 7ia(u); kn(2b+1)a ey kn(v))
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With respect to (I3) in order to simplify [sic] the notation, we will suppose that
the fixed permutations are identities. Again playing with the indices and after
using the definition of /(") we have that the identity in (I3) is equivalent to:

E #a(jla"-7jdaic+2a+1a--«7iu;k1)'~-akd,kd+2b+la---akv)
J
. . . . ] 7
= E Ha(i1, -y leyletsatly s bu) Tl s Jur Kdt2bt1s - - ko)
j/

where {i1,...,%c,51,---,J4} and {ki,...,ka,J1,---,j.} are pairwise distinct;
thus, and since ¢ + d = n, the sums in j and j’ are sums in the permutations
of {1,...,n} —{i1,...,i.} and {1,...,n} — {k1,..., kq} respectively, so that the
last identity is one of the stated in the definition of the set T("). We remark that
in this definition the conditions on the permutations (i1,...,%,,I1,...,Iy) and
(k1,...,ka, Ki,...,K}) to be even is not essential in this proof. O

4.4. Finally we arrive at the description of the Weyl basis for SO(n) and O(n)
in terms of the polynomials {{D; ;}i ;, {D; ; }i,5, { D(m,w; @, 0) }x w.a,6} introduced
in §2.

THEOREM 4.4.1. Let p(@1.1,---,Z1ny--,&n1s---,Enn) € Rlz] of degree v
such that it vanishes on all proper real orthogonal matrices. Then p can be
written in the form:

P=> Li;Dij+Y Li;Di;+ > Hryap-D(mwia,b)
3,j 4,7

,w,a,b
where deg(L; ;) <1 —2, deg(LZ’j) <r—2 and deg(Hy wap) <7 —a.
PROOF. We can write p in bisymmetric form, i.e.:
T
p(g) = ZF(ZI’ . ,’iv; kh ey kv)xil,kl <o Ty ky
v=0

where I'(i1,. .. 43 k1, -, ky) = T(io(1ys -+ -1 80(v)s Ka(1)s - - - » Ka(vy) for all o per-
mutations of (1,...,v). Consider the function:

T
g= ZZF(il,...,z‘v;kl,...,kv)z(il,...,z‘v;kl,...,kv).
v=0 ij,kl
Remark that ¢ is a linear form in the variables

KL'(—, '—)7
xz(1,1),2(1,2),...,z(n,n),
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that vanishes on all matrices in II")(SO(n)), because II(M(A4) = p(A) = 0 for
all A € SO(n), so it vanishes also in [[I("(SO(n))] = U™. Since U™ is the set
of zeroes of the linear forms:

Hv(il,.u,va 3,. 71, = ZI ’Ll,.. ’Lv,k ]C k3,...,]€ ) 6(i1,i2>
k=1
T Z3a-~aiv;k37°-'akv)a
Fv(i?}, ,U7 ..... = x 7’3177'37" Z'U7k17---7k’u) —6(k17k2)

i=1
(i, ..y iu; K3y - kn),
To(ir,. i k1, 050) = (b1, dui k1, ooy ko) — T(a(1)s - - T (o)
koiys- - ko)), @ulin, . vi kv I,vs K103 @, By o, wh)
= Z |Tala(is, ... ia,taq1s- - 803 Kny(1)s -+ Kra(a)
ko1, ooy ko)
—Z|wb|a(1’1,...,Ib,ia+1,...,iv;wa(l),...,wa(b),

ka-}—la"'akv)

indices and permutations running over above indicated ranges, then g is a linear
combination of these forms, i.e.:

T
E F(il, .. .,iv; kl, ceey kv)xil,kl v Tgy, ks

= Z Zhv(il,...,v; k3,...,v)Hv(i1,...,v; k3,...,v)

v=2 i,k
+Zz.fv ,v» U)Fv(iii,“.,v; kl,...,v)
v=2 4,k
T
+Z Z tv(il,...,vy 1,...,v7 U)T (Zl ,v7 ,v;J)
v=114,k,0

r
+§ E Qi1 05 k1,05 L1, 05 K1 w3 @, 0y T, W)

v=1 3,k J,K,ms,wp

Qu(i1,.. vik1,. vi 1, 03 K1, 030, b; g, wp)

where h,, f,,t, and ¢, are constants in the field.

Putting, in particular, z(i1,...,4; k1, ..., ky) = z(i1, k1)z(io, k2) ... 2(iy, kv)
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and z(—, —) = 1, we obtain:
p(z) =
= 27: Z ho(iy,.. v ks, o) (i3, k3) ... x(iy, ky) Diy 4, (2))+
v=2 ik
S i o) @i Bs) - 2lia, ko)D)
v=2 ik

r
+ E E Qv(l'l,...,v;kl‘.“,v;ll ..... U;Kl,...,u;aab;ﬂaywb)

v=1 4,k.J,K,7q,wp

(-T(ia-kly ka—i—l) e x(iva kU)Dﬂ'a,wb;a,b(i)) )

which is the desired combination verifying the requirements on the degrees. [

Analogously we have for the orthogonal ideal the following basis:

THEOREM 4.4.2. Let p(11,..., %10, Zn1s---,Tnn) € Rlz] of degree r
such that it vanishes on all real orthogonal matrices. Then p can be written in
the form:

pP= ZLi,j-Di,]’ + ZL;,j'D;,j
i inj
where deg(L; ;) <r —2 and deg(L};) <r—2,4,j€1,...,n.

COROLLARY 4.4.3.

(i) so.R[z] = ({D;;}i ;. {D; ;i }ig AD(m,w50,0) i w0 ) Rz], and this basis
solves the ideal membership problem for so.R[z].

(i) o.R[z] = ({ Dy }i s, { D, }is)-Rlz], and this basis solves the ideal mem-
bership problem for o.R [z].

PROOF. The equality between ideals is obvious from the theorems above and
the technical results in 3.1. Concerning the ideal membership problem let us
remark that given an element p(z) in so.RR [z] of degree 7 we can formally express
an identity:

p=) LiyDi;+ Y Li;D};+ Y HppapDimwia,b)
1,7 2]

T,w,a,b

where Li,jL;j and H, ., are given with indeterminated coefficients as their
degrees are bounded by deg(L; ;) <r—2, deg(L;"j) <r—2and deg(Hyr yap) <
r —a. This identity yields a linear system of equations when we identify the co-
efficients of p(x) with the linear combinations in the indeterminated coefficients.
Solving this linear system gives us either that p(z) does not belong to so.R [z]
(if no solution exists) or the coefficients of the representation of p(z) in terms of
the Weyl basis. The same applies for the case o.R[z]. O
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5. Some examples and computational remarks

5.1 Weyl basis for O(2) and SO(2).

Weyl basis for O(2)

Weyl basis for SO(2)

‘Z’%,l + m%,l - 13
f%a + x%,:z -1,
r1,1%1,2 + T2,1%2,2,
x%,l + x%,Q -1,
a3y + 23, -1,

T1,1T21 + X1,2T2,2

xi, + x5, — 1,
2yt a3, — 1,
r1,1%12 + 21722,
a3+ i, — 1,
23, +a3, -1,
r1,1%2,1 + 21,2722,
r1,1 — 2,2,

T2+ T2

5.2 Weyl basis for O(3) and SO(3).

Weyl basis for O(3

Weyl basis for SO(3)

I12+$22+~"332

b

)
xi 423, a3 -1,
1
afs+afgtafs—1,
T1,1%1,2 +T21%22 + T3,123,2,
21,1013+ Z21T23 + 3,173,3,
T1,2%13 + T22T23 + 32733,
1'%71 + I%’Q + 1'%73 - la
33%4 + x5+ x5 —1,
33%,1 + 23, + x%& -1
T1,1%2,1 + T12%2,2 + T1,3T2,3,
11231 + T12232 + 21,3733,

T21%3,1 + Z22%32 + 23233

aiy +as o, -1,
afy+afy+ a5, — 1,
afs+afs+ais—1,
11212 +X2,1%22 + £3,173,2,
11213+ T2,1%23 + T3,173,3,
T1,2%13 + T22%23 + T3 2733,
o} +af,+ats -1,
3, + 50%,2 + 37%,3 -1,
23, + a3, + 23, -1,
T11%21 + 1 2%22 + T1,372,3,
r1123,1 + *1,2%32 + X1,3233,
T2,1%3,1 + T2,2%32 + T2,3%3,3,
1,1 — (12,2153,3 - 133,2372,3)7
x12 — (—x2,123,3 + x3,1%2.3),
Ty,3 — \T2,1T3,2 — L3,1T2, 2)
T21 — (T3,221,3 — 1,2%3,3)5

(
(
T22 — (l"l 13,3 — T3,171,3)s
-
= (

T1,2T2,3 — 2,221,3),

)
)
T3,1T1,2 — 1,173 2)7
)
x3,2 — (-TQ 121,3 — £1,122 3)7

)

$33—(I11$22—$21$12
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5.3. Weyl bases are a particular case of what we have denominated Macaulay
basis according to the following definition:

DEFINITION. A finite basis B of an ideal I in JK|[z] is a Macaulay basis of I
if for every f €I there exist hy,...,hx € B and ly,...,l; € IK[z] such that:

k
() f=Y tihs,
(ii) deg(l,) < deg(f) — deg(hs) > 0, i € {1,....kl}.

It is easy to see the following equivalence:

PROPOSITION. Let B = {g1,...,9-} be a basis of I; we denote by I"* the
homogeneous ideal asociated to I with respect to a new variable ¢ and we write
f"* to denote the polynomial f homogeneized with to. The following sentences
are equivalent:

(i) B is a Macaulay basis of 1.
(i) {g?,...,9"} is a basis of I".

5.4 Remark. Macaulay basis and Grobner basis share properties (both can
be used to test ideal membership and also to find a basis of the homogeneized
ideal, for instance) but the following example shows that although Grobner bases
for degree compatible ordering are also Macaulay bases, there is a strict inclusion
between the two concepts:

For B := {zx+y,zy} C Clz,y] and I := (B), we have that B is not a Grobner
basis with respect to any order degree compatible. In fact we have only two
possibilities: z > y and z < y; and Grobner basis are, respectively {r + y,%?}
and {z + y,2%}. However B is Macaulay basis because, since {x + y,z?} is a
Grobner basis with respect to an order degree compatible and 22 = x.(z+y) —zy,
each f € I can be written as f = li.(z + y) + l2.2? = (I; + lb.x).(z + y) — lo.xy
with deg(l1) < deg(f) —1 > 0 and deg(l2) < deg(f) —2 > 0. Thus deg(—1I5) <
deg(f) —2 > 0 and deg(l; + lo.x) < deg(f) — 1 >0.

5.5. The searching for a general rule to describe Grobner basis with respect
to a suitable order for the orthogonal and proper orthogonal ideals has produced
several negative results that we consider could be of interest when compared
with Weyl basis. In the following summary we collect information concerning,
for n = 2,3,4, when the Weyl basis is also a Grobner basis with respect to a
degree compatible order.
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n=2 n=3 n=4
S0(n) Yes, for all Yes, for the No, for the
possible orders many orders checked row-order(*)
Yes, for
O(n) | circular orders**) No, for the No, for the
No, for the many orders checked row-order(*)
remaining orders

*) The row-order for n is the degree compatible order in which
T11>T12> .. L1 > Tl > T2 > >Lep > > Tnl > T2 > - Ton-

(++) A circular order for n = 2 is a degree compatible order in which the
ordering over the variables is of the kind:

Ty > T2y > T22 > X122, O
Tp1 > To2 > T2 > T11, OF
Too > Ty2 > T11 > T21, OF

T2 > T11 > T2,1 > L22

or the corresponding ones replacing in these the symbol > by <.

5.6. Finally we include here a Grobner basis for the group O(3) with respect
to the row-order to give the reader an idea of the difficult interpretation in
geometric or matricial terms of the polynomials in the basis.

33%,1 - x%z - $g,3 - $§,2 - m%,s +1,
xiQ + 37%,2 + Ig,z -1,
i 5+ T34+ wg,s -1,
T1,1T12 + T21%2.2 + T3,1%3,2,
r11%y 3 + T21%2,3 + £3,173,3,
T12T13 + T2 2T23 + T3273,3,
$1,2$%,3 + 331,2-735,3 — X1,3%T22%23 — T1,3L3,223,3 — T1,2,
$1,1$§73 + $1,1~T§,3 — 21,3%21T2,3 — £1,3T3,1T3,3 — Z1,1,
T12%22%23 + 12232233 — $1,3$§,2 - $1,3I§,2 + T3,
T1,2T2,1%23 + 12231033 — L1,3%2,122,2 — £1,3%3,173,2,
T1,1%2,2%2,3 + 1123233 — £1,3T21%2,2 — T1,373,173,2,

2 2
X11T5 9 — 1,123 3 — £1,2%2,1T2,2 + T1,373,123,3,
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£E1,2'~’l72,2$§,3 —T1,2%2323 2233 —T1372273,273,3 +$1,3$2,3$§,2 —Z1,2222—T1,3%23,
551,11‘2,2$§.3 T T1,172,33,223,3 — T1,372,223,173,3 + T1,3%2,3%3,1L3,2 — £1,1%2,2,
901,21'2,1$§,:5 = 21,2%2,3%3,1%3,3 — £1,372,173,2%3,3 + T1,3%2,3%3,123,2 ~ £1,202,1,
1323733 — 2092%0 3732733 + 563’3:&3,’2 - 553,2 - 37%,3 - 17%,2 - :17%13 +1,
«1"2,1@2,2113%,3 —X2,172,373,2%3 3~ T22L23%3 1733 +$§,3$3,1$3,2 21722 —T3,1%3,2,
T2,1%22%3,2 + £21T23L33 — $§,2$3,1 - 153,3333,1 +x31,
X1,1T22%3,2 + T1,122,3T33 — T1,2T2,223,1 — L13%23T3,1,
1,222,1%3.2 — T1,2T22%3,1 + T1,3T2,1%3 3 — T13T2 3231,
962.1:6%,2 + $2,1$§,3 — T2,2%3,1%3,2 — T2,373,173,3 — 2,1,
11,11'32 + 561,193%73 — 21,223,132 — 1,373,133 — 1,1,
T2,1T3,1 + T22%32 + T2 3233,
x§,1 + 1%,2 + 13,3 -1,
37%,1 + 1’%,2 + 1’%,3 -1,
T1,1%21 + 212222 + 21,3723,

T1,1%3,1 + X1,2Z3,2 + 13733
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