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In this paper we contribute with several results to the approach initiated by Hommel
and Kovics (well documented with applications in the recent book of the latter author
Kovécs (1993) ) on the symbolic simplification of sine /cosine polynomials that arise, for
instance, as determining equations for joint values in robotics inverse kinematic problem.
We present, considering for the first time sine/cosine polyomials, fast algorithms for the
functional decomposition and factorization problems, reducing the solving of such s-c
equations to a sequence of lower degree ones. Moreover, we show that triangularization
of a given sine/cosine equation provides a conceptual understanding of the conditions
that yield extraneous roots in the half angle tangent substitution (and therefore that
imply a reduction of the degree in the determining equation of a given s-c system).

1. Motivations and main contributions of the paper

By a sine-cosine equation we understand a polynomial equality f(s,¢) = 0, with f in
the quotient ring K[s,c]/(s? + ¢ — 1), and where K is a field of characteristic zero
(typically, a numerical field such as Q or R, or a field of parameters Q(dy,...,dy)).
Therefore, when we write f(s,c) we consider, throughout this paper, that this expression
is implicitly univariate in some unknown angle ¢ such that s = sin(f),c = cos(6). Our
goal i1s finding methods for solving or simplifying equations of the sort f(s,¢) = 0; and
thus, equivalently, for solving or simplifying systems

f(s,¢) =0,
s24+e2-1=0.

1.1. INTEREST OF THE PROBLEM

Polynomial systems, where the variables are interpreted as trigonometric functions of
unknown angles, are quite ubiquitous, arising, for instance, in electrical networking and
in molecular kinematics. Here, our applications will be taken from the field of robot
kinematics. Besides referering to the many situations described in the recent book of
Kovacs (1993), we will sketch, for the sake of being self-contained, a few examples of the
role of sine-cosine systems in robotics:
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EXAMPLE 1.1. Given a robot arm with six revolute joints, i.e. a 6R robot (see Figure
1), a typical problem is to find the values of the different joint angles (with respect to
some standard way of measuring them) that place the tip (or hand) of the robot at some
desired position and orientation.

Joint 1 link 6 hand

Figure 1.

This issue, known as the inverse kinematics problem, amounts to solving a polynomial
system where the unknowns are the sines and cosines {s; = sin(6;),¢; = cos(6;),i =
1,...,6} of the six joint angles {;,7 = 1,...,6}. The solution of such systems, for
general robots, is quite involved, as remarked in the next example. But for robots of
particular geometry the solution can be easier to achieve. For instance, if the robot is
constructed so that the last three joint axes intersect at one point, the corresponding
system essentially simplifies, since the robot has a sort of wrist (represented by a point
where the three joints coincide, in Figure 2) that takes care of tip’s orientation.

wrist

Figure 2.

Thus, instead of six unknown angles we are reduced to finding the first three (to position

the wrist). The well known book of Craig (1989), contains a detailed exposition of this

particular case. There it is shown that the system solution for the third joint angle can
be expressed as

(T‘ — ](,‘3)2 (Z — k‘4)2

4a? sin{ay)?

=k + k3

where ki, ko, k3, k4 are linear functions of s3 and c3, a;,a; are parameters describing
robot’s geometry (such as the lengh of the links or the relative angles between two
consecutive joints) and z, r are some input data for the tip position. This gives, in general,



Advances on the Simplification of Sine—~Cosine Equations 3

a fourth degree equation determining the angle 63, since a second degree equation on
sin(0) can be verified for up to four different values of . Whithout entering into details, 1t
also happens that this kinematic system allows 6, and 6, to be linearly solved from 63 (the
system contains equations, linear in sine and cosine of f,, with coefficients polynomials
in 03; and the same for #;, that can be linearly expressed as a function of 8z and 83).
What we want to emphasize here is that, because of this linearity, solving such system
is essentially reduced to solving just one second degree sine-cosine equation.

Moreover it has been observed that imposing some geometric features on a robot of
this kind (i.e. requiring that it is constructed so that the first three joints verify some
relative to each other specific position) yields that the determining degree-four equation
decomposes into two degree-two equations. For instance, when the first two joint axis
intersect, i.e. if the robot parameter a; = 0, (see Figure 3), then we get a quadratic
equation in 3. See also Example 5.2 and Smith and Lipkin (1990} for a precise analysis.

Figure 3.

EXAMPLE 1.2. After decades of research, a symbolic solution (though not in closed form)
for the general 6 R manipulator inverse kinematics system has been found (see Lee and
Liang (1988a), (1988b), and Raghavan and Roth (1989)). By a clever elimination
method it turns out that in this system 63 can be determined as the solution of a degree-
16 polynomial in the tangent of #3/2; then #; and 6, are found by solving a system of
sine-cosine polynomials, linear in these trigonometric functions, with coefficients in 8.
Of course, the determining degree-16 polynomial can be also expressed as a degree 8
polynomial in the sine and cosine of 3. A mixed symbolic-numeric strategy for solving
the 6 R systems is presented in Canny and Manocha (1994), see below further comments
on this. It-has been already remarked (cf. Kovacs and Hommel (1990)) that it could
simplify greatly its solution if the determining equation could be solved by a sequence of
lower degree equations. OJ

EXAMPLE 1.3. The inverse kinematics problem of the robot ROMIN (seeGonzalez-Lopez
and Recio (1993)) can be solved by many different methods, but it is specifically inter-
esting since it is one of the few examples in which a new “lazy evaluation method” for
solving systerns of equations, the dynamic evaluation procedure (Duval (1990)), has been
used.

Given a position (a,b,c) of the tip point P and the lengh of the links m,n (see Figure
4}, the algebraic kinematic equations of the ROMIN are:

—s1(mea + nes3) = a,
cl(ch =+ TlC3) = b,
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mso + nsz = ¢,
plus the trigonometric identities: s? + ¢ = 1,53 + 2 = 1,53+ c§ = 1.

Z
- P=(ab,c)
2 £

1 9,

Figure 4.
Triangulation of this system yields:
[ac + amcy + (b2 + a2) $1 — amsy, —cb — mbey + mbsy + (b2 + az) 1,

—n? + b2 + a® — 2emez — m2c2 + n%s2 + 2m?syce, msy + nez — ¢,
—b2 — a% + c? + 2cmea + m?s2 + m?c2 — 2m®sac0 — 2emsy)].
Now, the last equation of this system, only in the angle #; and the input parameters,
can be rewritten as g(h(sz, c2)), where
g(z) = —a? + ¢? — b? + 2cmz + m?z?,  h(s2,c2) = c2 — S2.
This reduces solving a degree-two, sine-cosine equation, to an ordinary, degree-two, uni-

variate polynomial equation g = 0, plus a linear, sine-cosine, equation h = p, for each
root g(p) = 0. O

Summarizing, in all the above examples, a polynomial system in the different joint angles
is presented, describing the inverse kinematics problem of a whole robot class or of one
concrete manipulator. The system unknowns are the sines and cosines of the joint angles,
and they have to be solved as a function of the parameters describing the location of
the robot hand. Roughly speaking, the solution is found by triangulating the system,
l.e. deriving a sequence of equations such that the first one contains just one joint angle
variable (the determining equation) and such that each of the following equations contains
exactly one joint variable more than the preceeding ones. Replacing the solutions of the
determining equation for the first variable in the second equation allows to find the
solutions for the second variable, and so on. After this triangulation procedure, it is
usually the case that the complexity of solving the system is concentrated just in solving
the determining equation, since it has the highest degree. Thus, it is of primordial interest
to simplify, when possible, such univariate sine-cosine equation.

Usually, the determining equation has coeflicients that depend on parameters of two sorts:
some correspond to the robot class under consideration (length of links, twist angles be-
tween joints, offset distances) while others describe generically the position of the end
effector or hand (pose parameters). Therefore, the natural goal is to analyze symbolically
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this equation, finding relations among the robot class parameters such that, when satis-
fied, the determining equation for the joint variables can be easily solved for any position
of the end effector. For instance, in the Example 1.1. above, the fact that the wrist’s
three axes intersect is expressed by making zero some robot class parameters, yielding
that the determining equation has lower degree (four) than in the totally general 6R
case (sixteen). Of course, one wants to proceed in the other direction: i.e. detecting, first,
potential simplifications of the general equation and, then, finding geometric conditions
leading to them. This kind of analysis could lead to the design of industrially interesting
robots, since the availability of simple methods to solve the determining equations is a
typical requirement in practical situations.

But even working with one concrete robot (such as in Example 1.3, giving m, n specific
values), in which class parameters have assigned numerical values, one is still interested
in the symbolic manipulation of the determining equation. In fact, then its coefficients
involve the pose parameters and it could be the case that the equation f(s,c) = 0
factorizes or decomposes symbolically, i.e. that there are lower degree polynomials g(z)
and h(s,c), such that f(s,c) = g(h(s,c)) modulo s* + ¢? — 1, for all values of these
parameters. Then the roots of f = 0 will be the roots of h = p, for all roots p of
g = 0. In this situation we believe that the numerical approach for solving f = 0 benefits
substantially from reducing its degree, even at the cost of increasing the number of
equations to be solved. For instance, it seems better to solve four, degree-4 equations,
or one of degree 8 and eight of degree two, than a single one of degree 16. Roughly
speaking, finding all roots of a degree-n equation has a time complexity of about n?
operations with any standard procedure. If the equation decomposes into a sequence
of composition factors of degree, say, n1,n2,...,%r, such that nins...n, = n, will give,
instead, a ny(ny+n2(ng+.. .+n(,_1)(n(,._1)+n3) ...) complexity, applying iteratively the
above solving procedure. In a balanced situation, in which every factor is approximately
of “the r-th root of n” degree, the cost is bounded by rant = rn" 7.

It must be reckonized that this last conclusion does not take into consideration the
problem of numerical stability or numerical conditioning of the involved equations. It
seems hard to decide whether a well conditioned equation could turn, by performing some
decomposition or other kind of simplification procedures, into solving lower degree, but
poorly conditioned ones. In Canny and Manocha (1994), an efficient symbolic-numeric
method for solving the general 6R manipulator 1s presented that converts root finding
procedures into eigenvalue computations of numerical companion matrices. It has the
advantage that the numerical approach to eigenvalues is well understood and that fast
algorithms are available. We ignore if there is an operation on the companion matrices
that corresponds to the decomposition of the determining equation. Nevertheless, it must
be said that our aim is to study sine-cosine equations in full generality, and not just
those that appear in robotics. Moreover, even in this case, we are more interested in the
symbolic simplification as a way to guide robot design than on the efficient solution of the
determining equation of a specific robot, after replacing the class and pose parameters
by numerical values, as in Canny and Manocha (1994). Still, we think that automatically
finding all possible simplifications for a general 6 R problem is a challenging, non-trivial
task for the algorithms we will propose.

Therefore, in the following we will be concentrate on symbolic methods that reduce,
by different means, the solution of sine-cosine polynomial equations to (perhaps) sev-
eral ones of lower degree. The immediate antecedent of our work is the series of recent
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books and papers Kovacs and Hommel (1990), Kovécs and Hommel (1992), Kovécs and
Hommel (1993), Kovécs and Hommel (1993), Kovacs (1991), Kovécs (1993). As they
do, we will highlight two kinds of possible simplification procedures: factorization and
decomposition.

1.2. FACTORIZATION VERSUS DECOMPOSITION

Probably the more natural approach to simplification is that of factoring a given s-c
equation f modulo s?+¢?—1. Although K[s, c)/(s?+c%—1) is not a unique factorization
domain, we can still look for lower degree factors of f. As a by product of our work in
the half angle tangent substitution, we are able to present (see section 3) a complete
factorization algorithm for sine-cosine polynomials over fields that do not contain the
square root of —1 (as compared to Kovacs and Hommel (1990), Kovdcs and Hommel
(1992) where only necessary conditions are given). If instead of working with one equation
we deal with a system of equations, such as in inverse kinematics, the concept of factoring
has to be generalized. The corresponding notion in commutative algebra is to decompose
the ideal generated by the polynomials in the system into primary components (see
Atiyah and MacDonald (1969)). If multiplicity of solutions is not the main concern in
solving the system, we can go further, considering the prime ideals associated to the
primary components as the counterpart to the irreducible factors of the one-equation
case. In this way, the solutions of the given system can be obtained as the union of the
zero sets of the prime ideals (like the roots of f = 0 are the union of all zeroes of the
irreducible factors of f). Of course, if the given system already generates a prime ideal,
then no simplification can be attained by this procedure.

Moreover, it is often the case that only real solutions are relevant (such as in robotics; here
“real” has a concrete meaning assuming the coefficients of the equations are included in
the real field). In this case one should consider, first, the ideal of all polynomials vanishing
over the set of real solutions of the given system. Such ideal is called the real radical of
the system (see the basic reference of Bochnak, Coste and Roy (1986) concerning ideals
of polynomial equations over the reals). Then this real radical should be decomposed into
real prime ideals. Again, the real zero set of the given system would be, then, the union of
the real zero set of these primes. There are algorithms to perform all these computations
(Becker and Neuhaus (1993)). Conceptually speaking, this is the simplest possible way
of describing the real zeroes of a system by means of prime ideals: it is the analogous to
throwing away, in some equation, those real irreducible factors that do not have any real
root, retaining only linear factors.

The reason we do not enter into the details of the approach, is that it was conjectured
in Kovacs (1991) and shown in Gonzalez-Lopez and Recio (1994), Gonzalez-Lopez and
Recio (1993) that neither prime decomposition nor real radication consideration will
provide essential simplifications to the kinematic equations arising from most general
categories of robots (6R, Stewart platform, etc..). Even worst, the same happens to any
specialized version (i.e. giving numerical values to the class parameters) of these classes.
In other words, the ideals generated by inverse kinematic equations are already prime
and real radical, both considered with numerical coefficients (i.e. evaluating the class
parameters) or in a purely symbolic setting. In fact, it is reasonable to expect that ideals
corresponding to generic robots are unsimplifiable: for instance, a similar statement in the
context of bivariate homogeneous decomposition (see below) appears in von zur Gathen
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and Weiss (1995). But the remarkable property here is that, for whatever numerical
values, the specialized ideal remains also unsimplifiable.

Therefore we can say that, at least in robotics, factorization does not play an important
role towards simplification, although it could be so in the many other instances in which
sine/cosine polynomials are involved.

On the other hand, as pointed out in the above examples, for specific values of the robot
geometrical parameters it is possible to attain functional decomposability. Kovacs (1993)
presented a collection of well documented applications of this approach to concrete robot-
s, and we direct the reader there in order to have a panorama of the power of this tool.
Roughly speaking, a function f(z,y) can be called decomposable if there is some polynomi-
al g(2) in a new variable z and some other function h(z,y), such that f(z,y) = g(h(z,y)).
The natural notion of decomposability for s-c polynomials f(s,c) states, therefore, the
existence of a standard polynomial g(z) and of another s-c polynomial A(s, ¢), such that
F(s,¢) = g(h(s,¢)) modulo 52 + ¢ — 1 . As in the case of factorization, we look for com-
position factors which are simpler than the given polynomial (see section 5 for precise
definitions). Advanced methods for the decomposition of ordinary multivariate polyno-
mials and rational functions (see Gutierrez (1991), Alonso, Gutierrez and Recio (1995a))
cannot be directly applied to kinematics, as shown in the next example.

EXAMPLE 1.4. The polynomial f(z,y) = —63 y?+60 yz—8 y—20 £+78 can not be written
as the composition of two polynomials g(z) and h(z,y) such that: f(z,y) = g(k(=,y)),
but f(s,c) = g(h(s, c)) modulo s>+c?~1, where g(z) = 3z°—4 z+3 and h(s,c) = 2¢+5s.
O

Therefore, s-c decomposability seems the correct notion to understand several simplifi-
cation situations in robotics. It is not only that this kind of decomposition yields simpli-
fication, but also that it goes the other way.

EXAMPLE 1.5. Given a general second degree s-c polynomial:
f(s, C) = A1162 4+ 2A12¢5 + 2A13¢ + 2A2252 + Aasz.
We obtain its normal form:

NF(f(s,c)) = Ac® + Bes+ Cc+ Ds+ E

where A = An — A22, B = 2A12,C = 2A13, D= 2A23,E = A33 + Azg.

Then, Smith-Lipkin condition (see Duffly and Lipkin (1985), Smith and Lipkin (1990)
and recall notions of Example 1.1. ) for the geometric simplification of the 6 R manipulator
with the three last axes intersecting is that the coefficients of the its second-degree s-c
determining equation satisfy

2CDA — B(C?* - D*) = 0.

And it is straighforward to see that this is equivalent to the condition for decomposability
of the given s-¢ polynomial, i.e. we can find coefficients M, N,T, L, R, Q such that:

A2+ Bes+Ce+Ds+ E=M(Le+Rs+ Q) + N(Le+ Rs+ Q)+ T

modulo s2 + ¢2 — 1, if and only if
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2CDA - B(C*-D*) =00

The idea of considering algorithms for the s-c decomposition problem has already been
studied in the work of Kovécs and Hommel (1992) and Kovécs and Hommel (1993), but
their algorithms require an exponential number of field operations in the input degree;
even if their last paper reduces the complexity by magnitudes and the authors state that
it satifies all needs in kinematics, it is still exponential. We also must mention in this con-
text the recent work of von zur Gathen and Weiss (1995), about Bivariate Homgeneous
Decomposition (BHD): a homogenous bivariate decomposition of a univariate polyno-
mial f(t) is of the form f(t) = g(h(t), k()) with polynomials g(z,y), h(t), k(t), where
g(z,y) is a bivariate and homogenous. The authors present an algorithm for finding such
decompositions, but it is also of exponential time complexity in the input degree.

Such BHD decompositions are of interest in kinematics, since s-¢ polynomials can be
converted, via the tangent half angle substitution, into a t—polynomial (see section 3
for definitions and notation), where ¢ is the tangent of 8/2. Now, suppose that a quartic
monic polynomial F(t) has a bivariate homogeneous decomposition:

F(t) = G(H(t), I (1)),

with G(z,y), H(t), J(t) quadratic polynomials. This allows us to find the four roots of
F(t) by factoring G(z,y) as G(z,y) = (z — a1y)(z — a2y), and then finding the two
roots of H(t) — a; J(t), for each i € 1,2. So, in this case we have reduced the problem
of computing the roots of one quartic polynomial to computing roots of three quadratic
polynomials. It is easy to see that if a s-c polynomial f(s,c¢) is decomposable, then the
associated univariate t—polynomial T'(f) has a bivariate homogeneous decomposition,
but not conversly. Thus it could seem, in principle, that BHD decomposition is a finer
tool in robotics than s-c decomposition. Nevertheless, there is a serious limitation for
efficient robotic applications to t-polynomials of degree bigger than six, because the BHD
decomposition algorithm requires factorization procedures over algebraic extensions of
the field K(t). On the other hand, we do not know concrete examples in robotics, where
the determining equation has a BHD decomposition, but not a decomposition in the s-c
sense.

The s-¢ decomposition method we will present in section 5 has a low polynomial time
complexity in the input degree; therefore we can decompose, easily, s-¢ polynomials
of degree 16 with a small machine such as a Macintosh Centris (see below subsection
5.4). As compared with the previous algorithms Kovéacs and Hommel (1992), Kovacs and
Hommel (1993), our procedure does not require factorizing polynomials; instead, the more
difficult step is solving a linear system of equations. Moreover, if one allows enlarging
the coefficient field (searching for the “irrational” decompositions, in the terminology
of Kovécs and Hommel (1993)) our method proceeds exactly as in the simpler case.
These results have already been announced at the PRoMotion (Planning Robot Motion)
workshop, see Recio (1994).

1.3. GROBNER BASIS AND MINIMAL POLYNOMIAL

There are in this paper two other contributions to the simplification of sine-cosine poly-
nomials. First of all, since the work of Buchberger (1989), it has been of theoretical
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interest the use of Grobner basis algorithms (Cox, Little and O’Shea (1992) for a survey
on basic facts on Grobner basis) and methods in order to obtain the triangulation of the
collection of kinematic equations with respect to the set of joint variables (therefore, in
theory, allowing the solution of the inverse kinematics problem). It is also well known
that the complexity (in terms of time but also in terms of the size of the involved coef-
ficients) for computing such triangular basis is usually quite high and prevents the use
of this method in most practical situations. We have been able to find (see section 2)
specific formulae that describe the Grobner basis, for the pure lexicographic ordering, of
the system:

f(s)c)zoy
sZ24+c¢2—-1=0.

Such basis is described in terms of the coefficients of f(s,c¢) and is valid over any field.
In particular, the basis gives (when the ordering s > c is selected, but it will be similar
otherwise) the minimal polinomial satisfied by cos(#), and -in general- the (linear in
the variable s) equation giving, for every value of cos(#) that is a root of the minimal
equation, the value of sin(f).

The interest of having such explicit formulae for solving the given equation is (obviously,
appart from the fact that one does not need anymore to perform the Grobner basis or
resultant computation) twofold:

-there is, a priori, a control on the size of the coefficients of the Grobner basis; in
particular, for the minimal cosine polynomial, they are bounded by the square of
the given coefficients of the sine-cosine polynomial. It is just in the s-linear equation
where coefficient size grows, but following a well studied pattern in computer algebra
(the size of coefficients in the extended GCD algorithm), see Loos (1982), Gonzalez-
Vega (1989).

-there is a possibility of simplifying (factoring, decomposing) the minimal cosine
polynomial, even when the given s-¢ polynomial does not allow such simplification.
See Examples 2.2 and 2.3. Clearly, the tools developed in section 2 apply to solving
s-c equations, see subsection 2.2, example 2.5.

1.4. EXTRANEOUS FACTORS

A classical way of dealing with sine-cosine equations is to introduce the substitution
sin(0) = 125, cos(6) = i;::, where ¢ is the tangent of 6/2, solving for ¢ the resulting
rational expression. It turns out that, sometimes, a power of 1 + 2 can be cancelled out
in this expression. This seems irrelevant when dealing with just one equation, but it is
not so when we make such substitution in a system of equations (as in the elimination
process to solve the general 6R): the possibility of cancelling a factor of this form might
appear at later stages of the elimination procedure, or it can give rise to “false” (i.e.
eztraneous) roots in the determining equation for a different variable. Looking for values
of the robot class parameters such that the evaluated system has extraneous factors is a
way to determine conditions that yield simpler systems (by cancelling factors out). Our
work here explores simplification methods linked with the half angle tangent substitution
(existence of solution to the so called positive and negative control systems) as introduced
in Kovacs and Hommel (1993). In that paper it is analyzed how to detect a priori, i.e.
before performing the substitution and before performing any elimination procedure, by
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means of the above controls, the presence of extraneous factors. We will show how our
results on Grobner basis gives a better conceptual insight into this problem and also
some actual improvements, see section 4. Moreover, in subsection 2.3, the classical issue
of cocircularity (see Mourrain (1996)) is related to the existence of extraneous factors.

2. Grobner basis and minimal polynomial of a s-¢ polynomial

2.1. MINIMAL POLYNOMIAL

Let f(s,c) be a sine-cosine polynomial with coefficients in a field K. We will choose to
write f(s,c) in normal or canonical form: i.e. replacing s* by (1 —c?) as much as possible.
The result is, then, a polynomial of the form A + Bs, where A and B are polynomials
in c only. We remark that if the total degree (as a two-variable polynomial) of f(s,¢) is
n, then there are up to 2n values of the angle § (when properly counted) satisfying the
equation.

Given a s-c polynomial f(s,c) of normal form, A + Bs, let us consider the monic poly-
nomial on the variable ¢ only, of minimum degree, contained in the the ideal I generated
by (f(s,c),s? + ¢2 — 1). It is clear that this polynomial appears in the Grobner basis
of the ideal I with respect to the lex ordering with s > ¢, since otherwise it could not
be reduced to zero. On the other hand, this polynomial is not exactly the resultant of
A+ Bs and s? + ¢Z — 1 with respect to s. In fact, it is easy to see that the resultant is
A? —(1—¢2)B?; for instance, Resultant,(c? 4 sc, s2+¢* —1) = c2(2¢2— 1), but ¢(2¢® - 1)
is in the ideal and has lower degree.

PROPOSITION 2.1. The minimum degree univariate polynomiel in the variable c, con-
tained in the ideal 1 = (f(s,c),s? + ¢ — 1), is the monic polynomial associated to
P = G(A” — (1 — c®)B'?), where G is the greatest common divisor of A,B in K[c],
A':% andB':%.

PRrooF. Is clear that P belongs I, since I = (A+ Bs,s*+¢*—1), P = G(A'+sB')(A’ -
sB’) modulo s? + ¢? — 1, and the product of the first two factors of the last expression
gives A+ Bs. Now suppose that @ is a polynomial only in ¢, belonging to the ideal. Then
Q is a combination of A + Bs = G(A’ + B’s) and of s? + ¢% — 1, say Q = L(s,c)G(A’ +
B’s) + M(s,c)(s? + ¢ — 1). Next, we express L(s,c) in normal form as C + Ds. Thus,

Q=G(AC+(1~-c*)B'D+s(AD+B'C)+M(s,c)(s* +c - 1)

after collecting multiples of sZ + ¢ — 1 in a new polynomial M’. Due to the uniqueness
of normal forms we conclude that A’D + B'C = 0 and Q = G(A'C + (1 — ¢?)B'D).
Next suppose A’ and B’ are not zero. Then D = —%’,Q and, being A’ prime with B/,
it must divide C. Replacing this value of D in Q@ = G(A'C + (1 — ¢*)B’'D) we get
Q = GA'C - Q-—Clﬁ) Call H = £ (a polynomial, since division is exact here).
Finally we obtain Q@ = G(A?H — (1 — ¢?)B"?H) and, therefore, @ is a multiple of P
and this is the minimal degree polynomial. On the other hand, if A (or B) is zero, then
G = B (respectively, G = A), A’ = 0 (respec. B’ = 0), and B’ = 1 (respec. A’ = 1).
Then, when A’ = 0, we get from A’D + B’C = 0 that C = 0 (as B is then not zero).
Thus Q = G(1 — ¢?)B’ D, which is, again, a multiple of P (when A’ is zero). If B’ is zero,
then D = 0, and Q@ = GA’C, also multiple of P when B is zero. O
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It follows that this minimal polynomial has coefficients of size, roughly, as the square of
the coefficients in the given s-¢ polynomia,l f(s,c). Moreover we remark that the above
proof yields a similar but slightly modified conclusion (since not every polynomial is
associated with a monic one), when considering A + Bs with coefficients in a unique
factorization domain, such as a polynomial ring, say, 4 + Bs € Q[X1,..., X,][s, ]

EXAMPLE 2.1. Take, over Q[d][s,c] the polynomial A + Bs where A = ¢—5,B = 2d.
Then the minimal polynomial is obtained directly by elimination (using some symbolic
computation package) as the only generator of the ideal (A + Bs, 5% + ¢% — 1) N Q[d][c]:
Ideal(d?c? — d? + 2c? — B¢ 4 £55);

Now we check that it agrees with our expected result. First, we see that ged(A, B) is 1
and then we compute

P(c)= A2+ (1= c?)B? = = %d?? + %d? + ¢* — 10c + 25
which coincides with the previous polynomial up to a constant factor. [

EXAMPLE 2.2. On the other hand, this polynomial P(c) may be is “easy” to simplify
while f(s,c) is not. Let us take f(s,c) =2¢2+3c—2sc—7s+ 1. We can check, with the
methods of sections 3 and 5, that it is irreducible and indecomposable modulo s2 +¢2 — 1.
But the minimal polynomial P(c) = 4¢*+20¢®+29¢% — 11 ¢ — 24 can be factorized over
the rational numbers:

P(c)=(c+1)(4c® +16c%+13c—24) O

EXAMPLE 2.3. Now we take f(s,c) = ¢® + ¢* — 2¢3s + 1, that is irreducible and inde-
composable modulo s? + ¢? — 1 (using again the techniques of sections 3 and 5). But the
minimal polynomial P(c) = ¢!2 +2¢'0 +5¢% —2¢° +2¢* + 1 can be decomposed as:

B2 +5d - 2482 +2d2 +1,d =200

2.2. GROBNER BASIS

In this section we want to compute a Grobner basis, using the lexicographic order with
s > ¢, of the ideal I = (f(s,c),s% + ¢® — 1), for a given sine-cosine polynomial f(s,c) €
K([s,c]. As in Proposition 2.1., let A + Bs be the normal form of f and let G be the
greatest common divisor of 4, B in K[c], A’ = 4, B’ = £ and P(c) = G(A?-(1-c?)B™.
Moreover, let M, N be the cofactors of 4, B in the extended ged computation, i.e. such
that MA+ NB = G. Denote by L(s,c) = sG+ NA+ MB(1 — ¢?). Then:

PROPOSITION 2.2. A Grébner basis of I = (f(s,c),s% + % — 1) is {P(c), L(s,c), s* +
¢ — 1}, if G # 1; otherwise it is just {P(c), L(s,c)}.

PROOF. First we will show that L is in the ideal I. In fact, in the given ideal it holds
that A = —sB, and thus:

NA=—sNB and sMA = —s>M B modulo s2 + ¢2 — 1.
Adding the two equalities, we get that sG + NA + (1 — ¢2)M B is in the ideal. We have
already checked, in Proposition 2.1, that P(c) is also there. Next we prove that the
leading monomial of every polynomial in I is generated by the leading monomials of the
proposed base: {s2,1t(P(c)), s-1t(G(c))} (where It indicates the leading monomial with
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respect the lexical ordering) if G # 1; and by {lt(P(c)), s-1t(G(c))}, otherwise. In the
first case, if a polynomial g(s,c) is in the ideal and has a monomial involving s to a
power greater or equal than two, clearly it is a multiple of s2; if it has no monomials in
s, then it must be a multiple of the minimum polynomial P(c); finally, if it is of the form
g = sR(c) +Q(c), then sR+ Q must be a multiple of A+ Bs, modulo (s?+c?—1). Thus
sR+ Q = (C + Ds)(A + Bs) modulo (s? + ¢ — 1), and by the uniqueness of canonical
forms, it follows that R = AD + BC, so it must be a multiple of the ged(A, B), i.e. of G.
The case G = 1 is trivial. O

Notice that the above basis can be not reduced. For instance, the reduced Grobner
basis of (¢ + 1,82 + ¢ — 1) is {P(c) = ¢+ 1,5%}, but our computation yields {P =
¢+ 1,L = s(c+1),52 + c? — 1}. In general, this occurs only in quite special simple cases
and the reduced base is easy to obtain. It must be also remarked that the size (degree,
length of coefficients) of the so called Bezout coefficients, M and N, are bounded by
well known expressions (polynomial in the size of A and B, see Loos (1982), Gonzalez-
Vega (1989)). The following example shows the apparently uncontrolled coefficient growth
when computing the Grébner base of the ideal of a s-¢ polynomial.

EXAMPLE 2.4. Consider the numerical s-¢ polynomial f(s,¢) = —177749s — 806874 ¢ +
1362294 c? — 926688 ¢® — 31867 c* 4414950 c® — 237970 c® 4 54210 ¢” — 4216 ¢ — 2688 ¢"s +
5655 cSs + 96696 c>s — 557135 cs + 1264056 c>s — 1438004 c?s + 809864 cs + 176343.

Here G = 1. Using the lex ordering s > ¢, the Grobner base of the ideal (f(s, ¢), s*+c*—1),
computed directly by Maple, is:

[ 8960484792403227914520620347912751702649098085405193090369 s—
21675752348577410706511253435934667915255205666904959412159683+
11925514418075970523023979176438424373661553324630394807760142 c—
3834673857320878379743098402916105974896269992952124653414213 c?—
152366386329875047709842890575128803576581647127989533607438180 ¢+
664134269628435066636515307207119107647992765824715482222407767 c*—
1569664522659950342027442761475369976394963224765110445040189560 >+
2511991719469051437241684365098866462365145865432926213382755055 & —
2929470292353050068265825368822154445420671610603075312869874440 ¢”+
2567382700752785146217081820671985813028114322749517572866287250 ¢>—
1709770986600820233777532775393297583275293649586213030717469500 c°+
863622566611078340412619638718259063061293447519152955661075625 10—
326270525085033751863962707769682461230113379313042967314687500 1+
89514624550553249487563931502735111683577332769224144785546875 c'%—
16879644546590135526268815260825560065264521109707592445000000 c'3+
1960983930449447913557380244499793639053790340965970375000000 ¢4 —
106106416655237515520572167269768379560042953491524000000000 c*3,

—497853352 + 3331868708 ¢ — 3984863927 c? — 34589411352 ¢® + 193791269772 ¢*—
533397801792 c®>+976942396828 5 —1302962510900 ¢’ +1315151818514 ¢*—-1021659798700 c*+
613378624075 c'°—282939548500 ¢! +98628515625 ¢12—25180375000 c'3+4450203125 14—
487500000 c'® + 25000000 ¢'€ ].

Of course, the first polynomial corresponds to L and the second one to the minimal
polynomial P. (]
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In general, given a numerical s-¢ polynomial f(s,c) = A + Bs, the system {f=0,s2+
¢2—1 = 0} has twice as many solutions (properly counted) as the degree of f. A common
way of solving such system is to rewrite s = sin(8) and ¢ = cos(f) as rational functions
of the tangent of the half angle 6/2, and to consider the univariate polynomial in the
numerator of the resulting expression. This implies a lot of computations and some extra
problems due to the potential cancellation of factors (see section 4). It is easier to solve
the system using the polynomials in its Grobner basis. Roughly, the idea is as follows.
First, we notice that the equation A + Bs can be considered as a curve in the s-c plane.
This curve decomposes as a product of lines parallel to the s-axis (see Figure 5) and this
product is equal to the G = ged(A, B). For each line, the intersection with the unit circle
524 ¢ — 1 yields two values of s. Removing the common factor G in A+ Bs gives a curve
which intersects the unit circle in some points, all having for every different c-coordinate,
just one value of the s-coordinate. Thus, the corresponding value of s can be linearly
solved.

///
/\*:—//

Figure 5.

Formally speaking, we see that the minimal polynomial P(c) = G(A”? — (1 — ¢?)B'?) has
degree equal 2deg(f) — deg(G). For each root p of P(c) = 0 such that G(p) # 0, B(p)
must be also different from zero, since B(p) = 0 and P(p) = 0 imply A(p) = 0 and thus,
having p as a common root of A and B, G(p) should be zero. So if G(p) # 0, the value of
s can be obtained from the equation A(p) + B(p)s = 0, that gives only one value of 5. It
is important to remark that such values of s and ¢ automatically verify s2 +¢? — 1 =0,
since the following identity holds:

P=GB?(s? 4+ c? - 1)+ G(A' + B's)(4' - B's). (2.1)

In this way we can obtain 2(deg(f) — deg(G)) roots of the system. To get the value of s
corresponding to p, alternatively, we can solve L(s, p) = 0 directly for s, since

L(s,c)=sG+ NA+ MB(1—c*)=G(s+ NA' + MB'(1—c%)),
and thus, when G(p) # 0,
s = (p* = 1)M(p)B'(p) — N(p)A'(p).

We claim that solutions P(p) = 0, with G(p) # 0, and the corresponding value for the
sine s = (p?2 — 1)M(p)B’(p) — N(p)A’(p), automatically verify both A + sB = 0 and
s24+¢2—1=0. In fact,
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A+Bs=A+B(—(1-c*)MB' - NA)=A+(—(1-c3)MB"?G - NA'B'G).

Now, using that P(p) = 0, we replace —(1— ¢2)M B’2G by —M A"2G in the last equality,
finally getting

A+ Bs=A+(—MA”G - NA'B'G) = ~A'G(~1+ A'M + B'N) = 0.

The claim follows using both this expression and identity (2.1) above.

On the other hand, when G(p) = 0, we obtain two values of s solving, directly, the
equation (s? 4+ ¢? — 1) = 0. Thus we find, in this way, the remaining 2deg(G) values of
the angle @ verifying the system.

EXAMPLE 2.5. Let us take the numerical s-c polynomial f(s,c) = ¢® — 10¢* + ¢%s —
1235 +25¢2 +35sc+3c®—15¢+3s5c2 —2ls = A+sB=c®—10c* +25¢2 + 3¢3 ~
15¢+ s(c®—12¢3 +35¢c+ 3¢2 — 21).

We have to compute G = GCD(A,B) = ¢® — 5¢ + 3, so the minimal polynomial is
P(c) = G(A”? — (1= c®)B?) = (c® ~5¢+ 3)(2c® — 25¢c* + 88 c? — 49).
The zeroes of this polynomial, such that G # 0, are:
—2.439730614 — 0.2075778378+/—1,
—2.439730614 + 0.2075778378/—1,
—0.8255944410,
0.8255944410,
2.439730614 — 0.2075778378/—1,
2.439730614 + 0.2075778378+/=1.

For each zero, the value of s is obtained from f(s,¢) = A+ sB =0:
(0.2273749746 — 2.227306968v/—1, —2.439730614 — 0.2075778378/=1),
(0.2273749746 + 2.227306968+/—1, —2.439730614 + 0.2075778378/—1),

(0.5642639624, —0.8255944410),

(—0.5642639614, 0.8255944410),
(—0.2273750280 — 2.227306978/—1,2.439730614 — 0.2075778378/—1),
(—0.2273750280 + 2.227306978/~1,2.439730614 + 0.2075778378/—1).

The roots of the polynomial G(c) = 0 are:
—2.490863615,0.6566204310, 1.834243184.

For each root, the two values of s are obtained from s% + ¢ — 1:
(—2.281315750/—1, —2.490863615), (2.281315750+/—1, —2.490863615),
(—0.7542211941, 0.6566204310), (0.7542211941, 0.6566204310),
(—1.537676188v/—1, 1.834243184), (1.537676188+/—1, 1.834243184).

Thus, we have found 2 - deg(f) = 2- 6 = 12 solutions in total, although there are only 4
real solutions. On the other hand, computing the polynomial associated to f(s,c) in the
tangent of the half angle substutition seems, clearly, much more involved.

2.3. PARAMETER SPECIALIZATION

It is often the case in kinematics that the coefficients of f(s, c) are given in a domain with
parametric coefficients, say Q[di, ..., dn]. We write then f(s,c) = f(dy,...,dm;s,¢) to



Advances on the Simplification of Sine-Cosine Equations 15

remark this fact. Rather than solving the sine-cosine equation over some extension of the
quotient field Q(dy, . ..,dn), one is interested in studying the solution of the specialized
systems, i.e. those obtained by (partially) replacing the parameters {di,...,dm} for real
numerical values {dJ,.. .,d%}. As the previous paragraphs show, the structure of the
minimal polynomial P(c) is relevant for solving f (s,¢) = 0. Unfortunately, Grobner bases
do not specialize well: it is not true, in general, that the specialization of the minimal
polynomial for f(di,...,dm;s,c) agrees with the minimal polynomial of the specialized
system f(d?,...,d2;s,c). Still some analysis of this situation is possible.

It is clear that the canonical form A(dy, . . ., dm;c)+sB(d1, -, dm; c)of f(dy,...,dm;s,c)
specializes to the canonical form of f (d9,...,d%;s,c), since it is obtained rewriting s? =
1—c2. Next, let G(dy, ..., dm;c) = ged(A(dy, .- ,dm;c), B(di,...,dm;c)), where the ged
is computed in Q(d1,...,dm)[c]. Then:

G(dy, ..., dm;c) ged(cont(A), cont(B)) = G'((dy,...,dm;c)

where cont denotes the content of a polyomial in ¢ with coefficients in Q[ds, . .., dpm] and
G' is the gcd(A, B) € Q[dy, .. ., dm][c]. Now G'(dy, ... ,dm; c) divides A(dy, . . .,dm;c) and
B(dy, ..., dm;c); therefore G'(d?,...,d2%;c) divides A(d3,...,d%;c) and B(dd,...,dd ;)
when A(d?,...,d%;¢) + sB(d),...,do,;c) is not zero (the interesting case), hence it di-
vides the gcd(A(dS, ..., d%;¢), B(d3, ..., d%;c)). It follows that specialzing the minimal
polynomial for A(ds,...,dm;c)+ sB(d1,. .., dpn;€),

AXdS,...,d%;c) — (1 — c2)B(d}, . .., dpy;c)
G'(dY,...,d%;¢)

one gets just a multiple of the minimal polynomial of the specialized system

A(d(l),...,dgl;c)+sB(d‘1],...,d9n;c).

It follows that the degree of this minimal polynomial can be lower than the one of the

general case if and only if the numerator AX(d,...,d%;c)—(1— c®)B%(d),...,dd,; c) has
lower degree or if G/(dY, . .., d%,; c) strictly divides ged(A(dY, ..., do; 0), B(d3,...,d%;0)).

Let be n the degree of A(dy,...,dm;c) + sB(d,... ,dm;c) as a polynomial in s,c and
suppose that for some numerical values, the coefficients of the terms of highest degree in
cof A%(dy,...,dm;c)—(1— c?)B?(dy,. .., dm;¢) vanish. Then,

(coef f(c™))? + (coeff(sc®1))> =0 (2.2)

where coef f(c*), etc ..., denotes the coefficient of the ¢* term in A+sB, etc.... When
we consider only real numerical values of the parameters, this condition is equivalent to

coeff(c*) =0 AND coeff(se®1)=0. (2.3)

Obviously, this condition is equivalent to lowering the total degree of A+sB as a s-c poly-
nomial. If we allow complex values for the parameters, the condition (2.2) is equivalent

to

coef f(c™) + V=1 -coef f(sc®™1) =0, (2.4)
OR
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coeff(c™) — V=1 - coef f(sc® 1) = 0. (2.5)

Therefore, under these conditions, the specialized system has lower degree than in the
parametrized case.

The above results can be interpreted also from the point of view of cocircularity. As
in Mourrain (1996) or Merlet and Lazard (1994), the cocircularity of a two-variable
equation is the minimum of the multiplicity of the curve at the two cyclic points of
infinity: i.e. the projective points (1,/—1,0), (1, ~+/—1,0), that are the points at infinity
of a projective circle. If we consider our parametrized equation A + Bs as a curve in the
variables s-c, the fact that for specific values of the parameters this curve passes through
one of the cyclic points is exactly equivalent to the vanishing of one of the equations
(2.4) or (2.5): thus (2.3) is the condition for having multiplicity at least one at both
points. It is shown in the above mentioned papers that cocircularity lowers the degree of
intersection of the curve A + Bs with the curve s + ¢ — 1: Mourrain (1996) shows that
the “number of common points properly counted” (i.e. our solutions to the s-c equation)
is less or equal than:

deg(A + Bs) - deg(s® + ¢® — 1) — 2 - cocircularity(A + Bs) - cocireularity(s? + ¢ — 1).

Now, the cocircularity of the circle is always 1 and the cocircularity of the s-c curve is
at least one if (2.4) and (2.5) simultaneously hold. Moreover, the formula above holds
with equality if the two curves have no other common points at infinity, the multiplicity
at cyclic points is the same for both and they are not tangent at the cyclic points. It is
easy to see that both A + Bs and s? + ¢ — 1 have no other common points at infinity;
moreover the multiplicity of the circle at the cyclic points is one and with tangent s = 0
in the affine plane that contains such points with ¢ = 1. Moreover, one can compute the
multiplicity and tangents of A 4+ Bs at the cyclic points as a function of the different
coefficients of this polynomial.

3. Factorization of s-c equations

In this section we deal with the problem of factoring (over an orderable field) a given
sine-cosine polynomial f(s, c), modulo s2 +¢% — 1. We will denote, sometimes, its normal
form A 4+ Bs by NF(f(s,c)) or NF(f). Since our aim is simplifying the solution of a
sine-cosine equation, we might assume that the given polynomial is already in normal
form and that no polynomials in ¢ can be factored out from f (as this is trivially attained
by an univariate ged computation). Next we remark that f = gh modulo s? + ¢? — 1,
implies f = N F(g)NF(h) modulo s? 4 ¢ — 1. Moreover, in this section we deal with
an orderable coefficient field such as Q, Q(d,...,dn), R, etc ... (more specifically, all
we need is that -1 is not a square in the field), as it is the case in most applications.
Then the equality f = gh modulo s? +¢? — 1, among normal form polynomials, implies
deg(f) = deg(g9)+deg(h) (see Lemma 3.1. below). Thus, factoring f over an orderable field
essentially means finding polynomials g(s, ¢), (s, ¢), already in normal form and verifying
f = gh modulo s? + ¢% — 1, plus the conditions: deg(f) > deg(g) and deg(f) > deg(h),
in order to avoid trivial factorizations.
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3.1. THE DEFECT

In what follows it plays an important role the well known relation between the trigono-
metric functions sine and cosine of § and the tangent of 6/2. The parametrization:

2 1—12
s=1v@  Tiye OV

covers, for finite values of t, the whole unit circle except the point (—1,0). Thus the
values s = 0 or ¢ = —1 have to be studied with some care.

DEFINITION 3.1. The defect of an s-c polynomial, de f(f) is the mazimum power of (¢+1)
that divides NF(f(s,c)).

Given a polyomial f(s, c), after performing the above substitution of s and ¢ by t-rational
functions and clearing denominators we obtain a polynomial T'(f) in the variable t (the
associated t-polynomial to f(s,c)). Then it is easy to prove the following facts:

(i) T(f) has no (t* + 1) as a factor (by construction).
(ii) The closest integer bigger or equal to ésggg_ll = [(d—eg—(glf-n)'l , 1s equal to

deg(NF(f(s,c))) — def(f(s,c)).
2. deg(NF(f)) — 2 def(f) = deg(T(f))
2. deg(NF(f)) — 2~ def(f) — 1 = deg(T(f)).

(iii) The degree of T'(f) is odd if and only if ¢+ 1 is a factor in A to a larger power than
in B (for instance, if A=0and B #0).

That is:

or

Conversely, if we start with a t-polynomial T'(f) without (1 + t2) factor, and we divide
T(f) by (1 +t?) to the power I’(Mg_(ill)]’ and we perform the inverse substitution

l1—c¢
= 2
(=125 32)

we obtain a s-¢ polynomial in normal form and without defect, such that the given T'(f) is
the associated t-polynomial. Moreover, if we divide by (1 +12) to the power [(M%Xﬁl)']
plus some natural number r, we obtain a s-c polynomial of defect exactly r. Thus there is
a non-injective mapping from normal form s-c polynomials to t-polynomials not divisible
by (1 +1?), since dividing the given s-c polynomial by a power of (c+ 1) (when possible)
has no effect in the corresponding ¢-polynomial.

The following lemma will be very useful.

LEMMA 3.1. Let f,g,h be normal form polynomials over an orderable field, such that
f = gh, modulo (s® + ¢? — 1). Then:

(i) deg(f) = deg(g)+deg(h). Therefore, the constants are the only multiplicative units
in K[s,c]/(s% +¢c% —1).

(1) T(f) = T(9)T(h).
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(1ii) def(f) = def(g) + def(R), ezcept when both T(g) and T'(h) are of odd degree, and
in this case, def(f) = def(g) + def(h) + 1.

PROOF. (i) Assume
g = gnc" +gn—lcn—15 +...,

h=hnc™+hp_1c™ s+,

are normal forms of degree n, m, respectively, where g,;, gn—1 represent the coefficients of
¢ and ¢®~!s in ¢, and so on. Then, the normal form of gh is (gnhm — gn—1hm—1)c"™ +
(gnhm-1 + g,,_lhm)c""”""ls + .... Now we observe that cancelling both coefficients of
total degree n -+ m implies

gnhm — gn-1hm-1 = 0,9nhm-1+ gn-1hm = 0.

Since we have assumed our polynomials to be of degree n,m, neither both g,,gn-1
nor A, hm-y can be zero. But the homogeneus system (in the variables hp,, hm_1) has
g2 + g2_, as determinant. Then this system has no non-zero solution over a field where
—1 is not a square. Contradiction.

(i1) In fact, performing the substitution of (3.1) in f = gh, modulo (s2+c? — 1), we get
that the product of T(g) and T'(h) does not divide (1 + ¢2), since the ground field does
not contain z; therefore, the product of the numerators (7'(g),T(k)) and denominators
(powers of 1 + t2) of the irreducible rational fractions associated to g and to h gives
already an irreducible fraction, ie. with numerator equal to T'(f).

(#11) This is easy, considering the above two items and the equalities linking the degree
of a polynomial, its defect and the degree of the associated ¢-polynomial. O

The equality 1 = (v/=1c¢ — s)(v/—1c+ s) modulo s2 + ¢? — 1 shows that the above lemma
fails if the coefficient field contains sqrt—1. Even so, it is easy to observe that these units
are, essentially, the only ones in such cases. This remark allows us to extend, with some
modifications, the factorization procedure below to arbitrary fields.

3.2. FACTORIZATION

As stated in the introduction to this section, in order to factor over an orderable field a
given s-c polynomial, modulo s% + ¢? — 1, we can assume that the given polynomial is in
normal form and has no e-factors, in particular, that it has no defect. Moreover, we only
look for factors that are also in normal form.

ProPosITION 3.1. Under the above conditions, if there are normal form polynomials
g, h such that f = gh, modulo (s> + ¢®> — 1), and deg(f) > deg(g), deg(f) > deg(h), then
T(f) = T(9)T(h) and deg(T(f)) > deg(T(s)), deg(T())) > deg(T(h) (i.e. T(f) is not
irreducible as a univariate polynomial in t). Moreover, if deg(T(f)) is even, then it can
not happen that deg(T(g)), deg(T(h)) are both odd.

Proor. Let f = A+ Bs,g = C+ Ds,h = M + Ns. Then A = CM + DN(1 - ¢?)
and B = CN + DM, by uniqueness of canonical forms. It follows that also g and h
have not defect, since if, say, g has defect, then C and D will be divisible by (1 + ¢)
and so will A and B, by the above relations. Considering the associated {-polynomials
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T(f),T(g9),T(h), we now by the above lemma that T(f) = T(¢)T(h) and thus that
deg(T(f)) = deg(T(g)) + deg(T(h)). But deg(T(f)) = 2deg(f) or deg(T'(f)) = 2deg(f) -
1, and the same alternative holds for the other polynomials.

Now, if deg(T'(f)) = 2deg(f), it could happen that deg(T(g)) and deg(T'(h)) are, respec-
tively 2deg(g), 2deg(h) or 2deg(g)—1 and 2deg(h)—1. In the first case we easily conclude
that deg(f) > deg(g),deg(f) > deg(h) implies deg(T(f)) > deg(T(g)),deg(T(f)) >
deg(T'(h)) and we are done. If both deg(T(g)),deg(T(h)) are odd, then by lemma 3.1.,
the defect of f cannot be zero (since it is at least 1 more than the sum of the defects of
¢ and h), against the assumption that f has no defect.

If deg(T(f)) = 2deg(f) — 1, then we must have, say, deg(T(g)) = 2deg(9) — 1 and
deg(T(h)) = 2deg(h). Again, deg(T(f)) > deg(T(g)),deg(T(f)) > deg(T(h)) since
deg(T(f)) # deg(T'(h)) for parity reasons and deg(T(f)) > deg(T(g)) because deg(f) >
deg(g). U

ProposITION 3.2. Conversely, the ezistence of a proper factorization of T(f) = GH,
allows to recover a proper factorization of f, except when deg(T(f)) is even and both
deg(G),deg(H) are odd.

ProoF. We must distiguish two cases:
(a) All deg(T'(f),deg(G),deg(H) are even.
Here deg(f) = 240U Since deg(T(f)) = deg(G) + deg(H), dividing T(f) by

(1+4122) %52

is the same as dividing by

(14257 (1 + 2) =52,

Thus G and H are converted, by the inverse substitution, into normal form, defectless
factors g,h of f. Let us show that they verify deg(f) > deg(g),deg(f) > deg(h). We
have that deg(G) and deg(H) are, respectively, equal to 2deg(g), 2deg(h). Since the
factorization of T'(f) is proper, deg(T(f) > deg(G),deg(H), and this directly yields
deg(f) > deg(g),deg(f) > deg(h).

(b) degree of T'f is odd.
In this case the degrees of G and H must be odd and even or conversely. Assume the
first is odd. Dividing T'(f) by:
(1 + tz) deg!Té!n—{-l

is the same as dividing by:

(140%) 2 (1 1) =5

Thus G and H are converted, by the inverse substitution, into defectless factors g, & of f.
Let us show that they verify deg(f) > deg(g),deg(f) > deg(h). We have that deg(T(f),
deg(G) and deg(H) are, respectively, equal to 2deg(f) — 1, 2deg(g) — 1, 2deg(k). Since
deg(T(f) > deg(G),deg(H), it directly yields deg(f) > deg(g), deg(f) > deg(h). O

We have seen that the existence of a factorization of f into lower degree factors is equiv-
alent to the existence of a factorization of T'(f) into lower degree factors, not both of odd
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degree. Moreover, if T'(f) has only a factorization into two odd degree polynomials G, H,
then it follows that f has no factorization. Still a simplification can be attained in some
cases. We must divide Tf by (1 +2) 22502 e by (1412)™55 (1 + §2) e
to obtain a factorization of (c + 1)f(s,c) via the s-c polynomials g,h associated to G
and H. Remark none of these factors will be a multiple of ¢ + 1, because there exists
no defect in the associated s-c¢ polynomials to G and H. Since f can not be factorized,
the best we can hope is to factorize (¢ + 1) f. Moreover, because of the odd degrees of
G and H, we see that the two factors g,h are of the form: (¢ + 1)*X(c) + sY(c) and
Y(—=1) # 0. Therefore both have the root ¢ = —1,5 = 0 and all the remaining roots will
be roots of f(s,c) = 0. Thus solving f = 0 can be replaced by solving gh = 0. In this
case deg(f) = deg(g) + deg(h) — 1. If degree of, say H, is one, the factorization yields no
real advantage for solving the s-c equation, since deg(h) = 1,deg(g) = deg(f).

EXAMPLE 3.1. We consider the following irreducible polynomial f(s,¢) € Qs,cl:

—-3/2¢ = 7/2sct + T/Ac? —5sc+9/2¢c—s+5/4.
After performing the tangent half angle substitution (3.1) and clearing denominators, we

obtain the associated t-polynomial T'(f):

5 — Tt + 1063 4+ 118> — 192 + 6.
Now, we factor T'(f) = GH, where

G=t2—5t+3, H=t3-21*-3t+2.

We consider the rational functions (case b):

G H
1+12 (1+12)?2

and we perform the inverse substitution (3.2) to these rational functions, yielding:

m(s,c)=c—5/2s+2, n(s,c)= Z+c—sc—1/2s.

We finally obtain a factorization modulo the circle:
f(s,¢) = (¢ —5/25+2)(c* + ¢ — sc — 1/25) + (=5/2¢ — 5/4)(s? +¢*—1).0

EXAMPLE 3.2. Now, we consider the following polynomial f(s, c):

6ct — 365c® —24¢% +52¢2 — 10452 — 92sc+56¢+ 6 — 24s.
The associated ¢-polynomial T'(f) is:

3948 — 39214 + 963 — 160¢° + 1602 — 512t + 32¢° + 96.
Now, we factor T(f) = GH, where

G=413-20t+4, H=24—8t+81.
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The degrees of G and H are both odd and there is no other factorization, so the best we
can hope is to factorize a multiple of f(s,c¢) of the form (¢ + 1)f(s,¢). In the same way,
we have to consider the rational functions :

G H
(14+1¢2)27 (1+1¢2)3
and we perform the inverse substitution (3.2) to these rational functions, yielding:

m(s,c) =c®—6sc+2c—4s+1, n(s,¢)=3c2+9c%+9c—4sc+3.

We finally obtain a factorization of (¢ + 1) f(s, ¢) modulo the circle:
f(s,e)(c+1) = 2(c*—6 sc+2c—4 5+1)(3+9 c?+9 c—4 sc+3)+(—48¢® —32¢)(s?+c*—1).

4. Simplification by extraneous factors

4.1. CASE OF ONE EQUATION

Let us go back to the equations in subsection 2.3, (2.3), (2.4) and (2.5), involving some
coefficients of a s-¢ polynomial in normal form f(s,c) = A(¢) + B(c)s. As in that subsec-
tion, let us assume these coefficients are polynomials in several parameters (robot class
and pose parameters, as explained in section 1), i.e. A(c), B(c) € Q[d1,...,dn]lc]. In 2.3.
we stated conditions that the coefficients should verify in order to lower the degree of the
minimal polynomial of the evaluated s-¢ polynomial. Here we are going to obtain a differ-
ent interpretation in connection with the associated ¢ polynomial, introduced in section
3.1. Suppose that for some numerical values of the geometric or robot class parameters,
one of the above equations (say (2.4)) is identically zero for all pose parameters. Then
one knows that for such concrete geometric parameters the s-c equation will have less
solutions than expected. This implies that if we perform in the unevaluated s-c equation
the half angle tangent substitution (see 3.1 (3.1) ) and then we evaluate the parameters
for the numerical values, some “extraneous” factor (¢ 4+ +/—1) or (¢ — v/—1) occurs in
the numerator of the evaluated expression, since the number of solutions is reduced. The
conclusion is that there can be, as shown in the example below, simplifications with-
out necessarily involving degree two extraneous factors (of course, this involves complex
solutions of (2.4), but such solutions can appear quite naturally as in Kovacs and Hom-
mel (1993), example 2.1, where d = 5y/—1/3). This possibility is somehow overlooked
in previous work (see Kovacs and Hommel (1993) ), where such simplification is always
linked with the existence of factors of the kind 1 + t2.This possibility seems, also, not
regarded by Mourrain’s formula (see Mourrain (1996)), which always diminishes by even
quantities the number of solutions of the s-c equation that are lost due to co-circularity
contribuitions. Obviously, when we restrict to real solutions of (2.4), if there are any,
we will have then an even number reduction of the minimal equation degree, since both
leading coeflicients of A(c) and B(c) will be zero for these values of the parameters.
Therefore, in the real case, the contribution of 2.3.(2.4) is that 1 +¢? appears as a factor
in the numerator after the ¢-substitution. A similar explanation arises from co-circularity
conditions.

EXAMPLE 4.1. Consider the s-c polynomial: f(s,¢) = c*d+2c* — d?sc® — 5dsc® — 6 s¢3 —
2¢2+c3—5¢c45—3.;
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The associated t-polynomial T'(f) is:
7 A di2+6 di*—4 dtO+diB+6 213 —6 &5+ d—2d%t—10 dt— 1013247 —2¢* —81°+
18 4+ 4243 — 3015 + 1417 + 2d%7 + 30dt3 — 30dt® + 10d2”.
In general, the minimal polynomial of the system {f(s,¢)=0,s° +¢2—1 =0} has degree
8,8+30c+38c?+ (2d% +10d +26) ¢ — (-6d — 18) c* — (-2d? - 20d - 36) c*—
(—d* —10d® — 37d? — 64d — 43) ¢® + (2d +4) " + (d* + 10d® + 38 d% + 64d + 40) ¢,
but for some values of d, satisfying some of the equations (2.3), (2.4) and (2.5) the
corresponding evaluated f(d) has at most 7 zeroes. Solving each of these equations we
obtain the values d = —2 (root of (2.3)), d = —3++/—1 (root of (2.4)) and d = —3—v-1
(root of (2.5)).
For instace, if we take d = —3 + +/—1, then f(-3 + V=1) = —c* + V=1t + sc® +
V/—=1sc® - 2c? + ¢ —5c+ s — 3, and the minimal polynomial has only 7 zeroes:
8430 c+38c2+123—2/—1c—6/—1c*+8c3—8/—1c°+5¢°~6 V=18 —267+2/—1c.
Moreover, it can be checked that this corresponds with the presence of a factor (¢-++/—1)
in the evaluated t-polynomial, that factors as:

(Z25/7T)(547 — 246 — /—1t6 — 1345 + 6 V—Tt° — 1224 — 11 /=Tt"+
3543 4 20 /T3 + 1412 — 23 /=Tt + 13t + 14 /=1t + 8 — 21 V=D)(1 + V-1).

For d = —2, we have f(—2) = ¢® —2 ¢2 — 5¢ 4 s — 3 and the minimal polynomial is:
8+30c+38c2+14c3—6ct—4c>+cb. Again, we check that this corresponds with the pres-
ence of a factor 1+t2 in the t-polynomial: — (1 +¢2) (¢ — 2¢° — 14— 413 +1512 -2t +9).
]

In summary, the two equations (2.4) and (2.5) constitute the positive and negative control
equations of Kovacs and Hommel (1993), but, contrary as stated there (section 3.1, fourth
paragraph up from the end), both equations do not need to be satisfied simultaneously,
but alternatively, in order to have a “simplification” of the degree of the resulting s-c
polynomial, when the solutions of such equations are replaced in the given s-¢ polynomial.
Of course the main objection to Kovacs and Hommel (1993) and to our comments here is
that no complex values of parameters are usually involved in robotic problems; therefore,
control equations should be better replaced by the more natural system (2.3), which yields
the same real roots.

In fact, this remark makes sense for one s-c equation with parametric coefficients. But
if we extend this analysis to several s-c parametric equations, searching for conditions
that lead to a simpler system solution, we will have to check whether there is a common
root for all (say, positive) control equations (2.4) derived from each of the equations of
the system. We will see that such common root, even if complex, is just an indicator of
simplification and has not a physical interpretation in terms of the robot parameters.

4.2. CASE OF SEVERAL EQUATIONS

Let us consider this apparently innocent system:
%sd +c—5=0,
s — %cd +2=0.

We see that the positive control system (2.4)

14+ -g—d\/—l =0,
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—-%d-}-\/—l =0,

for both equations has as common root d = iﬁézz and that, analogously, the negative

(2.5) control has as common solution d = -3 3_1.

This implies that modulo s% + ¢ — 1, and for the value, say, d = Eﬂg, each of the
equations of the given system yields a minimal cosine equation of degree one less than
expected (it “should” have been (formally) of degree two, but it is of degree one), of
course, with complex coefficients. But one does not need to evaluate d to obtain such
simplification. In fact, the f(s,¢) equation obtained eliminating d in the ideal (%sd-{- c—
5,8 — %cd+2,32+cz— 1):

Elim(d, Ideal(2sd + ¢ — 5,5 — gcd + 2,8 + c?-1)=

5.4 1 ,2_10,_ 3).
Ideal(s — 3¢+ 3,¢% — 55¢ — 36);

has degree lower than expected: it “should” have been of degree two in s-c, therefore
of degree four in c...We remark that the complex value of d that is hidden behind
this simplification does not imply that complex numbers or values of the parameter are
involved in the usual solving of the above system, nor if we eliminate it with respect to
“d”:
Elim(s..c, Ideal(3sd + ¢ — 5,5 — 3cd + 2,52 + ¢ = 1)) =
Ideal(d? — 12).

Since this behaviour requires only the existence of solutions for the positive (or the
negative) control system, and do not involve the solutions themselves, in the case of
systems (as it is usual in robotics) where, besides the parameters, the coeflicients only
consist of real numbers, the satisfability of a system 2.3.(2.4) implies ~by conjugation-
the same for the other system 2.3. (2.5), and thus we only need to check one of them.
This analysis can be also explained via the half angle tangent substitution as in Kovacs
and Hommel (1993). Essentially, it involves the following argument: the fact that both
the positive and negative control systems have (separately) a common root for all equa-
tions of the given system in s-c, implies that both ¢ = V=1 and t = —+/—1 are roots
of each of the equations of the associated t-system, after parameter evaluation in the
corresponding common root (a root for the positive control and another one, perhaps,
for the negative control system). Of course, the common roots of the control systems are,
in general, complex values of the parameters. But it also implies that if we eliminate all
the parameters in the associated t-system, a factor (1 +12) appears in the resulting equa-
tion in ¢ alone, by well known properties of elimination ideals. This elimination makes
the difference with the one variable case, since the elimination procedure does not yield
complex coefficients. Thus, converting this t-equation back to the s-c form gives lower
than expected degree, but no complex coefficients.

A similar argument can be made without the detour to the half angle substitution: we
homogenize the given system with respect to the s-c variables and then look for some
solutions at infinity in the circle s2 + ¢> — 1. This implies looking for values of the
parameters that satisfy the system for the values (1, Vv—1,0) and (1, —+/—=1,0) where the
first coordinate is the c-value, the second is the s-value and the last one is the value of
the homogenizing variable. If there are such values of the parameters, then we know that
in the system there are roots of the s-c elimination equation which lie at infinity when
intersected with the circle. Clearly, a system without this property would have more affine
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roots and correspondingly a greater degree. Of course this is an argument at geometric
level and we should be sure that the algebraic elimination reflects well the geometric
properties for the geometric object defined by the system (for instance, that the given
system defines a radical ideal). But the same prevention holds for the argument of Kovacs
and Hommel (1993): the fact that some roots /=1 and —/—1 appear as solution, does
not immediately imply that they are eliminated if we merely aply algebraic elimination
on the given system. Fortunately, there are results as in Gonzalez-Lopez and Recio (1994)

that show that in general this is the case for robotic kinematic systems.

EXAMPLE 4.2. Consider the system of section 2.9 in Kovacs and Hommel (1993):

I =Ideal(10s25y — 4de1 + 7,
4ds; + 5¢; — 1,
s2 —ds; — %szcl,
s} +ci—1);
Elim(d..c2,I) =
Ideal(s? + ¢} — 1,
5163 — 2t — Es1cf + 2903 _ 2lg ¢ 4 Hec} - 21 — T3/175,

35 25
641 .2

5 296 .4 791 2 1787 3+ 1233

7
¢} — Za2¢l — 13355161 — 132561 T 6255141 + gesC1 T

511 26, _ 1533
33551 + 5301 ~ g6z /-

We obtain a degree 5, ¢; polynomial, lower than the expected degree 6. Next we suppose
we had not performed this elimination and we are going to discover beforehand this
simplification property. Let us consider the equations in the system as polynomials in
sy-c1, and let us write the following conditions for the vanishing of the highest terms in
each equation, using, say, the control system coef f(cT) + \/—lcoeff(slc'l'_l) =0
yielding the equations

J =Ideal(10y/—1s2 — 4d,

4/-1d + 3,

—V=1d - 3s2);
having as Grobner basis:

[ vV—+— %da

82 — 1/2,

a2+ 1
Thus we see that the system has the solutions d= _:;54451 and, therefore, that it will
simplify.

The same behaviour appears considering the other control system (but we do not really
need to check it):
J =Ideal(—10v/—1s2 — 4d,

—4y/-1d + 5,
VT~ $o2)
Grobner basis:

[ V=T+4%4,
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Sz — %:
25 7.
2+ L
Next let us do the same analysis for a slightly modified system, just replacing d by d+1
in one of the equations:

I =Ideal(10s2s1 — 4dcy — 4e1 + 7,
4dsy + bey — 1,
52 —ds; — %szcl,
s +cf — 1);

Elim(d..c2,I) =

Ideal(s? +¢3 — 1,
sicd — s} + et + Usicl- B3+ Ulsic) — Shel+
11_(?0'61 + 1—70%7
B - B+ e+ et
673 3151 2 _ 73 7233 657

£50651€1 — $000C1 — 10051 — 5000°1 + 5000/

Here the degree in c; is 6 and not 5 as in the previous system. Let us see what happens
with the control system equations in this case:

J =Ideal(—4(d + 1) + 10s2v/—1,
5+ 4v/—1d,
_%SQ — \/:_1d)

J :Ideal(lO\/:_lsz —4d — 4,
4/=1d + 5,
—\/jl_d - %Sz);

Grobner basis:

[1 ]

Thus, in this case there is no common solution for the control system equation.]

This analysis is called in Kovacs and Hommel (1993) the simplification method by detect-
ing “extraneous” factors, because the fact that a factor (1+12) appears in the converted
system by means of the half angle substitution is “extraneous” to the affine solving of
such system. The authors remark also that such factor, easy to identify directly, can be
hidden if the system is solved in some other variables: i.e. if instead of solving with respect
to s-c we solve with respect to some other joint variable, then it could happen that, again,
some factors of the determining equation of this joint angle ~looking absolutely different
from (1 + ¢2)- are linked to the extraneous factor in s-c. This means that other values
of, say, angle so-co (or lengh d of a prismatic joint), correspond to roots of the angle s-c
at infinity, and should be therefore simplified. But this is a dangerous way of reasoning:
such values could also be linked to other finite values of s-¢, and therefore removing them
we are loosing correct solutions (configurations of the robot) of the system. Therefore we
should be warned about eliminating simultaneously all the induced extraneous factors
without previously checking about its consequences. See the example below.
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In the above Example 4.2, we check that the solution s = % is, in fact, not extrane-
ous since, besides appearing linked with the cyclic s1-¢; points, we also have the (non
extraneous) system solution:

5 1
d“Z) 52—‘_2'1

4.3. RABINOWISTCH’S TRICK

Finally, we must observe that directly applying the half angle substitution it is quite
posible to eliminate extraneous roots by adding to the system the equation (1 +1%)y—1;
this method (Rabinowistch’s trick) is not much more costly than the direct elimination
procedure: it was not studied in Kovacs and Hommel (1993) since it was considered as
complicated as obtaining general ideal quotients. Recent methods for deciding this specific
problem appear in Alonso, Gutierrez and Recio (1995b) and Licciardi and Mora (1994),
since it is linked with the implicitization problem of parametric curves and varieties. The
next example shows the direct application of this observation.

EXAMPLE 4.3. Let us consider the system of the Example 4.2 :
I =1deal(f1 = 105251 — 4dcy + 7,

fa =4dsy +5c; — 1,

f3 =53 —ds; — 2s201).

First s; and ¢; are converted into t-polynomials and we consider the sytem of the t-
polynomials:

Tfi =20sat —4d+4dt? + 7+ 712,
Tfy=8td+4— 612,
Tfs =253 +25%2 - 55y +5521% — 4td.
We solve the above system:
Groébner basis ([T'f1,T f2, T fs], [d, s2, 1), plex) =

[8d—9t° — 139t — 21413 — 28 — 33612 + 46¢5 + 70¢* + 3365 + 122¢7 — 4213, -90 +
193612 — 3981* + 287¢ + 163813 + 350¢5 — 21085 — 93817 + 27613 + 805, + 631°,4 +
13312 4+ 214¢* + 281 + 3362 — 7015 — 461° — 33647 — 12243 4 42¢° + 9¢10].

The unique polynomial involving ¢ in the above Groébner basis is:
441332 +214¢* + 281 + 33613 — 705 — 461° — 33617 — 12213 + 42¢° + 9110,

Factoring this polynomial, we get the extraneous factor 1+ ¢:

Bt+ D) +2) (1+%) 35+ 715 —62¢* + 142 +37¢* + 7t +2).

On the other hand, applying Rabinowitsch‘s trick, we have to compute the following
Grobner basis:
Grobner basis([T f1,T f2, T fs, (1 + t2)y — 1], [y, d, 52, 1], plex) =

[5000 y — 4996 + 56t + 53212 + 1155¢3 — 3080¢* — 938> + 303¢° + 637,
8d—917 —135¢t — 85t — 28 — 308¢2 + 13115 + 378¢* — 4216,
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805, + 637 — 82 + 10982 — 2384 ¢* + 315¢ + 1351 — 10015 + 2761t°,
44 98¢+ 12942 + 3083 + 8514 — 378% — 1311° + 42¢7 + 913].

Now, the unique polynomial on £ is:

4+ 928t +129¢2 + 3083 + 85¢* — 3781° — 1316 +42¢7 +9¢3.

Factoring this polynomial we have :

(Bt+1)(+2)(3t°+7¢°—62t" + 1483 43712+ 71+ 2) .

So, we have eliminated the extraneous factor 1 +t2.

5. Fast functional decomposition of s-c equations

5.1. FounNDATIONS AND NOTATIONS

Given a sine-cosine polynomial f(s,c), if it decomposes as f(s,c) = g(h(s,c) modulo
s2+¢2—1, for some univariate polynomial g(z) and some bivariate polynomial h(s, c), then
it is clear that the same equality applies replacing f, h by its normal forms. Thus, in this
section we will study decomposition procedures assuming f is given in normal form and
we will look for normal form composition factors h. Since our goal is to simplify solving
sine-cosine equations, we search for factors such that the degree of h is strictly smaller
than the degree of f. As in section 3, we will assume that /—1 ¢ K, the coefficient field,
to prevent some complications. Summarizing, the sine-cosine polynomial decomposition
problem can be stated as follows:

DEFINITION 5.1. Given a bivariate, normal form, s-c polynomial f(s,c) in the poly-
nomial ring K[s,c], we will say that f(s,c) is decomposable modulo the circle if there
exist a univariale polynomial g(z) € K[z] and a bivariale normal form polynomial
h(s,c) € K[s,c] with deg(h(s,c)) < deg(f(s,c)) such that:

£(s,¢) = g(h(s,c)) modulo s* + ¢ — 1.
Therefore, the decomposition problem for a given f is to decide if such g, h exist and, in
the affirmative case, to find them.

From a computational point of view, it is important to know what is the relevance
of extending the coefficient field regarding the existence of decomposition. It is well
known (see Gutierrez (1991)) that an ordinary bivariate polynomial f(z,y) € K[z,v] is
indecomposable over a field K if and only if it is indecomposable over any extension of
K. We label such property saying that ordinary polynomial decomposition is a rational
problem. On this issue the ordinary rational function decomposition problem differs from
ordinary polynomial decomposition (see Alonso, Gutierrez and Recio (1995a)) as well as
the sine-cosine polynomial decomposition problem:

EXAMPLE 5.1. Let us consider the numerical s-c¢ polynomial, f(s,c) = 2¢2 +es+ 1
with coefficients over the rational numbers field. We can check with the SCDECPOL
Algorithm (see subsection 5.2.2), that it is indecomposable modulo the circle over the
rational number field Q. But it can be written as a composition, modulo the circle, of
polynomials with coefficients over an algebraic extension Q. In fact, take:
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(2) = z? L 18= 6v5
T = e a—ns
Then f(s,¢) = g(h(s,c)) modulo s* +¢* —1.00

h{s,c)=c+ (—2 + \/5) s.

This implies that enlarging the coefficient field might yield to finding new decompositions.
We will go back to this issue in subsection 5.2.2, showing that our algorithm gives de-
compositions over any field extension of K where computations are possible (even if V=1
is in this larger field). Another important aspect that we must consider is the concept
of equivalent decompositions. The idea is to consider as equivalent those decompositions
that are related via the identity z = (ga—i‘—"—bl —b/a) = (z/a — b/a) o (ax + b) (where
o denotes functional composition) for some a # 0,b € K. Remark that, for all g,h as
above, this identity implies

9(2) 0 h(s,¢) = g() 0 2 0 h(s,¢) = g(x) o (z/a — b/a) o (az +b) o h(s,)

and collecting the first and the last two (composition) factors in the last equality an
apparently different decomposition arises.

DEFINITION 5.2. Two decompositions of a s-c polynomial f(s,c), say:

£(5,¢) = NF(gy(ha(s,))) = N F(ga(ha(s,)))
are called equivalent if there is a non constant linear transformation u(z) = ax+b € K[z]
such that: ahy(s,c)+b = ha(s,c) and g1(z/a—b/a) = g2(2), te. g2(2) = g1(z)o(z/a—b/a)
and hy(s,c) = (az + b) o (hi(s,¢)).

It is well known (see Gutierrez (1991) ) that if an ordinary polynomial f(z,y) has two
decompositions f(z,y) = g1(k1(z,y)) = g2(h2(z,y)) with deg(hi(z,y)) = deg(ha(z,y)),
then they are equivalent. Again, neither this result holds for the ordinary rational func-
tion decomposition (see Alonso, Gutierrez and Recio (1995a) ), nor for the sine-cosine
polynomial decomposition, as illustrated by the following example:

EXAMPLE 5.2. Let us consider the numerical s-¢ polynomial:

f(s,0) =8cs —8c3s —6es — 12¢* +126° + 1.

We have two decompositions, f(s,¢) = NF(gi(hi(s,c))), i = 1,2, where gi(z) = 8 —
1222 + 624 — 2, hy(s,¢) = c+ s and g2(z) = 2%, ha(s,¢) = ¢ — 5. So, we have two decom-
positions of f(s,c) with deg(hi(s,c)) = deg(ha(s,c)) = 1, but they are non-equivalent
(by direct checking). O

The most interesting decomposition in kinematics is when the composition factor h(s,c)
has the smallest possible degree. On the other hand, finding all decompositions may
be interesting for different applications. For instance, our method can compute all non-
equivalent decompositions, even irrational (in the sense of Example 5.1) decompositions
for real coefficients sine-cosine polynomials.

EXAMPLE 5.3. The polynomial f(s,c) = 8¢®s —8¢®s —6cs—12¢*+12¢? -+ 1 has exactly
the following non-equivalent decompositions f(s,c) = N F(gi(hi(s, ), i = 1,2,3, where



Advances on the Simplification of Sine-Cosine Equations 29

[91(z) = 8 — 1222 + 6z* — z°, hi(s,c) =c+ )
[g1(z) = =, hi(s,c) = c—s]

[g2(z) =1 — 62 +122% — 823, ha(c, s) = ¢s]
[95(z) = 422,  ha(s,c) =+ cPs —3/2c+1/25]. O

Besides these general observations, some normal forms of special polynomials turn out
to be fundamental in our approach.

DEFINITION 5.3. We define by recurrence the following polynomials in some new inde-
terminate Z and with coefficients over the integer numbers:

Ao(Z)=1,Bo(Z2) =0

Am(Z) = Am-—-l(Z) - ZBm—l(Z)

Bm(2) = ZAm-1(Z) + Bn-1(2). O

Now it is easy to prove the following basic properties:

LEMMA 5.1. For every positive integer m, we have:

(i) Am(2)? + Bm(2)* = (1+ Z22)™
((nj An(Z) 4+ iBm(2) = (1 +:2)™, where V-1=i.
(L+iZ)" +(1=iZ)™

An(2) = 7

Q+iZ)™ -1 -iZ)™
2: '
(iv) If m is an even natural number, then deg(Am(Z)) = m and deg(Bm(Z) = m — L.
If m is an odd natural number, then deg(Am(Z)) =m—1 and deg(Bm(2) = m.
(v) The rational functions Gn(Z) = % are conjugate of power polynomials, that
is: Gm(Z) = wo Z™ ow™! (symbol o for rational function composition), where w
is the linear fraction w = =24t gpd @l = ’Z—'% = li_%
(vi) All Toots of the polynomials Aym(Z) = 0 and ém(Zs = 0 are real. Moreover, they
do not have a common root.

Bm(Z) =

PROOF. The proof of the two first items can be done by induction on m. Item (iii)
follows by solving the system given by (i) and (ii). Item (iv) is then immediate. Item (v)
is immediate, the most difficult part is to remark the structure of this fraction, as stated.
For item (vi), in the case of A;,(Z), we consider % = —1 and then we remark that
the conformal mapping }"_’:g sends points from the real line onto the unit circle in the
plane R? = C. For B,, is analogous. Finally, item (i) implies that the imaginary unit is
the only possible common root of A, B, but since all their roots are real they do not

have common roots. O

Next, we establish the relation between the normal form of a sine/cosine polynomial with
the polynomials A,(Z) and Bn(Z), defined above :
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LEMMA 5.2. Let Zy be an arbitrary element of an extension of the field K, m a positive
integer number, then we have:

(i) NF(c+ Zos)™ = Am(Z0)c™ + Bm(Zo)c™ s + D(s,c) with m > deg(D(s,c)).
(ii) If m is odd, say m = 2k + 1, NF(s™) = (1 — ¢?)¥s.
(iii) If m is even, say m = 2k, NF(s™) = (1 — c?)F.

PRrROOF. It is straightforward, by induction on m, remarking that NF(c 4+ Zps)™ =
NF[(c+ Zos)NF(c+ Zos)™1]. D

One might deal in a unified way with the above items, by homogenizing the whole
situation, i.e. showing that

NF(Yoc+ Zos)™ = Am(Yo, Zo)c™ + Bm (Yo, Zo)c™ s + D(s, c)

with m > deg(D(s, c)) etc. .. where Yy, Zp are elements in some extension of K and where
Anm(Y, Z), By (Y, Z) represent the homogenization (as polynomials of formal degree m)
of A, B via the new variable Y. That is, A (Y, 2) = Y Apn-1(Y, Z) = ZBm-1(Y, Z),
Bn(Y,2) = ZAm-1(Y,Z) + YByn-1(Y, Z). This way of thinking, although it makes
notation more complicated, is particularly useful in the following

LEMMA 5.3. Let g(z) = g:z* + ...+ go, a polynomial of degree t and let h(s,c) = h.c" +
hy_1""1s 4 ... a normal form s-c polynomial of degree r. Then N F(g(z)o h(s,c)) has
degree rt.

PrOOF. Clearly, the higher degree terms of NF(g(x) o h(s,c)) are the higher degree
terms of the normal form of (h.¢” + hy_1¢"~1s)t = ("~ V¥(h.c+ hy_15)t. By the Lemma
above, the normal form of (h.c+ h,_15)! is Ar(hr, hr—1)c' + Br(hy, hr—1)et"1s + D(s,¢)
with t > deg(D(s,c)). But A,(h,,h.—1), Br(hr, he—1) can not be simultaneously zero. In
fact A, (Yo, Z0)? + Br(Yo,20)? = (YZ + Z&)" (homogeneus version of Lemma 5.1.), thus
if Ar(hy,hr-1) =0, B.(hs, hy—1) = 0 then (h%+ hZ_,) = 0. But there are not non trivial
zeroes of A,, B, verifying this condition (see 5.1.). O

LEMMA 5.4. (i) NF(g1(z)oh(s,c)) = NF(ga(x) o h(s,c)) implies g1 = g2 (right can-
cellation property)
(ii) Two decompositions f(s,c) = NF(g1(h1(s,c))) = NF(ga(h2(s,c))) are equivalent
if and only if K[hi] = K[ha] as subalgebras of K[s,c]/(s? + ¢2 — 1).

Proo¥F. Item (i) proceeds by considering that N F(g;(x)o h(s,c)) = NF(ga2(z)o h(s,c))
implies N F((g1(z) — g2(z)) o h(s,c)) = 0. Then, by lemma 5.3. (91(z) — g2(x)) must have
degree zero, and it follows it must be zero. For item (ii), if the two decompositions are
equivalent, by definition, it is trival that the two subalgebras are equal. Conversely, if
K[hi1] = K[h2], then there polynomials p;(z), p2(x) such that hy = p1(h2), ha = pa(h1)
modulo s? + ¢2 — 1. Then h; = (p, o p2)(h;1) and hy = (p2 o p1)(h2) in the circle. This
implies, by the Lemma, that the degree of both p; ops and paop; is one. Therefore p;, py
are linear and inverse to each other. O
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5.2. THE DECOMPOSITION ALGORITHM

The general techniques developed for solving decomposition problems all tend to divide
it into two parts: given the s-c normal form polynomial f(s,c), then

-first, to compute “right”, normal form, candidates h(s,c) such there is a decom-
position f(s,c) = g(h(s,c)), modulo s2+cf-1,

_second, to determine the corresponding “left” component g(z)-
_finally, to verify that f(s,c) = g(h(s,c)) modulo s24c2-1.

As always the hard part is finding h(s,c), because to determine g(z) from f(s,¢c) and
h(s,c) the most direct way is to explicitly solve a linear system of equations in the
indeterminate coefficients of g(z) (with unique solution if it is exists, because of the right
cancellation property). This works since for a given h the degree of the potential g’s is
bounded; therefore we will not detail this point.

NOTATIONS 5.1. Let K be a field that does not contain V—1. Let f(s,c) € K[s,c] be a
s-¢ polynomial in normal form:

f(s,¢) = Fu(s,¢) + Fu-a(s,0) + ... + Fi(s,c) + Fo(s,c)
where F;(s,c) are homogenous polynomials of degree i of the form
Fi(s,¢) = fiod + fimra¢'s

and, where fi; € K, Fa(s,¢) # 0 and n is the total degree of the polynomial f(s,c).
Now, after the Lemma 5.3., for every positive r divisor of n, (so there exists a positive
integer t with n = rt), we consider the possible, normal form, candidates h(s,c) of degree
7

h(s,c) = H(s,¢) + Hr-a(s,0) + ... + Hi(s,c) + Ho(s,c),
where H;(s,¢) = h,-,oc" + h;_lylc""ls and H,(s,c) # 0.
We would like to distinguish two posible cases:

(a) h,-,o # 0.
(b) hro=0.

In the first one we can restrict to decompositions of f(s,c) such that
h,-,() =1 and Ho =0.

In fact, if f(s,c) = NF(g(h(s,c))), we can consider the linear transformation I(z) =
hr oz + hoo and we can define: g(I(z)) = g'(z), k' (s,¢) = I71(h(s,c)), where I-Y(z) =
h;(l):c - h;ého,o, yielding an equivalent decomposition of the f(s,c) with:

K(s,c)=c +2Zc s+ Hi_y(s,0)+ ...+ Hi{s,c)

where Hj(s,c) = H;(s,c)hr_’é and Z = h,_l,lhr‘,(l,. We will say that h'(s,c) is a zero
symmetric, monic polynomial on ¢ of degree .
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Likewise, in the second case, we consider decompositions of f(s,c) such that the right
factor h'(s,c) is a zero symmetric, monic polynomial on ¢ and s of degree r.

Finally, to include both cases, we will say that the normal form polynomial h(s,c) is
normed if and only if it is zero symmetric and monic polynomial on ¢ or on ¢ and s. O

5.2.1. DETERMINING CANDIDATES

Let f(s,c) € K[s,c] be a normal form s-c polynomial of total degree n:

f(s,¢) = Fu(s,c) + Fno_1(s,¢)+ ...+ Fi(s,c) + Fy(s,c)

where Fj(s,c) as above. Let r be a divisor of n, so n = rt, and we are looking for a
normed polynomial h(s,c) of degree r and for a univariate polynomial g(z) of degree ¢
such that f(s,c) = g(h(s,c)) modulo s2 +¢2 — 1. So, we have to compute the coefficients
h; j and gr where,

9(X) =gz’ + g1z g1zt g0
so that the following equality holds:

f(s,c) = NF(g:h(s,c)’ + gi-1h(s, )l 4.+ +aih(s,0) + go) =

g:NF(h(s,c)") + gioi1NF(h(s,0) " )+ ...+ +¢1(N Fh(s,c)) + go-

By Lemma 5.3., it is easy to see that the degree of the second and latter terms in the
above expression is at most r(t —1) =rt —r=n—r. This fact suggests to define —like
in the ordinary polynomial case— the concept of approximate roots.

DEFINITION 5.4. Let f(s,c) € K[s,c] be a normal form polynomial of degree n = rt. A
normal form, degree r, normed polynomial h(s,c) € L[s,c], where L s an extension field
of K, is a t-th appozimatle root of f(s,c) if there exists @ € L such that deg(f(s,c) —
aNF(h(s,0)t)) <n-r. O

Trivially, if g(z) is a univariate polynomial and h(s,c) is a normed polynomial, of degrees
¢ and r, respectively, then h(s,c) is a t-th approximate root of NF(g(h(s,c)) (since its
degree will be rt, by Lemma 5.3.). The key of the method for decomposing sine-cosine
equations is the following result wich shows the existence of t-th approximate roots and

how to compute them. As consequence we will obtain the calculation of f(s,c)-right
candidates:

PROPOSITION 5.1. With the above notation, there are ezactlyt, normed t-th approzimate
roots h(s,c) € K[s,c] of f(s,c), where K is the algebraic closure of K. More precisely:

(i) If faofa-11 #0, then there are ezactly t, monic on ¢, polynomaals, which are t-th
approzimate Toots of f(s,c).
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(1i) If fao =0 and t is an even number, then there are ezactly t, monic on c, polyno-
mials which are t-th approzimate roots of f(s,c)-

(i1i) If fao =0 and t is an odd number, then there are ezactly t — 1, monic on ¢, and
one, monic on ¢ and s, polynomials which are t-th approzimate roots of f(s,c).

(iv) If fnc11 =0 and t is an odd number, then there are ezactly t, monic on c, polyno-
mials which are t-th approzimate roots of f(s,c).

(v) If fac11 =0 and t is an even number, then there are ezactly t— 1, monic onc, and
one monic on ¢ and s, polynomials which are t — th approzimate roots of f(s,0).

ProOF. We consider normed polynomials h(s, ¢) of degree r, with indeterminate coeffi-
cients, and an indeterminate g:, and we impose that the terms of degree strictly higher
than r(t — 1) cancel out in the equation:

f(s,¢) = e NF(H, + ...+ Hi)' =

g:[NF((H;)")+ (tl) NF[(H,)' Y (Hro1+-+H)H (;) NF[(H,)" " 2(Hr-1+-. AH)H+)

Now, the degree of the second and latter terms in the above equation is at most 7(t —
D+(r—-1)=rt-1<rt=n. Thus, we can consider the equation

f(s,0)=g:NF(H,)',  (5.1)

and we determine H, so that the terms of degree n = rt in this equation cancel each
other, that is :

deg(f(s,c) — g NF(H,)") < n.
At this point, we have to distinguish two possibilities for the normed polynomial h:

(a) h is monic on c.
(b) h is monic on ¢ and s.

(a) In the first case, assume that H, = ¢" + Zoc"~'s. Then we have to compute values
of Zo and g; # 0 in some extension of K, so that the terms of degree rt cancel each other
in the equation (5.1). But

NF((H,)!) = NF(c" + Zo¢ “1g)t =
=D A, (Zo)c + Bi(Zo)ct~'s + D(s,c)] with t > deg(D(s,c))- (by Lemma 5.2.-(i))
Thus we have,
NF((H:)") = AlZo)c™ + Bi(Zo)c™ s + Q(s,¢)] with rt > deg(Q(s, c))

and

F(s,¢) — geNF((H:)) = (fajo = 9:4:(20))¢" + (F-11 = 0:Bi(Z0))c* s+ ...

Therefore, the values we are looking for are the solutions of the following system in Z,g::
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fn,O - gtAt(Z) = 0:
fn—1,1 - gtBt(Z) =0.

We remark that fno # 0 or fa—11 # 0, therefore no solution of the system makes
simultaneously A;(Z) = B:(Z) = 0; therefore the values of Z satisflying the system are
exactly the roots (on some finite extension of K) of the resultant polynomial M(Z):

M(Z) = fa0Bi(Z) = fa-1,144(Z)

and then we obtain the corresponding values of g substituting this value of Z and solving
some of the above equations.

Next, we will show inductively that the remaining terms Hi(s,c) of N F(h(s,c)) can

be computed by solving a linear system with unique solution. Suppose we have found
H,,...,H;y verifying:

deg(f(s,c) = NF(H, + ...+ Hipa)")) <r(t = 1)+ (i +1).

Then, to find H;, we arrange the equation

f(s,e)=NF(Hr +...+ H)

f(s,¢) = u(NF(H, + ...+ H1))' =

G(NF(H, + ...+ H)Y) + (i) NF[(H;+..-+ H) YW Hioy + -+ Hi)l+

t
+ (2) NF[(H, + ...+ H)' 2 (Hioa + ...+ Hy)?+ ]
and we realize that the degree of the second and higher terms is at most r(t—1)+(i—1) =

rt—(r—(i—1)). Therefore to cancel the terms of degree rt,rt—1,...,rt—(r—i) = r(t—1)+1
it is enough to study the equation:

deg(f(s,c)—NF(H,+...+H,-)‘)) <r(t—1)+1

Now, we are looking for H; = h;,oc" + h;_l,lci‘ls. We have,

NF(H,+...+H,~)‘ =

t : .
NF((Hr+ ...+ Hiz1)') + <1> NF[(Hy + ...+ Hig1)' " Hhioc + hisiac s+ )]+

The degree of the 3-rd and latter terms is at most r(t — 1) + i — 1, so in order to cancel
the terms of degree r(t — 1) + i we only need to consider the equation: f(s,c) =

@[NF((Hr + ...+ Hiz1)") + (i) [NF((Hy + ..+ Hipr) "D (hioc + hicaac 7))
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and to determine h; o and h;_1,1 so that terms of degree r(t — 1) + ¢ cancel each other.
Operating in the above equation, taking the normal form using again Lemma 5.2-(i), we
have that the terms of degree r(t — 1) + i involving hi o, hi—1, are:

[hioAi-1(Z0) — hi—l,lBt—l(ZO)]cr(t—l)-H + [hi,0Bi-1(Z0) + hi-l,lAt—l(ZO)]Cr(t—l)+i_15»

Now, in order that these terms cancel, we have to solve the following kind of linear
algebraic system:

hioAi-1(Zo) — hi—1,1B:—1(Zo) = a.
hi 0Bi-1(Z0) + hi—1,1At-1(Z0) = B-

where a, 8 and Zo are all known, in fact : involves fr(t—1)+i,0 and previously computed
terms of Hj,j > i+ 1; the same applies to B = fr-1)4i-11+ -+ and Zj is a previously
determined zero of the polynomial M (Z). The determinant of the above linear system is
Ai—1(Z0)? + Bi—1(Z0)? = (1 + 23)*~" (see Lemma 5.1.(1)). But (1+ ZZ)'~! # 0 because
if, say, i is a root of M(Z) then Tf—:"—l is an imaginary number, against the assumption

that /=1 ¢ K. Thus, there exists a unique solution.

(b) In the second case, we have that H, = ¢"1s and we must check if the equation
holds:

deg(f(s,c) — e NF(H,)") = deg(f(s,c) — @ NF(c~Ys')) < n.

We analize separately two subcases: ¢t odd and ¢ even.

(b-1) If ¢ is an odd number, then the above equation holds if and only if fao = 0. In
this case g; = fn-1,1, (see Lemma 5.2-(ii) ). The remaining terms Hj,7 =1 — 1,...,1can
be computed as above, yielding a unique solution.

(b-2) If t is an even number, then the above equation holds if and only if fo—1,1 = 0, in
this case g: = fn 0, (see Lemma 5.2-(iii) ). The remaining terms Hii=r—1,...,1can
be computed like in the above situation.

Finally, in order to know how many t-th approximate roots has f(s,c) has, we divide the
counting into several cases, (corresponding to the different items in the Proposition):

(i) I fa,0fn-1, # 0, then the polynomial M(Z) has degree t in the variable Z and all
its roots are simple (by Lemma 5.1-(v) ). So, there are exactly elements, Z € K
such that M(Z) = 0. For each root of the above polynomial, we find Zo = hr—11
and g; and the procedure above yields there are exactly ¢ polynomials H,. € K[s,c]
which are ¢-th approximate roots and monic polynomials on c.

(ii) If fn,0 = 0 and ¢ is an even number, then M(Z) = fa-1,14:(Z) and deg(M:(Z)) =11,
( see Lemma 5.1-(iv) ), and there are ¢ simple roots of the polynomial M(Z) and,
consequently, we obtain the claim.

(iii) Tf fo 0 = 0 and ¢ is an odd number, then deg(M(Z)) =t — 1 (see Lemma 5.1-(iv))
and there are exactly t — 1 roots of the polynomial M (Z) and t — 1 monic on ¢
polynomials which are ¢-th approximate roots; and one monic on ¢ and s polynomial
t-th approximate root, (see (b-1) ).

(iv) If fa_1,1 = 0 and ¢ is an odd number, we have M(Z) = faoB:(Z) and deg(M(Z)) =
t (see Lemma 5.1-(iv)). So, f(s,c) has ¢ monic polynomials on ¢ that are t-th
approximate roots.



36 J. Gutierrez and T. Recio

(v) If fa=1,1 = O and tis an even number, we have M (Z) = fn,0B:(Z) and deg(M(2)) =
¢t — 1 (see Lemma 5.1-(iv) ). So, f(s,¢) has t — 1 monic polynomials on ¢ that are
{-th approximate roots; and one root which is monic on ¢ and s.

Thus, the proof is complete. ]
5.2.2. THE ALGorITHM SCDECPOL

The basic structure of the algorithm is first to compute candidates and then to check if
they have a left component. We now give the details:

M1. Compute the normal form of f(s,c)), n = degree(NF(f(s,c)))-

M2. Set L = {}. For each divisor k of n, perform M3, M4, M5.

M3. Compute normal form candidates h(s,c) of degree k.

M4. Check if there is g(z) of degree t, n = tk such that:
NF(f(s,c)) = g(h(s,c)) modulo s24c2—-1.

M5.  If yes L = L{U(g(z), NF(h(s,¢))}-

The algorithm determines all possible non-equivalent decompositions of a sine-cosine
polynomial. From the computational point of view, the hardest step of the algorithm is
determining candidates, in step M3, (see Proposition 5.1). In order to compute candi-
dates monic on ¢, we have to find a root of the polynomial M(Z) in the variable Z,

M(Z) = fn,OBt(Z) - fn-1,1At(Z)-

We would distinguish two cases: fr 0fn-1,1 #£0and fao=00r fas11 = 0.
For the first case, we have, by Lemma 5.1.(v):

B(Z n—1,1 -
Gi«(2) = A—t-((f%z %—:ﬁ-:woZtow !
then,
Ztow™! :w‘lof—'}:floi,wherewz _T‘f—izl'—' and w™? :%:%%
Thus we only have to compute the t-th roots of w'l(i}—:—;*l) and to apply w to these

roots.
For the second case, we have to compute a root Z of the polynomial A¢(Z) or a root of
the polynomial B;(Z), again by Lemma 5.1. (iii), we have:

A(Z) = 0 implies:

a+izy
(1-1:i2)
B:(Z) = 0 implies:
(1+:i2) _
(1-izZ)t
In other words, we have reduced the main problem to computing the t-th roots of an
element in the field K (7). In many practical cases we have precomputed formulae or
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methods for extracting such t-th roots, such as when K is a subfield of the real numbers or
a parametric field Q(dy, . . ., dm) (Gutierrez (1991), Trager and Yun (1976)). Regardless,
the algorithm can decompose sine-cosine polynomials over any field extension of K where
we can find roots of M(Z) = 0, a very simple polynomial in K([Z]. If the ground field K
is a subfield of the real numbers, since w™! takes real numbers to the unit circle (in the
complex plane) and w takes the unit circle to the real line, then the algorithm determines
all 7irrational” decompositions of f(s,c) (see Example 5.1. and Example 5.8. below), and
we can also conclude that in this case all decompositions must be real. In this particular
case, we only have to apply the formula for the t — th root of a complex number.

5.3. THE COMPLEXITY

For a field K, we denote by Ri(t) the number of field operations to extract a t-th root
in K (i) and M (s) the number of field operations in K (i) that takes to solve a linear
system of s equations with s variables. The number of arithmetic operations in step M1
it is cleary linear in n (degree of f). Step M2 requires to know how many divisors n has,
i.e. O(n®), where 6 is any arbitrary small positive real number. Step M3 it i1s devoted to
compute candidates. The total complexity of this step is O(n®(Mk(n)+ Rk (n))). Finally,
step M4 it is dedicated to checking if there exists g(z) by solving a linear system on
the indeterminate coefficients of g(z) (with unique solution if it is exists). Therefore, the
complete algorithm can be performed within O(n? (Mg (n)+ Rk (n))). number operations
in the field K. For instance, if K is a subfield of the complex numbers, then no finding
root method is required and the complexity of computing candidates it is dominated by
solving a linear system equations. So the time bound for this step is O(n®) arithmetic
operations. and, therefore, the complete algorithm can be performed with O(n®) number
operations in the field K.

5.4. IMPLEMENTATION AND EXAMPLES OF THE ALGORITHM

We briefly discuss our experience gained from implementing the decomposition algorithm
for an s-c polynomial on MAPLE V. The implementation of all steps of the algorithm is
straightforward. For robotic applications, we would like to distinguish two cases: monic
candidates on ¢ and monic candidates on ¢ and s.

For the first case, we have to find a ¢-th root of a multivariate polynomial involving the
coefficients fu 0, and fn_1,1 Which are rational functions that generally contain parame-
ters. The most interesting decomposition in kinematics is when the candidate has degree
one; in this particular case, the polynomial M (Z) must have degree n in the variable Z.
Our implementation on MAPLE decomposes the multivariate polynomial and then looks
for power polynomials in the parameters. Most of the time is spent on this operation;
may be a more subtle t-th root finding approach could have an even better perfomance
(see Trager and Yun (1976) and Zippel (1993)). If our candidate is of degree greater than
one, then in practice, most of the time will be spent on the determination of the “left
component”, i.e. solving linear systems.

If we are looking for monic candidates on ¢ and s, in practice, most of the time is also
spent on the determination of the ‘left components” g(z).

Our procedure SCDECPOL has as input a s-c polynomial f(s,c) and ouputs the list of
lists [g(z), h(s, )] if £(s,c) has the decomposition NF(f(s,¢)) = g(NF(h(s,c)) modulo
the circle; otherwise SCDECPOL returns the empty list.
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The authors were able to decompose s-¢ polynomials of degree 8 with 100 digit coeflicients
highy complex terms within 20 seconds of CPU-time on an Apple Macintosh Centris 650,
using MAPLE V. Therefore, we think that the algorithm now can be a useful tool in
kinematics and we believe it is reasonable to adopt the decomposition test in solving the
kinematic equations.

EXAMPLE 5.6. The s-¢ polynomial f(s,c) below (see also Kovécs and Hommel (1992))
contains two formal parameters a and p. The parameter a could be some link paramter
a; and p may represent some position parameter:

f(s,¢) =
18972 ¢* — ¢ (5840 a + 1752 p) — c? (44892 + 3168 a + 2016 ap) +¢(6120 a+484>+1764p

+48 a2p) + 26019 + 2058 ap + 18 a3p + s[(—12096 ¢® — c* (12880 a + 3864 p) +
¢ (13608 + 924 a? + 588 ap) + 4116 p + 336 a’p + 15400 a + 336 a®] + 3384 4% + 13a*

In this case K = Q(a,p), and actually, all coefficients belong to the polynomial ring
Zla,p]-
We apply the procedure SCDECPOL to f(s,c):

SCDECPOL(f(s,c))=

[13a* + 18a®p + 150a® + (48a® + 240 a + 48 a’p) z + (42ap + 66 a® + 90) 2+
(40a+12p)z3 +92z*, c+Ts]

time 2.36 words 65128 .0

EXAMPLE 5.7. Let us consider the following numerical s-¢ polynomial f(s,c) with coef-
ficients over rational number field K = Q:

— 4270526070 s + 61774930046775 ¢ + 669964656943644 s*c+
2327784495058306561186364871 s2c? — 4460854486596 s%—
033425855495016661185 c2 — 9691328376007048326 sc®—
107280460040652354123360 s3¢ + 81180793210769381823600131204888151 ¢*
+171619854300504720 ¢ + 24168288660858033955475184 53¢
—1814889107572207526765722824 s3¢3 — 22448245171778614340725571593128 sc?
+129056539685518305 sc — 349604600320565643596072385240 352+
13126609881140465919861837965178 c*s? — 98733455500 + 1854085472287462512 s*
—4176282369914618086019232 ¢5s3 + 45429059202423915535644349908 c*s>—
464906620050728393546958993120 ¢®s + 1685729287411107879583398465933300 c*s+
110934304585807567036032 852 — 2413452111312631432049207712 c°s?
—29851831981936756779881579532000 c® — 252282079514824702801920 c”+
5798078855747039232 c® + 4116422604870988090525123200 c®—
1309662394966451054592 ¢” s + 42738874657310635576932096 c®s+
62731934734335222034728 s%c? + 58958321656159136627605287 s*c*
—3140517828291004571049864 s*c® — 556920985034480917536 s*c
Applying our SCDECPOL code to the above s-¢ polynomial yields:

SCDECPOL(f(s,c) =

[—98733455500 — 5678975160 x — 7888514716224 z? 4+ 57980 78855747039232 z*,
¢® — 567859,/10056 sc — 109387465/10056 ¢ + 3781/5028 5]
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time 7.46 words 236423 .11

EXAMPLE 5.8. Let us consider the following numerical s-c polynomial f(s,¢), also with
coefficients over the rational number field K = Q:

1055 c% + 935 sc + 2341.

Now, we apply our ASCDECPOL code, which uses the implementation of roots of unity
in MAPLE V:

ASCDECPOL(f(s,¢)) =

[ (SR + L + ()b + )+ 2041, c— (B + L)

[ [(—25%)(388 — YT580) 2 4 (- 38) (L - Y20)5 43396, c— (3B — 33— L3P0)s] |

187 187 187 187 —\137 ~ 187 187
time 12.33 words 991168 .1

6. Conclusions

Several methods for simplifying sine-cosine systems solving have been analyzed. Some,
such as the extraneous root analysis, can be performed before triangularization of the
given system; some, such as the SCDECPOL algorithm or the factorization are carried
over the highest degree equation in one joint angle, obtained after triangularization. We
have shown how, even with parametric coefficients, decomposition can be performed on
low polynomial time. The relation of the different simplification methods with previous
work (BHD decompositions, Grébner basis, co-circularity, geometric conditions for sim-
plification, half angle substitution methods) has been carefully stated. We have remarked
on points of the preceding arguments and tools, and completed them in many instances
with more conceptual insight.
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