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Abstract. We introduce and analyze the concept of generic width of
a semialgebraic set, showing that it gives lower bounds for decisional
complexities. By means of the computation of the generic width we are
able to solve rigorously the complexity problems posed by M.O. Rabin
in [10], such as optimization of linear mappings on finite sets. We show
that the results on the generic width can also be applied to obtain lower
bounds for problems which in general do not admit a linear mapping
description, such as optimization of polynomial mappings on finite sets,
existence of a real root, finite selection and subset decision, or the direct
oriented—convex hull problem introduced by J. Jaromczyk in [8].
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1. Introduction

Within the general framework of algebraic complexity theory, a paper of M.
O. Rabin ([10]) discussed the optimality of algorithms solving the membership
problem for convex sets given by the simultaneous positivity of linear forms.
Formally, the author analyzed the complexity of convex sets of the kind

W={zeR": Li(z)>0,...,L.(z) >0}

where the L; : R"™ — IR are affine linear functions for 1 < j < m. The
main applications presented by Rabin deal with lower bounds for the following
problems (involving real numbers as inputs, and all having complexity O(NV)).

PROBLEM 1.1. Given N real numbers zy,...,zy € R, find j such that z; is
the maximum of all of them.
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PROBLEM 1.2. Given N real numbers Zy,...,zy € R, find j such that z; is
the minimum of all of them.

PROBLEM 1.3. Given 2N real numbers T1y-+ZN, Y1, ..., yn € R, find j such
that z; + y; is the minimum of all the sums z; + yi for 1 <7 < N.

PROBLEM 1.4. The membership problem for an N-orthant, i.e., givenz € RV
decide whether z belongs to the semialgebraic set

ON={z=(:1:1,...,zN)€IRN:zl20,...,:1:1\;20},

Problems 1.1 to 1.3 above are particular cases of the maximization and
minimization of linear functions over finite sets problem. As in [1], one can ask
the natural question: why can’t these problems be solved in constant time?

Rabin’s computation model in [10] is the (non-uniform) model given by
a sequence of algebraic computation trees {Tn}nen. In terms of the size N
of the problem instances (the cardinality of the input set), the complexity of
the problem is the number of arithmetic operations and polynomial sign tests
that are performed to reach a leaf in Tn. As was observed in [9], a usual
method to obtain lower bounds in this model is to choose a weaker measure of
complexity: for instance, Rabin introduced decisional measures of complexity
(taking arithmetic operations for free). Then, he computed the width of a
complete proof of a simultaneous positivity for the convex set W, claiming
that, in general, the minimum width gives a lower bound for the decisional
complexity of each problem. In order to conclude this claim he argues that a
complete proof is immediately obtained from an algebraic computation tree,
showing in this way that Q(N) is actually a lower bound for the problems.
As remarked in Section 3 below, the relationship between complete proofs and
algebraic computation trees is not so straightforward, and the validity of using
the width as a lower bound is not so clear.

In 1981, J.W. Jaromczyk [8] extended the concept of the width of a complete
proof to the case of non-linear polynomials, but without noticing this problem.
Thus, he also assumes—without any proof—that the width of any complete
proof relative to the trivial clause [1 # 0] provides a lower bound for the
following geometric problem.

DIRECT ORIENTED-CONVEX HULL PROBLEM (DO-CH PROBLEM). Given a
sequence (z1,...,2y) of points in the real plane, z; € R?, decide whether they
are the clockwise oriented vertices of their convex hull.

The present note intends to fill in the gaps in (8] and [10]. First, we consider
the complexity analysis in the more general setting of semialgebraic sets; see
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Section 2 for definitions. Then, in Section 3, after extending the definition
of width in [8] and [10], we introduce the concept of the generic width of
a semialgebraic set. The relation and differences between width and generic
width are explained in Subsection 3.6. Next, in Section 4, we prove that the
generic width gives a lower bound for the decisional complexity. We remark that
it is unknown whether the “width” is a lower bound for decisional complexity.
Luckily we arc able to compute in many cases (sec, for instance, Corollaries
3.9, 3.10, and 3.11) the generic width of a semialgebraic set and we observe
that, in the examples studied by Rabin, the generic width agrees with the
minimum width of any complete prool relative to any non-zero polynomial
(see Subsection 4.5). As an application of Theorem 3.8, we are able to show
that Problems 1.1 to 1.4 above and the DO-CH problem all have linear lower
bounds, as stated by Rabin and Jaromczyk respectively (see Subsections 4.1
and 4.2).

Our techniques are also applied to new problems involving non-linear poly-
nomials, as finite polynomial optimization (which strictly includes Problems
1.1 to 1.3 above).

Let f € R[X},...,X,] be a fixed non-constant polynomial.

FINITE POLYNOMIAL MAXIMIZATION. Given a finite set F = {zy,...,zn} C
IR™ find an element z; € F such that f(z;) is the maximum of f(F).

FINITE POLYNOMIAL MINIMIZATION. Given a finite set F = {z,,...,zn} C
IR™ find an element x; € F such that f(z;) is the minimum of f(F).

Other applications are finite subset decision, finite selection (under the hy-
pothesis of real complete intersection) and existence of a real root (see Section
4 for more detailed descriptions).

The main technique used in Section 3 of this paper to compute lower bounds
of the generic width of semialgebraic sets detects a local obstruction which is
invariant under semialgebraic diffeomorphisms (i.e., Nash diffeomorphisms).
Namely, we find that for any semialgebraic set W with a Nash m—corner
point, the inequality m < wyen (W) holds (see Theorem 3.8 below and {13] for
the terminology). Therefore, the complexity of W is also greater than m. We
think that this is an interesting result by itself, since the usual methods used to
provide lower bounds of semialgebraic sets regard only some global geometric
features of the considered set, such as connected components or geometric
degrees (see [1], [9], [14], or [15]). For this reason, we have introduced as a
mere technical device some facts from real algebraic geometry and elementary
Nash function theory (see 2] and {3]).

comput complexity 4 (1994) Rabin’s Width

2. Decisional Measures of Ooav_mxm»%

A semialgebraic set is a subset W of some real affine space, W C R", that
be described by a boolean combination of polynomial equations and ineq:
ties, i.e., the set W can be given as

W=[J{z€R": p(z)=0, g ;(z)>0 for j€J},
i€l

where the polynomials p;, ¢;; € R[Xy,..., X, fori € I, j € J, and [/
are finite sels. The subset W is said to be open basic in IR™ if #1
and only strict inequalities occur. Closed basic semialgebraic subsets W
IR"™ are those given as a simultaneous positivity of arbitrary polynomials,
W = {z € R" : ;{z) 2 0,...,p.(z) > 0}. The following result rel:
the property of being closed (respectively, open) for the Euclidean topol
in R™ and the existence of formulae describing the set only with “ > 0” :
conditions.

FINITENESS THEOREM (see (3], 2.7.1, [7], and [11]). Every closed semia
braic subset W of R™ is a finite union of closed basic semialgebraic sets,
there are non-negative integers k, t, and polynomials p;; € R[X;,.
such that

ey

W = GT« €R":pii(z) 20,...,pix(z) > 0}.

=1

As a consequence of this, by taking complements, semialgebraic sets o
in the Euclidean topology in R™ are finite unions of open basic semialgeb
sets.

An algebraic computation tree (ACT for short), T = T(X,,..., X,), in
duced in [1] and [10], is a rooted binary tree with a finite number of no
Nodes are of four types: just one input node (the root of the tree, accep!
z = (z1,...,2,) € R™ as input), computation nodes (nodes with just one ¢!
where an arithmetic operation is performed), branching nodes (nodes with
children where a sign test “z; p 07", u € {>, >, =} is executed for some prec:
puted 2;) and output nodes (also called leaves, labeled with the correspone
YES/NO answer). With respect to the definitions in [10] we have added :
tests of the form “P = 07” but this does not modify either the model of ¢
putation or the complexity measure we describe below. Both approache:
describing ACT’s are essentially equivalent.

The subset W(T) of R™ accepted by an ACT, T = T(X1,...,Xs), is

subset of all points in IR™ that follow a path in T from the root to some
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ROLLARY 4.5. Under the above hypotheses, finite subset decision and finite
‘ction have complexity in Q(#(F)) = Q(N).

)OF.  First of all, observe that the ideal T = (f1,..., f1) is a real complete
rsection ideal and there must be a point o € R" such that

Sile)=0,..., fala) =0, and rankJ(fy, ..., fi)a = d.

On the other hand, to get lower bounds for finite subset decision, we note
it can be understood as the membership problem for a semialgebraic subset
C IR™. As above let us denote by (Xi,...,Xun) the coordinates of the
wents of IR™ and define the polynomials

.Qs.L.AMNT ceey X:ZV = .\...Avp.:+7 ey \AQ+C:V. A%va
We have the following equality:

SD= {(x1,...,Ton) € R™ :
gij(z1,...,2on) 2 0for 1 <i<dand 1 <j < N}

Iinally, the point A = (@, ...,a) € R™ verifies the hypothesis of Corollary
and dN < wyen, (SD,R™), which is smaller than the complexity of finite
et decision.

tor finite selection, the hypothesis implies that the property R above is
trivial, so we have a non-empty semialgebraic subset of S C R™ given
"= {(z1,..-,28) € R™ . no z; verifies property R}.

,ower bounds for finite selection can be immediately obtained from lower
nds from the membership problem for S. However, using the notation of
.2), we observe that

S= {{z1,...,2.n) ER™ :
gii(z1,..,znN) <0for1<i<dand 1<j < NJ.

I'he point B = (a,...,a) € R"Y verifies the hypothesis of Corollary 3.9.
ce, dN < wyen(S,R™) < Cp(8S), which is a lower bound for the complexity
nite selection. 0O

Existence of real root condition. Here we consider the size of for-
ae that describe the existence of real roots for any polynomial of a fixed
ee d. Any of these formulae describes a semialgebraic subset of R4, Qur
rose now will be to prove the following Corollary.
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COROLLARY 4.6. Any quantifier free first order formula equivalent to
JzeR  Xaz* 4+ Xg2¥ '+ + Xo=0 (4.5.1)
involves at least m polynomials.
Proor. Consider the polynomial
P(Ty,....,Tg, X) = (X* +T1) - (X* + Ta).

From any formula ®(Xy, ..., Xo) equivalent to {4.5.1), we obtain by substitu-
tion a formula (74, ..., HmV describing the semialgebraic set

mn:?....Emﬁm“m_am_wm:%;aw?z:,;,sns
2 2
={t L0}U...U{ts <0}.

d
2

The number of polynomials involved in ¢ is bigger than the decisional com-
plexity of E. Finally,

d
Cp(E,R%) = Cp(E, R) > wyen({t1 > 0, g > 0}, R%) = 5 O

4.5. Rabin’s Theorem Revisited. Finally, we remark that Thecorem 3.8
and Proposition 4.1 above yield as a consequence Rabin’s claim in a particular
case: one may use the minimum width of complete proofs as a lower bound
under the strong restriction of linear functions and sign independence.

As in [10], a collection py,...,pm : R® — IR of polynomial mappings
is said to be sign independent in an open semialgebraic set U C R™ if, for
every sequence of sign conditions pi,...,um € {<,=,>}, the set {z € U :
()0, ..., pm(z)pm0} is non—empty.

COROLLARY 4.7. Under the conventions of Section 3 and Definition 3.1, let
SP(X) be the formula Li(X) > 0A--- A L,(X) > 0 and W the convex set
W={zeR": Li(z)20,...,L,(z) 2 0}. Then,

i) for every complete proof P of SP(X) relative to some non-zero polyno-

mial Q(X), woen(W, R™) < Width(P),

i} if, in addition to the above hypothesis, Li(X),...,Ln,(X) are sign inde-
pendent in R™, then we have

wWyen(W, R™) = @(W,R") = m = Cp(W).
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OBLEM 4.3. Decide whether z, verifies f(z,) = max f(F).

is is the membership problem for a semialgebraic subset of M C IR™.
are going to describe this subset. Let us denote by (Xi,...,X.n) the
rdinates of the elements of R™. Let us also define the set of polynomials:

Qmﬁvﬂ: e ,X:ZV = .\.AX:. . .kav et .\AX..:+T. . JXT.+C=V,
ore 1 €¢ < N —1. Clearly, we have
M= AH € 532 H.QHAHV N O,. . .q.QZInﬁnﬁv N Ov.

f is a non—constant polynomial, the polynomial g{Xy,...,X,,Y1,...,Y,) =
Xiy..vy Xa) — f(Y1,...,Y,) changes sign in IR*". Now, applying the Change
Sign Criterion for real hypersurfaces (see E, 4.5.1), we know :58 is a
nt (e, B) € R*" such that g(a,B) = 0 and mEAQ B) #0 or So (o, B) #
or some j, 1 < j < n. Finally, consider the point A = (o, 4,...,8) € R™Y
ifying g1(A) = --- = gn-1(A) = 0 and rankJ(g1,...,9v-1)4 = N—1. Then,
-1 < Wyen (M, R™), which is smaller than the decisional complexity of M,
wvanted. O

Direct oriented—convex hull. As was observed in the Introduction,
+ problem was motivated by the work of J. Jaromczyk [8], who applied the
{th directly to get lower bounds for the DO-CH problem. The limitations
his approach are those of [10], which we have discussed in Section 3. Now,
provide lower bounds for the problem using Theorem 3.8 and, specifically,
ollary 3.10.

ROLLARY 4.4. The problem DO-CH has complexity at least Q(N).
OOF. Given z; = (zi,¥:), 2; = (2j,¥;), 2x = (T, Yx), define
det(z;, 2k, 2;) = 2. (4 — y5) + yr-(2; — ) + yj.20 — yix;.

: decisional problem DO-CH is the membership problem for a semialgebraic
set of R>M given by

D= {(z1,...,2n) € R*N : det(z1, 2y, 25) > 0,.
det(zn_2,2n-1,2n) > 0,det(zn_1, 2N, 21) 2 0,det(zn, 21,22 > 0)}.
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From Corollary 3.10, it is enough to observe that the point A € R?¥ given by
A=((1,0),(2,0), ...,(N—=1,0),(N,~1))

verifies the following equations:

det((s, VQ+H8?+movao for 1 <:< N -3,
det((N - 2,0),(N — 1,0),(N,-1)) > 0,

&mﬁ: |_ Ov AZuIHV,AH,ovv > 0,
det((N,0),(1,0),(2,0)) > 0,

EEQEQAN: Z9,23),...,det{zN-3,2N-2,2N-1))a = N — 3.

Thus, we conclude that N —3 < wyen(D,R?N) < Cp(D), which is smaller than
the complexity of DO-CH. O

4.3. Finite subset and finite selection in real complete intersections.
These problems arise naturally in computational geometry. We have some
fixed subset A C IR™ and a property R on points of IR”. Then, we consider
the following questions.

FINITE SUBSET DECISION.Given a finite set F = {z1,...,zn} C R", decide
whether F C A.

FINITE SELECTION.Given a finite set F = {z1,...,zy} € R™, find a point
x; € F such that z; verifies property R.

The model of algebraic computation trees can only be applied when A is
a semialgebraic set or R is a property described by a first order formula over
the reals. Our lower bound method applies, {or instance, under the following
conditions:
Assume {fi,..., fa} € R[X},..., X,] to be a collection of polynomials
such that theideal T = (fy,. .., f4) is real of height d. Let us also assume
for A and R the following hypotheses:

A={z € R": fi(2) 20,..., fulz) > 0},
\\N‘I ﬁ\wAXT....X:v N O_<<~.\.RAX:4>X=V N OH

Observe that in the case d = 1, the above hypotheses simply mean that
f1 changes its sign in R™ or equivalently that R is not the trivial property
[1 > 0] (see {3], 4.5.1, for more detailed descriptions). Now we want to show
the following.
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JLLARY 3.10. Let fi,...,fm € R[Xy,...,X,] be a collection of poly-
als for which there is a point a € R"™ and a non-negative integer k,
- < m, such that

fl@) = ... = fi(@) =0, fir (@) > 0,..., fm(a) > 0

he rank of the jacobian matrix verifies rank J(f1,..., fi)a = k. Then, the
ving inequality holds:

k<wgen({z € R™: fi(z) >0,..., fu(z) > 0}, R™).

)F.  First observe that the point « is a k-corner point in the semialgebraic
i 20,..., fm > 0}. Consider a semialgebraic open neighborhood U of «
ined in the open set {z € R™ : fi41(z) > 0,..., fm(z) > 0}

observe that the generic width of a set S in U is that of SNU in U. Since
llowing set equality holds:

{zeR™: fi(z)20,..., fu(z) 20} NV
={zeR": fi(z)20,..., fiz) 20} NV,

rrollary 3.9, we conclude that
Wgen({x € R™: fi(x) > 0,..., fm(z) > 0},U) = k.

tatement follows since for every semialgebraic set S C IR™ and every open
Igebraic subset U of IR™ we have wyen (S, U) is at most wyeq(S,IR™). O

JLLARY 3.11. Let fi,..., fa € R[Xy,...,X,] be a collection of polyno-

such that the ideal T = (f1,..., f4) is real and of height d. Then, the
‘ing inequality holds:

d M E.ea:AA.\.g N OT.J.\.& |V| Ow'mﬂ:v

ie proof follows from the observation that 7 is a real complete intersection
here must exist a simple point @ € R™ of the algebraic set described
e equations {f; = 0,...,f; = 0}. This point is a d-corner point of
0,..., f¢ > 0} and Theorem 3.8 applies.
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4. Applications of the Generic Width

We have mentioned previously that the main Theorem in [10] can not be im-
mediately applied to obtain lower bounds of decisional complexity as done by
Rabin. Actually, Theorem 3.8 and its corollaries are very useful in this sense
because of the following Proposition.

PROPOSITION 4.1. Let W be a semialgebraic subset of R™. Then,

N
EbmSA

gvﬁzv m E.cnq,AS\'E\:v m QDAS\V

ProoOF. Let T be an ACT solving the membership problem for W. Let
I'1,...,T; be the oriented paths in T from the root to some leaf, ending at an
affirmative label (i.e., paths followed by inputs belonging to W).

We have W = W(T) = U, W(I;), where W(T;) is the semialgebraic set
given by the sequence of polynomial sign conditions occuring in I';. After a
renumbering, let * < r be such that there is no equation among the sign
conditions describing W(I;) if and only if : < r’. Let W’ be the semialgebraic
set given as W' = %n_ W (T;). Clearly, W' is generically equal to W in R™.

Let W"(T';) be the closed semialgebraic set obtained after replacing the
strict sign conditions occuring in I';, “> 07, by the relaxed sign conditions
“> 0”. Then, let W” be the union of those W”(T';). The proof is complete

once one observes that the following conditions hold:
i) W"is generically equal to W in R™ and thus we..(W,R") < w(W",R"™),
i) w(W” R™) < hp(T). O

4.1. Finite polynomial optimization. Problems 1.1 to 1.3 of the In-
troduction are particular cases of finite polynomial maximization and mini-
mization. Now, we observe that our analyses in Section 3 and Proposition 4.1
provide linear lower bounds for all of them regardless of the fixed, non-constant

polynomial f € R[Xq,..., Xy

COROLLARY 4.2. Both problems, finite maximization and finite minimization,

have complexity at least Q(N) = Q(#(F)).

PROOF. We do the proof only for maximization. First of all, note that lower
bounds for the complexity of maximization can be immediately obtained from
lower bounds of the following problem.
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an affirmative answer. Observe that the subsets accepted by some ACT
he class of semialgebraic sets coincide. Asin algebraic complexity theory,
tal complexity of a semialgebraic set W is defined as the minimum height
~ ACT accepting W (see [1], [9], [14], or [15]).

order to deal with the problems stated in Section 1, [10] introduces a
T measure of the complexity that takes arithmetic operations for free.

NITION 2.1. Let T' be an algebraic computation tree and W a semialge-
subset of R™.

The decisional height of a path T from the root to some leaf in T, hp(D),
is the number of branching nodes occuring in T'.

Likewise, the decisional height of T, hp(T), is the maximum of all the
decisional heights of all paths I in T

The decisional complexity of W, Cp(W), is the minimum decisional
height of all ACT’s solving the membership problem for W,

OSITION 2.2. The decisional complexity of any semialgebraic set of di-
on d can be bounded by an effective function of d.

F. Given a semialgebraic set W of dimension d it can be decomposed
* union of a semialgebraic set which is open in the Zariski closure of
1s a semialgebraic set of strictly smaller dimension. Now, every open
igebraic set in an algebraic set of dimension d can be written using at
i(d) x t(d) polynomials, where s(d) and t(d) are the upper bounds of the
't invariants (see [5] and [6]), and are some effective functions of d. In
{d) is defined as the minimum number of polynomial strict inequalities
') needed to represent an open basic semialgebraic set in an algebraic set
limension d. In the same way, ¢(d) is the minimum number of unions of
‘losed semialgebraic sets needed to represent an open semialgebraic set
gebraic set V of dimension d. Brocker’s work shows that these bounds
l only on the dimension d and not on the particular algebraic variety
one considers the semialgebraic sets. More concretely, it is shown in [5]
{d) equals d and

A&lﬂ
M) SUd=1)+{, 0y o0,

ore the decisional complexity of this open set is at most s(d) x t(d) +1:
ay construct an ACT that tests, using just one branching node, the
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membership in the Zariski closure of W, and then concatenate the s(d) x t(d)
polynomials to test membership in the open set. Since the zero dimensional
case involves only decisional height one, we use induction on the dimension of
the semialgebraic set W to complete the proof. O

REMARK 2.3. The decisional complexity is clearly a lower bound for the to-
tal complexity of any semialgebraic set (counting also the number of involved
arithmetic operations, as in [1] and [9]). But Proposition 2.2 above shows
that decisional complexity fails in most cases to approximate total complex-
ity; in fact, one can exhibit semialgebraic sets in R™ of arbitrarily high total
complexity while the decisional complexity is always bounded by a function of
d < n. For example, an algebraic subset of R always has decisional complex-
ity one, but the total complexity depends on the number of its components.
Another example is that of regular polygons in R? having decisional com-
plexity two, regardless of the number of vertices—which determines the total
complexity (see [9]). Notice that every regular polygon Q in R? is given as
Q= {(z,y) € R%: P(z,y) > 0,Q(z,y) > 0}, where P(X,Y) is the equation
of the circle passing through all the vertices of Q, while Q(X,Y') is the polyno-
mial given as the product of the equations of all lines passing through the sides
of the polygon Q. This behavior can explain in precise terms the comment of
Ben-Or in [1] about the failure of the methods of Rabin and Jaromczyk, using
algebraic decision trees, to give non-linear lower bounds for some problems.

We can observe that the decisional complexity is not necessarily a lower
bound in terms of the input size. For instance, in [1] Ben-Or analyzed lower
bounds for the total complexity of the following problem.

ELEMENT DISTINCTNESS PROBLEM. Given Ti,...,n € R, is there a pair
i,J withi# j and z; = ;7

A Q(NlogyN) lower bound for the total complexity of this problem is given
in [1]. However, the decisional complexity of ELEMENT DISTINCTNESS is clearly
1.

3. Generic Width of a Semialgebraic Set

Nevertheless, the decisional complexity provides 2 useful lower bound for some
other problems (where topological methods as in (1] and [9] fail), when com-
bined with the analysis of the concept of width according to the following
definition: denote by SP(X) the formula given by the conjunction

LX) 2 0A - A Ln(X) >0
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* this last set is closed and g{ax) = 7}, - h(ax) # 0, then

aelJ{zeU: qj(x)20,...,¢m1,(z) 2 0}\ {z € U : g(z) = 0},

1=1
h gives the inclusion. O
‘ow, for every 1 < j < t, reordering the indices ¢ if necessary, define s(j)

that r; ; = 0 if and only if 7 < s(j). We have the following cases.

If s(7) = m — 1 then the set

{zelU:zm>0,q,(x) 20,...,q,_, ;(z) 2 0} \ {=(z) = 0}

has no common point with the hyperplane {z € R" : z,, = 0} since other-
wise, by continuity, there would be a point z in A,, with m—coordinate
Iy < 0.

If 5(j) = m—2 the condition ¢;,_, ; > 0 always holds over the set of points
*&. € U: Tm = O“Q“.Q.A&v N oq...,e“:lm;.?uv N Ow / *& € Q : Q_A&V = 9w
since otherwise, by continuity, there would be a point z € {z € U :
qui{z) > 0,0 gm-25(z) > 0,¢,,_,;(x) < 0} \ {z € U : n(z) = 0}
with m-coordinate z, < 0. Since ¢m_1,/(z) = Zm - ¢},_, ;(z) > 0 and
g(z) =z, - h(z) # 0, by equality (3.7.1) this point would be in A,,.
Finally, if 0 < s(j) < m — 2, let us define the following Nash functions
o g, if1<i<s(i),

. G0y Hs()+2<i<m-1.

Then, we have the following set equality:

{zelU: 2, =0,q1,(2) 20,...,q,_,;(z) > 0,7(z) £ 0} =
{zelU: zm=0,q,(z)> 0., qy5.5(z) 20,
QQQIN\A&V 20,..., @SI_QA&V 2 O,\:.AHV # Ow

Otherwise, there would be a point z € U satisfying the system of equa-
tions and inequalities

Tm = O. QMLA.\HV 2 Oq c-- .Q.“?v.uﬁﬁ.v > Oﬁ
iy~ Dai)+25(2) 2 0se s iy 5+ G j(2) 2 0,7(2) #0,
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so that ¢; ;(z) < 0 for some 7, s(j) +1 < ¢ < m — 1. This would imply
that ¢; ;(z) < 0 for every s(j) + 1 < ¢ < m ~ 1. Now, by continuity, one
can choose a point y satisfying the following system:

Ym < 0,q1;(y) > 0,...,q5;y,(¥) >0,
Q“Ei_b.@v <0,y Gy ;(y) < 0,7(y) #0.

Now, observe that we have ¢;;(y) = ym - ¢/;(y) > 0 for s(j) +1 <1 <
m — 1. On the other hand, for 1 <1 < s(3), ¢/ ;(y) = ¢:;(y) > 0 and
9(y) = yI, - h(y) # 0. Finally, by equality (3.7.1), this point y would be
in A,, and we would arrive to a contradiction since y,, < 0.

Identifying R™™" with the linear hyperplane {x € R" : z,,, = 0}, it follows from
1 to 3 above that the Nash generic width of A,,_; in R™! is at most m — 2,
which contradicts the induction hypothesis; thus, the proof of Proposition 3.7
is complete. O

From the classical literature, we define Nash m-corner points (see for in-
stance [13], p. 15) in semialgebraic sets W C IR" as those points a« € W such
that there is a Nash diffeomorphism of a neighborhood U of « onto a neighbor-
hood U’ of the origin, such that under this diffeomorphism W N U looks like
{z:20,...,z. > 0}.

THEOREM 3.8. For a semialgebraic subset W C R", if there is an m~corner
point « € W, then m < wy,, (W, IR").

The proof follows in a straightforward manner from Proposition 3.7. The
following corollaries deal with more concrete instances where the hypothesis of

Theorem 3.8 holds.

COROLLARY 3.9. Let pi(X),...,pn(X) € R[Xy,...,X,] be a collection of .
polynomials, and let a be a point in R"™ such that py(a) = 0,...,pn(a) =0
and the rank of the Jacobian matrix defined by pi(X),...,pn(X) at « is m,
i.e., rank J(py,...,pm)a = m. Then,

Won({z € R™ 1 p1(2) 20, pm(@) 2 0},U) = m
for every open neighborhood U of o in R".

Proor.  The hypothesis means that {p;,...,pn.} is a subset of a regular
system of parameters near a. Thus, using the local (Nash) coordinates of the
Implicit Function Theorem for Nash functions (see [3]) we can identify W,
near «, with an m—corner, and the Corollary is then a consequence of Theorem
3.8. O
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e conclude that C C {(z,y) € R*: [T!_, Pi(z,y) = 0} and X® — X? — y?2
s [TIie; P(X,Y). Then, since X* — X2 _Y? s irreducible, X3 — X% —Y?
s P(X,Y) for some i, which finally implies Pi(0,0) =0, (0,0) € W, and
ve arrived at a contradiction.

1 the other hand, it is easy to find examples where the last two values in
requality of (3.6.1) differ. For instance, consider the semialgebraic subset
R® given by

S={(z,9,2) e R®: 7 >0,y > 0,—2% > 0}.

Proposition 3.7 below, we can prove that w(S, R =2 but-1>0isa
lete proof of S relative to Z € R[X,Y, Z].

OSITION 3.7. For every open semialgebraic neighborhood U C R™ of the
0 € IR", we have

E%mzia ER":2,20,...,20 20},U) =m.
1. We show that for every open semialgebraic neighborhood U of the

0 € IR", there are no Nash functions g, g;; € N(U)\ {0} such that the
ing equality holds.

Ui 20,...,2, 20} \{z € U: g(z) =0}

G {zeU: qj(2)20,...,qm-1,(2) 20} \ {z € U : g(z) = 0} (3.7.1)

J=1

' may assume that U is an open ball centered at the origin and proceed
luction on m (< n). The case m = 1 follows from the observation
z € U : z; < 0} is a non-empty open semialgebraic set, hence the
gebraic set {z € U : 2y > 0} can be generically equal neither to IR™ nor
empty set.
ppose that the induction hypothesis is true for m — 1 and suppose that
are Nash functions g, ¢;; € A'(U) \ {0} such that the equality (3.7.1)
The strategy we follow in this inductive step will be to get from the
ty (3.7.1) a description of {z; > 0,...,Zm_q > 0} as a subset of IR™!
; Nash generic width at most m — 2. The rest of the proof shows the
ture that generates this description.
te that if f,h € N(U)\ {0}, the semialgebraic set {z € U : ¢- h(z) > 0}
rically equal to the semialgebraic set {z € U : h(z) > 0}. Then, without
generality, we can assume that the factorizations in N'(U) of the Nash

comput complexity 4 (1994) Rabin’s Width 25

functions g and ¢;; occuring in the equality (3.7.1) are square free. Now, for
each pair of indices (7, j) there is an r; ; € {0,1} such that ¢;; = zn” - g ; and
q;; is not in the ideal (z,,)AV(U). In the same way, there is an r € {0,1} such
that g = 2, - h and b & (2,,)AV(U). Let B be the subset of U given by

t
m = CAH € Q C T N O, Q“LAHV N Oq. . ,Q“-_IHLAHV N Ow
3=1
and let m be the Nash function = = ATJ;; q;;- For simplicity, let us write
Ap={x€lU:2;>0,...,2, >0}

CrAIM. Under the above notation, the following equality holds:
An\{z€U:n(z) =0} =B\ {z€U:n(z)=0}.

PROOF. For the first inclusion, let us consider a point « in the semialgebraic

set Ap \ {z € U: n(z) = 0}. Note that it is the limit of a sequence of points
{ar = (Zt1,- -+, Thn)}yen Ccontained in Ay, \ {z € U : 7(z) = 0} such that for
every k € IN, x4, is strictly positive. Then, g(ax) = z},, - h(ax) # 0 and from
the equality (3.7.1) we conclude that

ferteen € ULz €05 qui(x) 2 0, gmons(@) 2 0}\ {z € U : g(2) = 0},

j=1

Since zxm > 0, if g € {z € U : q15(x) 2 0,...,¢m-1,;(z) > 0}, we conclude
that g; ;(ax) > 0 for 1 <i < m — 1. This implies that

ar€{zelU: 2z, >0,q ,(z) > 0,.. s gy (z) > 0}.

Hence, {ar}ren € B and, taking the limit of the sequence, the inclusion fol-
lows.

As for the converse, assume an element o = (21,...,Zm, Tmy1,. .. ,Zy) in
B\ {n(z) = 0} to be given. There must be a j, 1 < j < ¢, such that

0 € {r €U a2 0,¢1,(2) 20, gy (2) 2 0\ {z € U m(z) = 0)

and « is the limit of a sequence of points {ay = (z4,... 2 Zkn) been contained
in the open set

{zeU:zn>0,q,(z)> 0, s Gpo1;(z) > 03\ {z €U : n(z) = 0}.
Then, ¢; (o) = =3 ! ;(ax) > 0 and

mk

{ahien CUL €U gu(z) > 0,. ., ¢m-1,;(x) > 0}.

=1
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when the Zariski closure of F' is irreducible, that there is a polynomial
q € R[X,,...,X,], non-identically zero on F, such that

WNnF\{ze€eF:q(z)=0}=WnF\{z€F:qz)=0}

The relation ‘generically equal in F’ is an equivalence relation.

While complete proofs relative to a non-zero polynomial are in fact com-
plete proofs in non—trivial cases, the property of being “generically equal”
does not mean “equal” in these cases. Consider for instance the closed
semialgebraic sets Wy = {(z,y) € R? : > 0,y > 0} and

Wa={(z,9) € R?: 220,y 20} U {(z,9) € R*: =" 2 0}.
Both sets are generically equal in R? but are not equal.

If U is an open connected semialgebraic subset of IR", a proper Nash set
is a semialgebraic subset of dimension smaller than the dimension of U.
Two semialgebraic subsets of R™, W and W', are generically equal in U
if and only if there is a Nash function h € N'(U), non-identically zero on
U, such that WNU\{z €U : h(z) =0} = W NU\{x €U :h(z) =0}

ur analysis will combine the widths of open and closed sets generically
to the given one. This improves the performance of the width as a lower
1, but the computation of these generic widths requires a result stronger
the Main Theorem in [10].

NITION 3.5. Given two semialgebraic subsets W and F of R", we define
eneric width of W in F, wye, (W, F), as follows:

(WL F) min{w(C, F) : C is closed, generically equal to W in F'}

Il

I

min{w(O, F) : O is open, generically equal to W in F}.

nalogously, the Nash generic width of W in an open set U, EM,MLS\, U),is
cd by replacing “width” by “Nash width” in the equalities above. Obvi-
, as polynomials are also Nash functions, we have
N
E.omaﬁ

W,U) < wyen(W, U) < 1.

last inequality is from Brécker’s works [5] and [6].
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REMARK 3.6. Let us denote by w(W,IR™) the minimum of the widths of any
complete proof of W relative to some polynomial Q(X). We observe that the
parameters wgen (W, R"), @w(W,R") (used in [10]), and w(W,IR") (used in [8])

are different. First, we have the obvious relation

ween (W, R™) < m(W,R™) < w(W,IR").  (3.6.1)

Second, for semialgebraic subsets W C IR™ whose interior points are dense,
we have the following equality:

=(W,R") = w(W,R").

However, both of them can be different from the generic width. Consider, for
instance, examples of basic closed semialgebraic sets where the dimension falls
beyond a smooth boundary. More concretely, consider the closed semialgebraic
subset of IR? described by the cubic with an isolated point:

w {(z,y) eER?*:2® —2? —y* > 0,2 — 1/2 > 0}
{(z,y) e R?* : 2® — 2 —y? > 0}

U {(z,y) € R?: 2% —2? —y* =0,z #0}.

It is clear that W is generically equal to the open semialgebraic set given
by {(z,y) € R?: 2® — 2% — y* > 0}, thus wyea (W, R?) = 1.

On the other hand, let P be a complete proof of W relative to a non-zero
polynomial Q(X,Y) € R[X, Y]\ {0}. Since the interior points of W are dense,
we have that W(P) = W and P is a complete proof of W. Now, we have the
following inequality:

2 < w(W,RY).

Assume there are polynomials P,(X,Y),..., P{X,Y) € R[X,Y] such that
W = {(z,y) € R?*: Pi(z,y) 20} U--- U {(z,y) € R*: P(z,y) > 0}.

The set B = {(z,y) € R?: 2® —2? —y? = 0,z # 0} is the set of regular points
of the irreducible curve C = {(z,y) € R* : 23 — 22 —y? = 0}. Then, B is
Zariski dense in C and the ideal of C is (X® — X? — Y?). Now, observe that B
is the boundary of W which implies that no P,(X,Y) can be strictly positive
on points of B. Since B C W, we must have the following inclusion:

BC tuka,@.v =0}U---U{P(z,y) =0} = {(z,y) € R?: Hw.—m?ys = 0}.

=1
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Now, following the arguments of Rabin we should be able to obtain a com-
e proof P of {z € R : z > 0} relative to Q(X) = X(X + 1) f%(X), just
<ing some sign changes, but preserving the family of polynomials occuring in
ACT. However, note that a complete proof consists only of non-strict “> 0”
i inequalities. Moreover, the semialgebraic set W{P) must be included in
€ IR : = > 0} (see condition (z) of Definition 3.1 above). Nevertheless,
> uses only the polynomials {X f2(X), (X + 1)f%(X)} and sign conditions
0”, W(P) contains all negative roots of f(X), and it would never be posible
1ave the following inclusion:

W(P)C{zeR:z >0}

[his difficulty can be avoided if we include some new polynomials. For
ance, consider including with the given family all the derivatives of these
rnomials as in Thom’s Lemma (see [3], 2.5.4, and [7]), or consider adding
parating polynomial g(X), which is strictly negative on the roots of f(X)
positive on {z € R : z > 0}. With this bigger collection we can find a
iplete proof of the given set.
[his example shows that obtaining a complete proof, even if it is relative to
re non-zero polynomial, is not simply a matter of sign changes but requires
ing some new polynomials to the family occuring in the given ACT.
There are algorithmic procedures to get these new polynomials; this is the
. behind all the known proofs of the Finiteness Theorem (see (3], [7], and
for details). Given a description (a formula or an ACT) of a semialgebraic
W known to be closed, we can construct from the given description a
wrating family of polynomials using Thom’s Generalized Lemma as in [7]
[11]. This family is big enough to produce a complete proof of the set.
vever, the method is based on a cylindrical algebraic decomposition and it
oduces all the partial derivatives of all polynomials occuring in the tree.
s technique leads to complete proofs of width O(2") where h is the height
he tree.
I'here is another method based on Lojasiewicz’s inequality [3]. This method
ery accurate for open semialgebraic sets, but not so good for closed ones.
itroduces O(N2*~1) new polynomials, where N is the number of NO leaves
h is the height of the tree. The complete proofs of closed sets obtained by
method also have width of order O(N2~1).
'hese features lead to enormous changes on the complexity and we cannot
iperate the height of the original tree as a linear function of the width of
obtained complete proof.
Nevertheless, we observe that the conclusion in [10] (i.e., that the width is
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a lower bound for the decisional complexity) remains true in the example of
Figure 1 above: | < hp(T) = 2 (see Corollary 4.6 below). In order to show
how this relation holds, we proceed by slightly changing the concept of width,
without explicitly using the procedures to construct complete proofs.

DEFINITION 3.2. Let F, W be two semialgebraic subsets of R, W closed.
The width of W in F, w(W, F), is the minimum non-negative integer k € IN
such that there are an integer t € IN and polynomials p;; € R(X,,..., X,] for
1 <1<k, 1 <5<t verifying

WnNF= G? EF:pi(z)20,...,pk;(x) >0} (3.2.1)

Jj=1
By convention, we assume w(IR", F) = 0 and w(@, F) = 0.

Similarly, if W’ is an open semialgebraic subset of IR", we define the concept
of the width of W’ in F' by replacing “> 0” by “> 0” in the equality (3.2.1)
above.

For technical reasons, we will work in the realm of Nash function theory
throughout the remainder of this section: a Nash function defined on an open
sernialgebraic subset U of IR™ is an analytic function f : U — IR which is
algebraic over the polynomials (see [3], Ch. 8, for more detailed descriptions).
We shall denote by A(U) the ring of Nash functions defined on U/. A Nash
set in U is the zero set of a finite collection of Nash functions in A(U). An
important property of Nash functions is that-sets given by a Boolean formula of
sign conditions on Nash functions defined on U are also semialgebraic subsets
of R™. Another important property we shall apply below is that A/(U) is a
factorial domain whenever U is an open ball (see [4] and [12]).

Analogously to Definition 3.2 above, for an open semialgebraic subset U
of IR™ we define the Nash width of a closed (respectively open) semialgebraic
subset W in I, ¥ (W, U), by replacing the polynomials p; ; by Nash functions
defined on U in equality (3.2.1} above.

DEFINITION 3.3. Let W, W', I be three semialgebraic subsets of IR™. We say
that W and W' are generically equal in F if and only if im(W AW)N F <
dim F', where W A W’ is the symmetric difference of W and W'.

REMARK 3.4.  |) Since the dimension of F as a semialgebraic set is the
dimension of its Zariski closure, “W generically equal to W' in F'” means,
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+Li:R" — IR are affine linear functions for 1 < 37 < m.

NITION 3.1. ([10]) Let Q(X) = Q(Xy,- -+, Xx) be a polynomial and F' a
. subset of R™, We say that the t X k array P of polynomials

pia(X) ... p1x(X)
P = P :
pa(X) oo pex(X)

omplete proof in F' of SP(X), relative to Q(X), if
for every 1 < i <t and every 2o € R",

[z € FAO < pia(zo) A~ AD < p;i k(zo)} = SP(x0), and

for every zo € F satisfying SP(zo) and Q(z0) # 0, there exists an 7
1 < i < t, such that

0 < pia(zo) A+ A0 < pik(zo)

hermore, we define Width(P) = k.

‘abin simply used the term complete proof of SP(X) to refer to those
slete proofs P relative to the constant polynomial 1 € R[X,..., X.].
ollowing the underlying ideas of [10], we can extend the concept of a com-
- proof of any closed semialgebraic subset W C R"™ in the following manner.
Ve can understand a complete proof P as a description, in matricial pre-
\tion, of a semialgebraic closed set W(P) € R", as in the Finiteness
yrem:

W(P) = Q? € R": pis(z) > 0,...,pix(z) > 0}.

i=1

Ve shall say that one of such matrices, P, is a complete proof of a semi-
sraic subset W C IR” relative to Q(X) when the following two conditions

W(P)c W,
W\ {z e R":Q(z) # 0} S W(P)\ {z € R": Q(z) # 0}.

comput complexity 4 (1994) Rabin's Width 19

When F' = RR", complete proofs relative to Q(X) of the syntactic expression
SP(X) (as in Definition 3.1) are just complete proofs relative to Q(X) of the
following subset W of R"™:

W={zeR": Li(z) 20,...,Ln(z) > 0}.

Again, we simply use the term complete proofs of a semialgebraic subset
W C R™ to refer to those complete proofs relative to the constant polynomial
1, i.e., P is a complete proof of W if and only if W = W(P).

In [10], Proposition 6, Rabin states that for all those non-trivial SP(X)
(i.e., those with non-empty interior) the clause “relative to @(X) " can always
be dropped. In our terminology this result can be translated as follows. Given
a closed semialgebraic set W C R™ whose interior points are dense in W, for
every complete proof P of W relative to a non-zero Q(X), we have W(P) = W,
i.e., P is in fact a complete proof of W and the clause “relative to Q(X)” can
also be dropped. The proof follows the same arguments as Proposition 6 in
[10].

In [10], Rabin claimed that “after certain sign changes” in an ACT solving
the membership problem for a set {z € R" : Ly(z) > 0,..., Ln(z) > 0},
one can obtain a complete proof of that set. This assertion is not clear for the
authors. Take the semialgebraic subset {z € R : > 0} of R and a polynomial
f(X) € R[X] with only negative roots, say f(X) =X +2. In Figure 1 below,
we exhibit an ACT, T, solving the membership problem for {z € R : z > 0}
in R.

zeR
!
- f2>07
Yes ¢ \No
—(z+1)-f2>07  NO

Yes " \No
NO YES

Figure 1: An algebraic decision tree that does not produce a complete proof.
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)OF.  The first statement is clear from our discussions in Section 3. As
he second statement, observe that given affine linear functions Ly,..., L,, :
— R, the L;’s are sign independent if and only if the rank of the Jacobian
ied by {L1,...,Lm} at some point a € R", verifying Li(a) = 0, ...,
n) = 0, is m. Then, Theorem 3.8 and Proposition 4.1 allow us to conclude
wgen (W, R™) = w(W,R") = m = Cp(W).

)n the other hand, Theorem 3.8 and Remark 3.6 yield the main Theorem
0], i.e., m = wgen (W, R") < w(W,R") < m = Cp(W), which completes
proof. O -

IARK 4.8. The statement of Corollary 4.6 does not hold under the weaker
sthesis of sign independence on the polynomials p,,...,p,, if they are not
ir forms: consider in R? the linear functions L, = Xy, Ly = X,, Ly =
- X, and Ly = X, + X, and the polynomial mappings p; = L,L, and
LsL,. Clearly, the polynomial mappings p, and p, are sign independent
ny open semialgebraic neighborhood U C R? of the origin 0 € R?, but
> Oqﬁm > Ow = *hmhw > Ow
)n the other hand, sign independence for conditions in {>, <} is a necessary
lition for Corollary 4.6 to hold. Actually, if for some sequence p,. ..,y €
>} the set {x € U : pi(z)p10, ldots, p(2) 0} = @, then wyen({z € U :
)10, .., P (2)m0},U) < m — 1. In order to see this, let us suppose that
o= =" and gy = - = i = “<”; then, the following equality
5
(e €U s pi(e) 20,0, pm(e) 2 0)\ {z € U : IR pifx) = 0} =
{zelU: pi(z)20,...,p(z) 2 0,p141.p142(z) > 0,
Pt Pn(2) 2 01\ {2 € U s T2 pi(a) = O},
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